CN107154311A - 一种有序二氧化锰纳米线薄膜电极材料的制备方法及其应用 - Google Patents

一种有序二氧化锰纳米线薄膜电极材料的制备方法及其应用 Download PDF

Info

Publication number
CN107154311A
CN107154311A CN201611219527.9A CN201611219527A CN107154311A CN 107154311 A CN107154311 A CN 107154311A CN 201611219527 A CN201611219527 A CN 201611219527A CN 107154311 A CN107154311 A CN 107154311A
Authority
CN
China
Prior art keywords
manganese dioxide
dioxide nanowire
functionalization
film
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611219527.9A
Other languages
English (en)
Inventor
周俊丽
林家豪
黄俊辉
黄智鹏
王春红
余林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201611219527.9A priority Critical patent/CN107154311A/zh
Publication of CN107154311A publication Critical patent/CN107154311A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种长程有序的功能化二氧化锰纳米线薄膜的制备方法,该方法包括以下步骤:将功能化二氧化锰纳米线分散到氮甲基吡咯烷酮溶剂中形成纳米线分散液,然后把分散液滴加到蒸馏水中形成油‑水两相界面,往油水界面加入乙酸乙酯诱导剂,等待5到10分钟,即可得到长程有序的功能化二氧化锰纳米线薄膜。与无序结构的纳米线相比,本发明制备的二氧化锰纳米线及其功能化纳米线导电薄膜的长程有序结构大大降低了纳米线之间的接触电阻,具有更优越的导电性,达到10.8欧姆每平方厘米。本发明的方法步骤简单,具有经济环保,快速的特点,并且适合零维的纳米颗粒和二维的纳米片等多种纳米材料的宏量组装制备。

Description

一种有序二氧化锰纳米线薄膜电极材料的制备方法及其应用
技术领域
本发明属于能源电极材料领域,主要涉及一种有序二氧化锰纳米线薄膜电极材料的制备方法及其应用。
背景技术
二氧化锰纳米线具有十分有趣的应用,例如可作为催化剂,分子筛以及磁性材料和电极材料等。特别是超长的二氧化锰纳米线具有较低的接触电阻,从而更有利于电子的传导,是一种极具潜力的电极材料。但是纳米线的无序结构使得其在电子器件的应用上产生较大的问题,因为这些器件的应用往往要求高度有序的结构。例如《美国科学院院刊》(PNAS,2009年,106卷,21490页)报道了浸泡法制备得到的碳纳米管导电薄膜导电性良好,但是缺点在于纳米线的无序排放结构导致电导调控性无法实现。超薄柔性导电薄膜是目前能源科学研究的前沿。随着实际应用的需要,人们逐渐将研究重点从独立无序纳米结构转移到以低维纳米结构为基本单元构建二维或三维有序结构薄膜。这些有序纳米薄膜往往表现出更好或者更新颖的性能。
目前制备纳米有序薄膜的物理和化学方法比较多,如液相自组装法、LB膜沉积、旋涂、层层自吸附、超声吸附等。LB技术已经被证明是一种高产量、低成本、简易的将纳米尺寸的结构单元组装为紧密排列纳米超结构和低密度清晰图案的有效方法。但这些方法也存在一定的局限性,比如需要一些特殊的设备,制备周期较长,且可控性较差。于是寻找更加简便有效地构建高质量纳米薄膜器件的方法成为这一领域重要的研究课题之一。后来,发展了利用简单的界面组装法快速有效地制备有序纳米线薄膜,相关研究成果已有文献报道,如中国科技大学俞书宏教授课题组在德国杂志《先进功能材料,2010年20期958页》报道了一种利用气-液-油三相界面组装一维Ag纳米线的方法。该方法中的是通过在油相氯仿表面滴入适量Ag纳米线水液溶液形成三相界面,能够将Ag纳米线紧密且平行排列形成自支撑薄膜。
目前关于利用油水两相界面组装技术来控制长度大于100μm的功能化二氧化锰纳米线有序导电薄膜的制备尚未有文献或者专利报道。相对于三相界面组装法,两相界面组装系统操作更为简单,并且我们避免常规所用的氯仿油相,以更环保和稳定性更好的N-甲基吡咯烷酮为油相,以乙酸乙酯为诱导剂,降低界面自由能,实现功能化二氧化锰纳米线长程有序的薄膜组装。本发明的组装方法实现单分子上的组装效果。
发明内容
本发明的目的是提供一种用油/水两相界面技术组装功能化二氧化锰纳米线有序薄膜电极材料的制备方法及其应用。
本发明提供的一种用油/水两相界面技术组装功能化二氧化锰纳米线有序薄膜电极材料的制备方法,包括如下步骤:将功能化二氧化锰纳米线分散到氮甲基吡咯烷酮溶剂中形成纳米线分散液,然后把分散液滴加到蒸馏水形成油-水两相界面,往油水界面加入乙酸乙酯诱导剂,开始成膜过程,即可得到长程有序的功能化二氧化锰纳米线薄膜。
本发明所用的超长二氧化锰纳米线是由水热法制备得到的α-MnO2,长度在100-200μm,直径为50nm。
本发明所用的功能化二氧化锰纳米线是由超长二氧化锰纳米线与硫酸苯胺溶液原位氧化聚合制备所得。所用二氧化锰纳米线和硫酸苯胺质量比为0.3,聚合温度为0-5℃,聚合时间为5min。
本发明所用的油相为氮甲基吡咯烷酮,所用的诱导剂为乙酸乙酯。
本发明采用油相(氮甲基吡咯烷酮)-水相(蒸馏水)的两相体积比例为0.5-3:10,成膜温度为室温,成膜时间5-10min。
本发明的有益效果是:
1.本发明的方法步骤简单,具有经济环保,快速的特点,并且适合零维的纳米颗粒和二维的纳米片等多种纳米材料的宏量组装制备。
2.与无序结构的纳米线相比,本发明制备的有序二氧化锰纳米线及其功能化导电薄膜降低纳米线之间的接触电阻,具有更优越的导电性,达到10.8欧姆每平方厘米。
3.本发明制备的有序二氧化锰纳米线及其功能化导电薄膜是超薄导电薄膜,薄膜厚度可调控,并且在100纳米以下。
4.本发明制备的有序二氧化锰纳米线及其功能化导电薄膜具有良好的柔性,表现在器件弯曲后不影响器件的电容性能。
附图说明
图1为二氧化锰纳米线(左)和功能化二氧化锰纳米线(右)的透射电镜图。
图2为实施例1中的功能化二氧化锰纳米线有序薄膜的扫描电镜图和薄膜厚度图。
图3为基于有序的功能化二氧化锰纳米线薄膜不同集流体电极的照片。
图4为基于功能化二氧化锰纳米线有序薄膜的柔性全固态超电性能。
具体实施方式
本发明提供一种长程有序的纳米线导电薄膜的宏量制备方法,该方法包括以下步骤:先通过水热法制备出超长二氧化锰纳米线,再通过原位氧化聚合得到功能化的二氧化锰纳米线,然后利用油-水两相界面组装技术制备得到长程有序的功能化二氧化锰纳米线薄膜。
得到有序的功能化二氧化锰纳米线薄膜后,将其单层纳米线薄膜从油-水界面转移到各种柔性衬底上,比如PET衬底或者超薄泡沫镍,为基于纳米线薄膜的器件设计和性能研究的实用化提供了前提研究。
本发明的成膜方法,避免了昂贵的LB成膜仪器的使用,简单迅速得到柔性透明的纳米线导电薄膜,可通过控制分散液浓度或者控制层数达到对薄膜厚度的控制。该油-水界面成膜法可以经济,有效,绿色地组装纳米材料。
本发明的有序的功能化二氧化锰纳米线薄膜可根据如下总体方案制备:
(1)采用本课题组已授权专利CN103193273A所用的水热法制备超长二氧化锰纳米线:将1mol/L的硫酸锰、氯酸钾和0.5mol/L的醋酸钾、醋酸加入到去离子水中,搅拌至澄清溶液,然后转移至水热釜中,置于160℃的恒温箱中反应6h,经洗涤干燥后得到超长二氧化锰纳米线。
(2)采用原位氧化聚合法制备功能化二氧化锰纳米线(导电聚合物聚苯胺包覆二氧化锰纳米线):将硫酸苯胺与二氧化锰纳米线按质量比3:1加入到1mol/LH2SO4中混合搅拌均匀,置于0-4℃下保温5-30分钟即可得到功能化二氧化锰纳米线。
(3)通过油-水两相界面组装方法得到长程有序的功能化二氧化锰纳米线薄膜:将二氧化锰纳米线的N-甲基吡咯烷酮分散液(1mg/mL)滴加到装有去离子水的培养皿中,形成油-水两相界面,然后逐滴加入诱导剂乙酸乙酯。等待5到10分钟,随着乙酸乙酯的蒸发,界面自由能降低,即可得到长程有序的功能化二氧化锰纳米线薄膜。
(4)本领域技术人员还可以根据本发明的思路和方法结合具体要求选择适合的原料在上面的总体方案以及下面的实施例的基础上进行合适的改动从而获得不同性能的纳米线薄膜,例如Ag/MnO2异质纳米线等组装体薄膜也包括在本发明的范围之内。
为了进一步说明本发明的技术方案,下面结合具体实施例对本发明实施方案进行描述,但是这些描述只是对本发明进行进一步说明,而不是对本发明的范围限制。
以下为通过控制分散液浓度和控制层数来达到控制薄膜厚度的实施范例。
实施例1:将二氧化锰纳米线的N-甲基吡咯烷酮分散液(1mg/mL)滴加到装有去离子水的直径为80mm培养皿中,形成油-水两相界面,然后逐滴加入诱导剂乙酸乙酯1.6mL,等待5到10分钟,得到有序的功能化二氧化锰纳米线薄膜。然后将单层薄膜转移到柔性衬底制成柔性电极。两电极以三明治结构对称组装成柔性全固态超级电容器,测其电容性能。
实例2:将二氧化锰纳米线的N-甲基吡咯烷酮分散液(2mg/mL)滴加到装有去离子水的直径为80mm培养皿中,形成油-水两相界面,然后逐滴加入诱导剂乙酸乙酯1.6mL,等待5到10分钟,得到有序的功能化二氧化锰纳米线薄膜。然后将单层薄膜转移到柔性衬底制成柔性电极。两电极以三明治结构对称组装成柔性全固态超级电容器,测其电容性能。
实例3:将二氧化锰纳米线的N-甲基吡咯烷酮分散液(1mg/mL)滴加到装有去离子水的直径为80mm培养皿中,形成油-水两相界面,然后逐滴加入诱导剂乙酸乙酯1.6mL,等待5到10分钟,得到有序的功能化二氧化锰纳米线薄膜。然后将单层薄膜重复多次转移到柔性衬底制成柔性电极。重复层数越多,得到薄膜厚度越厚。两电极以三明治结构对称组装成柔性全固态超级电容器,测其电容性能。

Claims (4)

1.一种有序的功能化二氧化锰纳米线薄膜制备方法,其特征在于包括如下步骤:将功能化二氧化锰纳米线分散到氮甲基吡咯烷酮溶剂中形成纳米线分散液,然后把分散液滴加到蒸馏水中形成油-水两相界面,往油水界面加入乙酸乙酯诱导剂,等待5到10分钟,即可得到长程有序的功能化二氧化锰纳米线薄膜。
2.如权利要求1所述的制备方法,其特征在于:超长二氧化锰纳米线是由水热法制备得到的α-MnO2,长度在100-200μm,直径为50nm;所述的功能化二氧化锰纳米线是由超长二氧化锰纳米线与硫酸苯胺溶液原位氧化聚合制备所得;所用二氧化锰纳米线和硫酸苯胺质量比为0.3,聚合温度为0-5℃,聚合时间为5min。
3.如权利要求1所述的制备方法,其特征在于:本发明所用的油相为氮甲基吡咯烷酮,所用的诱导剂为乙酸乙酯。
4.如权利要求1所述的制备方法,采用油相(氮甲基吡咯烷酮)-水相(蒸馏水)的两相体积比例为0.5~3:10,成膜温度为室温,成膜时间5~10min。
CN201611219527.9A 2016-12-26 2016-12-26 一种有序二氧化锰纳米线薄膜电极材料的制备方法及其应用 Pending CN107154311A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611219527.9A CN107154311A (zh) 2016-12-26 2016-12-26 一种有序二氧化锰纳米线薄膜电极材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611219527.9A CN107154311A (zh) 2016-12-26 2016-12-26 一种有序二氧化锰纳米线薄膜电极材料的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN107154311A true CN107154311A (zh) 2017-09-12

Family

ID=59791475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611219527.9A Pending CN107154311A (zh) 2016-12-26 2016-12-26 一种有序二氧化锰纳米线薄膜电极材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN107154311A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172841A (zh) * 2017-12-17 2018-06-15 南京理工大学 一种应用于微生物燃料电池改性石墨毡电极及其制备方法
CN110794633A (zh) * 2019-12-02 2020-02-14 上海第二工业大学 一种基于二氧化锰纳米线的电致变色器件及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1634762A (zh) * 2003-12-30 2005-07-06 中国科学院理化技术研究所 一种自组装二氧化硅多孔材料及其制备方法
CN102616736A (zh) * 2012-04-10 2012-08-01 中国科学技术大学 一种制备纳米材料组装体的方法
CN103193273A (zh) * 2013-05-03 2013-07-10 广东工业大学 一种超长二氧化锰纳米线的制备方法
KR101328427B1 (ko) * 2012-05-24 2013-11-14 전자부품연구원 금속나노와이어 또는 탄소나노튜브를 이용한 복합 도전성 박막 및 그의 제조 방법
CN103641098A (zh) * 2013-11-29 2014-03-19 太原理工大学 一种将纳米碳材料快速组装到油水界面形成柔性薄膜的方法
US20140283970A1 (en) * 2013-02-25 2014-09-25 Korea Advanced Institute Of Science And Technology Large-area films using interfacial self-assembly of microparticles and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1634762A (zh) * 2003-12-30 2005-07-06 中国科学院理化技术研究所 一种自组装二氧化硅多孔材料及其制备方法
CN102616736A (zh) * 2012-04-10 2012-08-01 中国科学技术大学 一种制备纳米材料组装体的方法
KR101328427B1 (ko) * 2012-05-24 2013-11-14 전자부품연구원 금속나노와이어 또는 탄소나노튜브를 이용한 복합 도전성 박막 및 그의 제조 방법
US20140283970A1 (en) * 2013-02-25 2014-09-25 Korea Advanced Institute Of Science And Technology Large-area films using interfacial self-assembly of microparticles and method of manufacturing the same
CN103193273A (zh) * 2013-05-03 2013-07-10 广东工业大学 一种超长二氧化锰纳米线的制备方法
CN103641098A (zh) * 2013-11-29 2014-03-19 太原理工大学 一种将纳米碳材料快速组装到油水界面形成柔性薄膜的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172841A (zh) * 2017-12-17 2018-06-15 南京理工大学 一种应用于微生物燃料电池改性石墨毡电极及其制备方法
CN110794633A (zh) * 2019-12-02 2020-02-14 上海第二工业大学 一种基于二氧化锰纳米线的电致变色器件及其制备方法
CN110794633B (zh) * 2019-12-02 2022-07-12 上海第二工业大学 一种基于二氧化锰纳米线的电致变色器件及其制备方法

Similar Documents

Publication Publication Date Title
Li et al. Electronic biopolymers: From molecular engineering to functional devices
Kulandaivalu et al. Recent advances in layer-by-layer assembled conducting polymer based composites for supercapacitors
Zhang et al. Recent advances in nanofiber-based flexible transparent electrodes
CN1833352B (zh) 致动器元件及其生产方法
CN111854595B (zh) 一种基于MXene电极的离子传感器及其制备方法
Kim et al. Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnO x composites for high-performance energy storage devices
Wang et al. A consecutive spray printing strategy to construct and integrate diverse supercapacitors on various substrates
Huang et al. Laser-printed in-plane micro-supercapacitors: from symmetric to asymmetric structure
Cao et al. Effect of graphene-EC on Ag NW-based transparent film heaters: optimizing the stability and heat dispersion of films
CN104627977B (zh) 一种氧化石墨烯增强的复合纳米碳纸及其制备方法
CN111192965B (zh) 柔性透明电极及其制备方法与由其制备的柔性太阳能电池
CN102993820A (zh) 一种碳纳米材料/金属纳米材料复合纳米油墨
WO2013170755A1 (zh) 石墨烯和金属纳米线复合的导电膜、制备方法及其用于制备透明导电膜的用途
CN102391737A (zh) 水溶性银纳米线墨水及其制备方法和使用方法
CN102079505B (zh) 二维空心球有序结构阵列及其制备方法
CN111969887B (zh) MXene/CNT离子型电化学驱动器的制备方法、制得的驱动器及应用
CN112185608B (zh) 一种新型双层导电网络结构的柔性透明电极及其制备方法
CN103167645B (zh) 加热垫的制备方法
Jing et al. Highly bendable, transparent, and conductive AgNWs-PET films fabricated via transfer-printing and second pressing technique
CN107154311A (zh) 一种有序二氧化锰纳米线薄膜电极材料的制备方法及其应用
CN102659092A (zh) 一种简易可控的碳纳米管纸的制备装置和方法
Hu et al. Flexible Supercapacitors Fabricated by Growing Porous NiCo2O4 In Situ on a Carbon Nanotube Film Using a Hyperbranched Polymer Template
CN110591660A (zh) 一种高效导热的复合氧化石墨烯薄膜的制备方法
Gao et al. Facile synthesis of Ag/carbon quantum dots/graphene composites for highly conductive water-based inks
CN103333437A (zh) 一种稀土掺杂碳纳米管/聚氯乙烯复合吸波薄膜材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170912

RJ01 Rejection of invention patent application after publication