CN107130212A - 一种高硬耐磨抗热冲击的厚钽涂层及其制备方法 - Google Patents

一种高硬耐磨抗热冲击的厚钽涂层及其制备方法 Download PDF

Info

Publication number
CN107130212A
CN107130212A CN201710298701.1A CN201710298701A CN107130212A CN 107130212 A CN107130212 A CN 107130212A CN 201710298701 A CN201710298701 A CN 201710298701A CN 107130212 A CN107130212 A CN 107130212A
Authority
CN
China
Prior art keywords
coating
tantalum coating
shock resistance
tantalum
heat shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710298701.1A
Other languages
English (en)
Other versions
CN107130212B (zh
Inventor
陈明辉
王群昌
王福会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201710298701.1A priority Critical patent/CN107130212B/zh
Publication of CN107130212A publication Critical patent/CN107130212A/zh
Application granted granted Critical
Publication of CN107130212B publication Critical patent/CN107130212B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Abstract

本发明涉及耐磨涂层领域,特别提供一种高硬耐磨抗热冲击的厚钽涂层及其制备方法。该钽涂层成分为100%的α相钽,具有较高的韧性。同时,在体心立方晶格的α相钽中固溶微量的氮原子,提高钽涂层的硬度及弹性模量,从而提高涂层的耐磨与抗热冲击性能。钽涂层的最终厚度可以达到60μm以上。本发明提供的高硬耐磨抗热冲击厚钽涂层的制备方法为氩气+氮气环境下的磁控溅射。以纯钽为靶材,在一定的真空度下,以氩气(Ar)和氮气(N2)为溅射气体,在基体材料表面直接沉积制备一层纳米晶的厚钽涂层,该涂层具有高硬度、高韧性、耐磨、抗热冲击等优异的综合性能。

Description

一种高硬耐磨抗热冲击的厚钽涂层及其制备方法
技术领域:
本发明涉及耐磨涂层领域,特别提供一种高硬耐磨抗热冲击的厚钽涂层及其制备方法。
背景技术:
在火炮身管内壁、液压活塞杆、柴油和航空器发动机气缸内的孔和液压轴等现役的军工、民用关键部件中,为了提高使用寿命,增加耐磨性和耐腐蚀性能,表面通常采用电镀铬涂层。电镀铬涂层具有高硬度、优良的耐磨性和耐腐蚀性等诸多优点,但是也存在许多缺点,如:脆性高、剪切强度和抗拉强度低、且存在微裂纹缺陷,为烧蚀气氛或者腐蚀性溶液的侵入提供短程通道等等。此外,电镀铬工艺(涉及六价铬)的致命缺点是含铬废水和废气严重致癌,属国家一类控制排放物,对环境和人类的危害极大。电镀铬的生产必须添置污水处理设备,增加生产成本。因此,电镀铬已经不能满足现代科技发展的更高需求,发展绿色的涂层工艺技术已经成为当前技术发展的大势所趋。
Ta以高熔点著称,应用广泛,其氧化物的高温力学性能、耐腐蚀性能也符合实际工况对耐磨耐腐蚀涂层的要求。Ta存在两种晶型,即体心立方结构α相和四方结构β相(亚稳相,高于750℃发生β-Ta→α-Ta相转变)。α-Ta因其塑性好,在热冲击条件下能更好地阻止裂纹的形成;而β-Ta硬而脆,热冲击条件下形成的高压应力易导致涂层的开裂剥落。
国外研究显示,采用高功率脉冲磁控溅射、调制脉冲功率磁控溅射,深振荡磁控溅射均可获得1.8~50μm的Ta涂层,但涂层含有30~60%原子百分比的掺杂β相。尤其是在涂层/基体结合处,β相的比例高达100%。40Arrn+的质量以及离子轰击能量与181Tan+溅射所需逸出功相差甚远,40Arrn+能量的分配、动量转移有效率、离子密度及181Tan+逸出功吸收率等多方面的因素使得一部分达到逸出临界条件的Ta原子温度仅够转化为β相,并且在基体温升不足的情况下,单原子在整个沉积过程中不足以达到β→α相转变条件。因此研究人员均反映利用磁控溅射技术,Ar气作为溅射气体时只能获得β-Ta。为了获得高纯度的高韧α-Ta涂层,美国军事研究人员曾选用131Xe和84Kr两种大原子惰性气体作为溅射气体,成功地获得100~150μm的纯α-Ta涂层,并应用于枪炮内壁防护涂层。但是,Xe和Kr两种惰性气体十分稀有,且价格昂贵。此方法获得高纯度高厚度α-Ta涂层的难度很高,且成本巨大,难以实现广泛生产。同时,火炮身管、液压杆等基体合金(大部分为不锈钢)与α-Ta涂层之间硬度、弹性模量、热扩散系数及晶格常数存在较大差异,大幅影响涂层与基材之间的结合强度,进而影响涂层的服役性能。故在国内,溅射钽工艺的相关工作仍还处于实验室阶段,制备的涂层厚度、相结构及使用性能等都远不能达到预期。
根据服役要求,人们迫切希望能够获得一种厚度超过30μm,α-Ta在涂层中比例近乎100%的涂层,使其具有优良的耐热腐蚀、热冲击和耐磨等综合性能。这是本领域亟待解决的一大技术难题。
发明内容:
本发明的目的是提供一种高硬耐磨抗热冲击的厚钽涂层及其制备方法。
本发明的技术方案是:
一种高硬耐磨抗热冲击的厚钽涂层,所述厚钽涂层为纯钽涂层,纯钽涂层结构为体心立方晶格的α相,纯钽涂层的厚度为10~60μm。
一种高硬耐磨抗热冲击的厚钽涂层的制备方法,在基体材料表面制备纯钽涂层,涂层结构为体心立方晶格的α相,在基体材料表面制备的钽涂层厚度为10~60μm。
所述的高硬耐磨抗热冲击的厚钽涂层的制备方法,制备该厚钽涂层采用的方法是磁控溅射。
所述的高硬耐磨抗热冲击的厚钽涂层的制备方法,磁控溅射的具体工艺参数为:
真空度:P﹤6×10-3Pa;
电弧电流:4.0~4.5A;
功率:2kW;
基体温度:200~250℃;
气压:0.19Pa;其中,氩气流量:8sccm,氮气流量:3~6sccm;
沉积时间:1~5小时。
本发明的设计思想是:
本发明厚钽涂层成分为100%的α相钽,具有较高的韧性。同时,在体心立方晶格的α相钽中固溶微量的氮原子,提高钽涂层的硬度及弹性模量,从而提高涂层的耐磨与抗热冲击性能。钽涂层的最终厚度可以达到60μm甚至以上。本发明提供的高硬耐磨抗热冲击厚钽涂层的制备方法为氩气+氮气环境下的磁控溅射。以纯钽为靶材,在一定的真空度下,以氩气(Ar)以及氮气(N2)为溅射气体,在基体材料表面直接沉积制备一层纳米晶的厚钽涂层,该涂层具有高硬度、高韧性、耐磨、抗热冲击等优异的综合性能。而传统方法制备的钽涂层基本为β相,脆性较大;利用氪气(Kr)或氙气(Xe)作为溅射气体,虽可大幅度提高钽涂层中α相的比例,但是该方法成本高,且制备的涂层内部应力大,钽涂层厚度受到限制。
本发明的优点及有益效果是:
1、本发明采用低廉的氩气和氮气混合气体作为溅射气体,即可制备近乎100%的α-Ta涂层,且厚度在10~60μm范围内可控,通过氮原子(N)的固溶,大幅度提高α-Ta的硬度;同时,降低α-Ta涂层与基体不锈钢之间的热物理性能不匹配度,提高Ta涂层的耐磨以及抗热冲击性能。
2、针对现有电镀铬技术,纯相α-Ta涂层从根源处解决污染和毒害问题,并且微观形貌无裂纹,具有更优的抗热冲击、耐腐蚀及耐磨性,从而提高合金部件的服役性能以及服役寿命。
3、本发明高硬耐磨抗热冲击的厚钽涂层,适用于高温服役各种马氏体、奥氏体以及铁素体不锈钢以及高温合金基材,用以提高基材的抗热冲击以及耐磨性能。
附图说明:
图1高硬耐磨抗热冲击厚钽涂层的截面(a)与表面(b)微观形貌图;
图2高硬耐磨抗热冲击厚钽涂层的X射线衍射图谱;
图3高硬耐磨抗热冲击厚钽涂层热冲击10周期后的低倍(a)与高倍(b)表面形貌;
图4通氩气磁控溅射制备的普通钽涂层X射线衍射图谱;
图5通氩气及过量氮气磁控溅射制备的厚钽涂层热冲击10周期后截面形貌;
图6通氩气磁控溅射制备的普通钽涂层热冲击1周期后表面形貌;
图7通氩气磁控溅射制备的普通钽涂层摩擦系数曲线;图中,纵坐标Frictioncoefficient为摩擦系数,横坐标time,Sec为时间(秒);
图8高硬耐磨抗热冲击厚钽涂层的摩擦系数曲线;图中,纵坐标Frictioncoefficient为摩擦系数,横坐标time,Sec为时间(秒)。
具体实施方式:
下面,通过实施例和附图对本发明进一步详细阐述。
实施例1
基体采用304不锈钢,试样尺寸为15mm×10mm×2mm,钽靶材纯度为99.99wt%,基体经表面清洗后装入工作室;工作室真空抽至3×10-2Pa~7×10-2Pa,打开加热器,将真空腔体加热至200℃,之后将本底真空抽至低于6×10-3Pa(本实施例真空度为1×10-3Pa)。以8sccm速度通入氩气以及5sccm速度通入氮气至气压为0.19Pa,开始进行靶材的溅射。溅射靶材功率设定为2.0kW,沉积时间为约4小时,钽涂层厚度约为50μm。
本实施例中,对沉积后的钽涂层进行截面和表面的观察,可以看到膜层组织致密,与基体结合良好,如图1a和图1b所示。X射线衍射分析表明涂层中几乎检测不到β-Ta衍射峰的存在,都是α-Ta的衍射峰,结果如图2所示。对沉积后的钽涂层,检测其抗热震性能,测试过程为:将样品置于820℃的高温马弗炉中,介质是空气,保温60s后,在冷水中急冷至室温。如此反复热冲击10个周期后的涂层表面形貌,如图3所示。涂层完好,并无裂纹以及宏观剥落现象,表面均为钽的氧化物,氧化层与内部涂层结合良好。
实施例2
基体采用30CrNi3MoV合金钢,试样尺寸为15mm×10mm×2mm,钽靶材纯度为99.99wt%,基体经表面清洗后装入工作室;工作室真空抽至3×10-2Pa~7×10-2Pa,打开加热器,将真空腔体加热至200℃,之后将本底真空抽至低于6×10-3Pa(本实施例真空度为2×10-3Pa)。以8sccm速度通入氩气以及3sccm速度通入氮气至气压为0.19Pa,开始进行靶材的溅射。溅射靶材功率设定为2.0kW,沉积时间为约1小时,钽涂层厚度约为15μm。
本实施例中,对沉积后的钽涂层进行截面和表面的观察,涂层组织致密,与基体结合良好。X射线衍射分析表明涂层中几乎检测不到β-Ta衍射峰的存在,为纯相α-Ta的衍射峰。
实施例3
基体采用PCrNi3MOV合金钢,试样尺寸为15mm×10mm×2mm,钽靶材纯度为99.99wt%,基体经表面清洗后装入工作室;工作室真空抽至3×10-2Pa~7×10-2Pa,打开加热器,将真空腔体加热至200℃,之后将本底真空抽至低于6×10-3Pa(本实施例真空度为3×10-3Pa)。以8sccm速度通入氩气以及4sccm速度通入氮气至气压为0.19Pa,开始进行靶材的溅射。溅射靶材功率设定为2.0kW,沉积时间为约5小时,钽涂层厚度约为60μm。
本实施例中,对沉积后的钽涂层进行截面和表面的观察,涂层组织致密,与基体结合良好。X射线衍射分析表明涂层中几乎检测不到β-Ta衍射峰的存在,均为纯相α-Ta的衍射峰。对沉积后的钽涂层,检测其抗热冲击性能,820℃反复热冲击20个周期后,涂层完好,并无开裂以及宏观剥落现象,表面均为钽的氧化物,并无不锈钢基体的氧化产物存在,氧化层与内部涂层结合良好。
实施例4
基体采用304不锈钢,试样尺寸为15mm×10mm×2mm,钽靶材纯度为99.99wt%,基体经表面清洗后装入工作室;工作室真空抽至3×10-2Pa~7×10-2Pa,打开加热器,将真空腔体加热至200℃,之后将本底真空抽至低于6×10-3Pa(本实施例真空度为4×10-3Pa)。通入氩气至气压为0.19Pa,开始进行靶材的溅射。溅射靶材功率设定为2.0kW,沉积时间为约4小时,钽涂层厚度约为50μm。
本实施例中,对沉积后的钽涂层进行截面和表面的观察,涂层组织致密,X射线衍射分析表明涂层中基本为β-Ta(见图4)。
实施例5
基体采用30CrNi3MoV合金钢,试样尺寸为15mm×10mm×2mm,钽靶材纯度为99.99wt%,基体经表面清洗后装入工作室;工作室真空抽至3×10-2Pa~7×10-2Pa,打开加热器,将真空腔体加热至200℃,之后将本底真空抽至低于6×10-3Pa(本实施例真空度为5×10-3Pa)。以8sccm速度通入氩气以及7sccm速度通入氮气至气压为0.19Pa,开始进行靶材的溅射。溅射靶材功率设定为2.0kW,沉积时间为约4小时,钽涂层厚度约为50μm。
本实施例中,对沉积后的钽涂层进行截面和表面的观察,涂层组织致密。X射线衍射分析表明涂层中除了检测出α-Ta衍射峰外,还可检测到微弱的TaN衍射峰。由于TaN的存在,降低涂层的韧性,该涂层的820℃抗热冲击性能下降。热冲击10周期后,涂层截面可以发现较大的贯彻式裂纹(见图5)。
实施例6
基体采用304不锈钢,试样尺寸为15mm×10mm×2mm,钽靶材纯度为99.99wt%,基体经表面清洗后装入工作室;工作室真空抽至3×10-2Pa~7×10-2Pa,打开加热器,将真空腔体加热至200℃,之后将本底真空抽至低于6×10-3Pa(本实施例真空度为5×10-3Pa)。通入氩气至气压为0.19Pa,开始进行靶材的溅射。溅射靶材功率设定为2.0kW,沉积时间为约4小时,钽涂层厚度约为50μm。
本实施例中,对沉积后的钽涂层进行截面和表面的观察,涂层组织致密。X射线衍射分析表明涂层基本为β-Ta。对沉积后的钽涂层,检测其抗热冲击性能,热冲击1个周期后,涂层即出现明显的宏观剥落,说明涂层的结合强度很差(见图6)。
实施例7
基体采用25Cr3Mo3NiNb合金钢,试样尺寸为15mm×10mm×2mm,钽靶材纯度为99.99wt%,基体与靶材的距离为40mm,基体经表面清洗后装入工作室;工作室真空抽至3×10-2Pa~7×10-2Pa,打开加热器,将真空腔体加热至200℃,之后将本底真空抽至低于6×10-3Pa(本实施例真空度为4×10-3Pa)。以8sccm速度通入氩气以及6sccm速度通入氮气至气压为0.19Pa,开始进行靶材的溅射。溅射靶材功率设定为2kW,沉积时间为约4小时,钽涂层厚度约为50μm。
本实施例中,对沉积后的钽涂层进行截面和表面的观察,涂层组织致密。X射线衍射分析表明涂层中没有检测出β-Ta衍射峰,α-Ta的含量近乎100%。由于无β-Ta的存在于涂层中,所以涂层与基体结合力紧密,镀态下涂层无剥落现象。维氏压痕法测试,该钽涂层的硬度为HV1981。
实施例8
基体采用316不锈钢,试样尺寸为15mm×10mm×2mm,钽靶材纯度为99.99wt%,基体经表面清洗后装入工作室;工作室真空抽至3×10-2Pa~7×10-2Pa,打开加热器,将真空腔体加热至200℃,之后将本底真空抽至低于6.0×10-3Pa(本实施例真空度为3×10-3Pa)。通入氩气至气压为0.19Pa,开始进行靶材的溅射。溅射靶材功率设定为2.0kW,沉积时间为约4小时,钽涂层厚度约为50μm。
本实施例中,对沉积后的钽涂层进行截面和表面的观察,涂层组织致密,X射线衍射分析表明涂层基本为β-Ta。维氏压痕法测试,该钽涂层的硬度为HV387。
实施例9
基体采用304不锈钢,试样尺寸为15mm×10mm×2mm,钽靶材纯度为99.99wt%,基体经表面清洗后装入工作室;工作室真空抽至3×10-2Pa~7×10-2Pa,打开加热器,将真空腔体加热至200℃,之后将本底真空抽至低于6×10-3Pa(本实施例真空度为2×10-3Pa)。通入氩气至气压为0.19Pa,开始进行靶材的溅射。溅射靶材功率设定为2.0kW,沉积时间为约4小时,钽涂层厚度约为50μm。
本实施例中,对沉积后的钽涂层进行截面和表面的观察,涂层组织致密。X射线衍射分析表明涂层基本为β-Ta。采用往复式摩擦磨损法,得到涂层的磨损量为18.9×10-4mm3/(Nm),摩擦系数曲线如图7所示,摩擦系数值为0.43~0.64。
实施例10
基体采用304不锈钢,试样尺寸为15mm×10mm×2mm,钽靶材纯度为99.99wt%,基体经表面清洗后装入工作室;工作室真空抽至3×10-2Pa~7×10-2Pa,打开加热器,将真空腔体加热至200℃,之后将本底真空抽至低于6×10-3Pa(本实施例真空度为1×10-3Pa)。以8sccm速度通入氩气以及4sccm速度通入氮气至气压为0.19Pa,开始进行靶材的溅射。溅射靶材功率设定为2kW,沉积时间为约4小时,钽涂层厚度约为50μm。
本实施例中,对沉积后的钽涂层进行截面和表面的观察,涂层组织致密。X射线衍射分析表明涂层为100%的纯α-Ta衍射峰。采用往复式摩擦磨损法,得到涂层的磨损量为3.7×10-4mm3/(Nm),摩擦系数曲线如图8所示,摩擦系数值为0.23~0.38。

Claims (4)

1.一种高硬耐磨抗热冲击的厚钽涂层,其特征在于:所述厚钽涂层为纯钽涂层,纯钽涂层结构为体心立方晶格的α相,纯钽涂层的厚度为10~60μm。
2.一种高硬耐磨抗热冲击的厚钽涂层的制备方法,其特征在于:在基体材料表面制备纯钽涂层,涂层结构为体心立方晶格的α相,在基体材料表面制备的钽涂层厚度为10~60μm。
3.按照权利要求2所述的高硬耐磨抗热冲击的厚钽涂层的制备方法,其特征在于:制备该厚钽涂层采用的方法是磁控溅射。
4.按照权利要求3所述的高硬耐磨抗热冲击的厚钽涂层的制备方法,其特征在于:磁控溅射的具体工艺参数为:
真空度:P﹤6×10-3Pa;
电弧电流:4.0~4.5A;
功率:2kW;
基体温度:200~250℃;
气压:0.19Pa;其中,氩气流量:8sccm,氮气流量:3~6sccm;
沉积时间:1~5小时。
CN201710298701.1A 2017-04-27 2017-04-27 一种高硬耐磨抗热冲击的厚钽涂层及其制备方法 Active CN107130212B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710298701.1A CN107130212B (zh) 2017-04-27 2017-04-27 一种高硬耐磨抗热冲击的厚钽涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710298701.1A CN107130212B (zh) 2017-04-27 2017-04-27 一种高硬耐磨抗热冲击的厚钽涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN107130212A true CN107130212A (zh) 2017-09-05
CN107130212B CN107130212B (zh) 2020-01-03

Family

ID=59715168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710298701.1A Active CN107130212B (zh) 2017-04-27 2017-04-27 一种高硬耐磨抗热冲击的厚钽涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN107130212B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518143A (zh) * 2017-09-19 2019-03-26 中国科学院金属研究所 抗高温高速气流烧蚀的微量氮填隙钽涂层及其制备方法
CN110438421A (zh) * 2019-08-09 2019-11-12 广东工业大学 一种铝合金材料及铝合金固溶处理+pvd涂层同步强化方法
CN111411336A (zh) * 2020-03-27 2020-07-14 温州医科大学附属口腔医院 一种人工种植体
CN111647862A (zh) * 2020-06-28 2020-09-11 中国科学院宁波材料技术与工程研究所 一种钽基抗腐蚀防护复合涂层及其制备方法与应用
CN113235060A (zh) * 2021-05-12 2021-08-10 中国兵器工业第五九研究所 一种全α相钽涂层的制备方法
CN113913763A (zh) * 2021-08-27 2022-01-11 核工业西南物理研究院 一种身管抗烧蚀磨损涂层的制备方法
CN114277350A (zh) * 2021-12-28 2022-04-05 东北大学 一种结构稳定的纳米高温防护涂层及其制备方法
CN114318263A (zh) * 2021-12-28 2022-04-12 东北大学 一种抗氧化、耐磨减摩的梯度纳米金属涂层及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SUNG MIN MAENG ET AL.: ""Corrosion behavior of magnetron sputtered α-Ta coatings on smooth and rough steel substrates", 《SURFACE & COATINGS TECHNOLOGY》 *
YUNSONG NIU ET AL.: "Preparation and thermal shock performance of thick α-Ta coatings by direct current magnetron sputtering (DCMS)", 《SURFACE & COATINGS TECHNOLOGY》 *
徐敏生等,: "磁控反应溅射中氮分压对含氮钽薄膜结构与性能的影响", 《真空科学与技术》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518143A (zh) * 2017-09-19 2019-03-26 中国科学院金属研究所 抗高温高速气流烧蚀的微量氮填隙钽涂层及其制备方法
CN110438421A (zh) * 2019-08-09 2019-11-12 广东工业大学 一种铝合金材料及铝合金固溶处理+pvd涂层同步强化方法
CN110438421B (zh) * 2019-08-09 2020-10-09 广东工业大学 一种铝合金材料及铝合金固溶处理+pvd涂层同步强化方法
CN111411336A (zh) * 2020-03-27 2020-07-14 温州医科大学附属口腔医院 一种人工种植体
CN111647862A (zh) * 2020-06-28 2020-09-11 中国科学院宁波材料技术与工程研究所 一种钽基抗腐蚀防护复合涂层及其制备方法与应用
CN113235060A (zh) * 2021-05-12 2021-08-10 中国兵器工业第五九研究所 一种全α相钽涂层的制备方法
CN113913763A (zh) * 2021-08-27 2022-01-11 核工业西南物理研究院 一种身管抗烧蚀磨损涂层的制备方法
CN114277350A (zh) * 2021-12-28 2022-04-05 东北大学 一种结构稳定的纳米高温防护涂层及其制备方法
CN114318263A (zh) * 2021-12-28 2022-04-12 东北大学 一种抗氧化、耐磨减摩的梯度纳米金属涂层及其制备方法
CN114318263B (zh) * 2021-12-28 2023-02-24 东北大学 一种抗氧化、耐磨减摩的梯度纳米金属涂层及其制备方法

Also Published As

Publication number Publication date
CN107130212B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
CN107130212A (zh) 一种高硬耐磨抗热冲击的厚钽涂层及其制备方法
Hsu et al. Thermal sprayed high-entropy NiCo0. 6Fe0. 2Cr1. 5SiAlTi0. 2 coating with improved mechanical properties and oxidation resistance
Zhou et al. Microstructure, hardness and corrosion behaviour of Ti/TiN multilayer coatings produced by plasma activated EB-PVD
EP1891249A1 (de) Schichtsystem für ein bauteil mit wärmedämmschicht und metallischer erosionsschutzschicht, verfahren zur herstellung und verfahren zum betreiben einer dampfturbine
Berrı́os et al. Fatigue properties of a 316L stainless steel coated with different TiNx deposits
EA030470B1 (ru) Способ получения хромового покрытия на металлической подложке
US6986951B2 (en) Cobalt-based alloy for the coating of organs subject to erosion by liquid
CN104401089B (zh) 一种包含镍‑铬‑氧活性扩散障层的高温涂层及制备方法
CN100529185C (zh) 易受液体侵蚀元件的处理方法和抗蚀涂层合金
WO2005061856A1 (de) Turbinenbauteil mit wärmedämmschicht und erosionsschutzschicht
CN108103463A (zh) 一种体心立方钽涂层的制备方法
CN101314854A (zh) 一种Cr-O-N活性扩散阻挡层及制备方法
Ge et al. Effect of plasma nitriding on adhesion strength of CrTiAlN coatings on H13 steels by closed field unbalanced magnetron sputter ion plating
CN209401743U (zh) 一种金属双极板以及燃料电池
CN103590002A (zh) 一种镍基高温合金Al-Cr涂层的制备方法
CN109402564A (zh) 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN102758201B (zh) 镁合金表面兼具耐蚀润滑特性的复合涂层及其制备方法
He et al. Modifying Cr/CrN composite structure by Fe addition: Toward manufacturing cost-effective and tough hard coatings
CN1124786A (zh) 镍基合金-碳化铬硬面复合涂层材料及方法
CN108866394A (zh) 一种高温抗氧化腐蚀涂层合金和涂层
Rahman et al. High temperature oxidation behavior of nanostructured Ni–Al coatings on superalloy
Fröhlich et al. Oxidation protective coatings for γ‐TiAl–recent trends
Kablov et al. Ion-plasma protective coatings for gas-turbine engine blades
CN109136850A (zh) 一种NiCrAlYSc涂层及其制备工艺
Kong et al. Enhanced bonding property of ion-plated TiN coating on stainless steel by mechanically pre-forming a gradient nanostructure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant