CN107112396B - 荧光体陶瓷、封装光半导体元件、电路板、光半导体装置和发光装置 - Google Patents

荧光体陶瓷、封装光半导体元件、电路板、光半导体装置和发光装置 Download PDF

Info

Publication number
CN107112396B
CN107112396B CN201680004659.1A CN201680004659A CN107112396B CN 107112396 B CN107112396 B CN 107112396B CN 201680004659 A CN201680004659 A CN 201680004659A CN 107112396 B CN107112396 B CN 107112396B
Authority
CN
China
Prior art keywords
optical semiconductor
semiconductor element
phosphor ceramic
phosphor
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680004659.1A
Other languages
English (en)
Other versions
CN107112396A (zh
Inventor
藤井宏中
白川真广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Priority claimed from PCT/JP2016/053069 external-priority patent/WO2016132890A1/ja
Publication of CN107112396A publication Critical patent/CN107112396A/zh
Application granted granted Critical
Publication of CN107112396B publication Critical patent/CN107112396B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/60Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/08Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • F21V9/45Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity by adjustment of photoluminescent elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/506Cooling arrangements characterised by the adaptation for cooling of specific components of globes, bowls or cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/045Optical design with spherical surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

荧光体陶瓷是具有孔径为3.0μm以上且12.0μm以下的空孔的荧光体陶瓷。空孔占荧光体陶瓷的体积比例为1.5体积%以上且9.5体积%以下。

Description

荧光体陶瓷、封装光半导体元件、电路板、光半导体装置和发 光装置
技术领域
本发明涉及荧光体陶瓷、及具备该荧光体陶瓷的封装光半导体元件、电路板、光半导体装置和发光装置。
背景技术
光半导体装置等发光装置通常具备例如发出蓝色光的LED(发光二极管元件)、LD(激光二极管)、和能够将蓝色光转换为黄色光的设置在LED上的荧光体层。发光装置通过由LED发出的透过了荧光体层的蓝色光与在荧光体层使一部分蓝色光波长转换而成的黄色光的混色而发出白色光。
作为这样的荧光体层,已知例如由陶瓷材料形成的转换元件(例如参照专利文献1。)。
专利文献1公开了一种转换元件,其具有陶瓷材料的理论上的固体状态的密度的97%以上的密度,转换元件内的孔具有实质上在250nm~2900nm之间的直径。
专利文献1的转换元件通过具有纳米级的微小的孔,因此改善了在宽广视角下的透过性。
现有技术文献
专利文献
专利文献1:专利5049336号
发明内容
发明要解决的问题
然而,专利文献1的转换元件需要制造具有纳米级的孔径的孔,在制造(高温烧结过程)作为陶瓷的转换元件时,由于陶瓷的晶体生长,因而纳米级的孔容易消失。即,专利文献1的转换元件中,产生难以调整该孔的大小、生产率差这样的问题。
另外,对于透明性和散射性也期待进一步的改良。
进而,将通过荧光体使例如LD等发出的激发光进行波长转换而得到的光照射于对象物时,会出现发生感觉到晃眼的不自然的视觉的现象(散斑噪声)这样的问题。
本发明的目的在于提供:透过性和散射性良好、生产率优异、能够降低散斑噪声的荧光体陶瓷、和具备该荧光体陶瓷的封装光半导体元件、电路板、光半导体装置和发光装置。
用于解决问题的方案
本发明[1]包括一种荧光体陶瓷,其为具有孔径为3.0μm以上且12.0μm以下的空孔的荧光体陶瓷,所述空孔占所述荧光体陶瓷的体积比例为1.5体积%以上且9.5体积%以下。
本发明[2]包括[1]所述的荧光体陶瓷,其中,所述荧光体陶瓷具有板状,满足下述式:
V≤1.30×(-log T)
(V表示孔径小于3.0μm的空孔的体积比例(%),T表示所述荧光体陶瓷的厚度(mm)。)。
本发明[3]包括[1]或[2]所述的荧光体陶瓷,其中,满足下述(1)~(3)的至少一个条件。
(1)钠元素为67ppm以下。
(2)镁元素为23ppm以下。
(3)铁元素为21ppm以下。
本发明[4]包括[1]~[3]中任一项所述的荧光体陶瓷,其中,所述荧光体陶瓷的平均孔径为3.0μm以上且10.0μm以下。
本发明[5]包括一种光半导体装置,其具备:基板、安装于所述基板的光半导体元件、粘接层和配置于所述粘接层的与所述光半导体元件处于相反侧的面上、与所述光半导体元件对向配置的[1]~[4]中任一项所述的荧光体陶瓷的。
本发明[6]包括一种光半导体装置,其具备:基板、安装于所述基板的光半导体元件、对所述光半导体元件进行封装的封装层和配置于所述封装层的与所述光半导体元件处于相反侧的面上、与所述光半导体元件对向配置的[1]~[4]中任一项所述的荧光体陶瓷。
本发明[7]包括一种封装光半导体元件,其具备:光半导体元件、对所述光半导体元件进行封装的封装层和配置于所述封装层的与所述光半导体元件处于相反侧的面上、与所述光半导体元件对向配置的[1]~[4]中任一项所述的荧光体陶瓷。
本发明[8]包括一种电路板,其具备:用于将光半导体元件安装于厚度方向一侧的[1]~[4]中任一项所述的荧光体陶瓷、和层叠于所述荧光体陶瓷的厚度方向一面上、用于与所述光半导体元件电连接的电极布线。
本发明[9]包括一种发光装置,其具备:向一侧照射光的光源、与所述光源隔开间隔地对向配置于一侧、形成有用于通过所述光的贯通孔的反射镜、和以照射所述光的方式与所述反射镜隔开间隔地对向配置于一侧的[1]~[4]中任一项所述的荧光体陶瓷。
发明的效果
本发明的荧光体陶瓷的透过性和散射性良好,能够降低散斑噪声。另外,生产率优异。
具备本发明的荧光体陶瓷的本发明的封装光半导体元件、电路板、光半导体装置和发光装置能够抑制发光效率的降低、视角变得良好。另外,特别是作为光半导体元件为将LD等用于光源的封装光半导体元件、装置时,能够降低散斑噪声。而且,能够降低制造成本。
附图说明
[图1]图1A和图1B是表示制造本发明的荧光体陶瓷的第1实施方式的工序的工序图,图1A表示坯片制作工序,图1B表示焙烧工序。
[图2]图2A~图2C是表示使用图1B所示的荧光体陶瓷来制造光半导体装置的第1实施方式的工序的工序图,图2A表示荧光粘接片制作工序,图2B表示荧光粘接片配置工序,图2C表示粘接工序。
[图3]图3A~图3C是表示使用图1B所示的荧光体陶瓷来制造本发明的光半导体装置的第2实施方式的工序的工序图,图3A表示封装片制作工序,图3B表示封装片配置工序,图3C表示封装工序。
[图4]图4A~图4E是表示使用图1B所示的荧光体陶瓷来制造本发明的光半导体装置的第2实施方式的第1变形例(制作封装光半导体元件的实施方式)的工序的工序图,图4A表示封装片制作工序,图4B表示封装片配置工序,图4C表示封装工序,图4D表示剥离工序,图4E表示安装工序。
[图5]图5表示光半导体装置的第2实施方式的第2变形例(光半导体装置具备外壳的实施方式)。
[图6]图6A~图6C是表示使用图1B所示的荧光体陶瓷来制造光半导体装置的第3实施方式的工序的工序图,图6A表示电路板制作工序,图6B表示电路板配置工序,图6C表示安装工序。
[图7]图7表示具备图1B所示的荧光体陶瓷的发光装置。
[图8]图8A和图8B是表示图7所示的发光装置所具备的波长转换散热构件的图,图8A表示侧截面图,图8B表示背面图。
[图9]图9表示在实施例中测定荧光体陶瓷板的空孔的方法的示意图。
具体实施方式
在图1A和图1B中,将图1A和图1B的纸面上下方向作为“上下方向”(第1方向、厚度方向),纸面上侧为上侧,纸面下侧为下侧。另外,将图1A和图1B的纸面左右方向作为“面方向”(第2方向,与第1方向垂直的方向),纸面右方为面方向一侧,图1A和图1B的纸面左方为面方向另一侧。对于图2~图6和图9而言,也以图1A和图1B的方向为基准。
另外,在图7中,将图7的纸面上下方向作为“上下方向”(第1方向、厚度方向),纸面上侧为上侧,纸面下侧为下侧。另外,将图7的纸面左右方向作为“前后方向”(第2方向、宽度方向、与第1方向垂直的方向),纸面右方为前侧,图1的纸面左方为后侧。另外,将图7的纸厚方向作为“左右方向”(第3方向、与第1方向和第2方向垂直的方向),图7的纸厚度方向靠近读者侧为左侧,图7的纸厚度方向远离读者侧为右侧。对于图8A和图8B而言,也以图7的方向为基准。
1.荧光体陶瓷
参照图1B对本发明的荧光体陶瓷的的一实施方式的荧光体陶瓷板1进行说明。
如图1B所示,荧光体陶瓷板1由荧光体材料的陶瓷(焙烧体)形成为板状,含有荧光体。
荧光体陶瓷板1中所含有的荧光体具有波长转换功能,例如可列举出:能够将蓝色光转换成黄色光的黄色荧光体、能够将蓝色光转换成红色光的红色荧光体等。
作为黄色荧光体,可列举出:例如(Ba,Sr,Ca)2SiO4;Eu、(Sr,Ba)2SiO4:Eu(原硅酸钡(BOS))等硅酸盐荧光体;例如(Y、Gd、Ba、Ca)3(Al、Si、Ge、B、P、Ga)5O12:Ce(YAG(钇/铝/石榴石):Ce)、Tb3Al3O12:Ce(TAG(铽/铝/石榴石):Ce)等具有石榴石型晶体结构的石榴石型荧光体;例如Ca-α-SiAlON等氧氮化物荧光体等。作为红色荧光体,例如可列举出:CaAlSiN3:Eu、CaSiN2:Eu等氮化物荧光体等。
荧光体陶瓷板1在内部具有空孔。特别是,荧光体陶瓷板1具有孔径为3.0μm以上且12.0μm以下的空孔(以下也称为“中空孔”。)。
中空孔的体积占荧光体陶瓷板1的比例的下限为1.5体积%以上、优选为2.0体积%以上、更优选为2.5体积%以上。另外,上限为9.5体积%以下、优选为8.0体积%以下。
通过将中空孔的体积比例设在上述范围内,从而能够提高荧光体陶瓷板1的透过性和散射性。
空孔的孔径是空孔的最大长度,可通过使用激光显微镜(装置名:LASERTEC、VL2000D、物镜20倍、倍率1800倍)对荧光体陶瓷板1的切断表面的孔径进行观察来测定。
空孔的体积通过将上述空孔的孔径(空孔的最大长度)作为空孔的直径,进行球形换算来算出。
另外,荧光体陶瓷板1除了具有中空孔以外,还可以具有孔径超过12.0μm的空孔(以下也称为“大空孔”。)和孔径小于3.0μm的空孔(以下也称为“小空孔”。)。
大空孔的体积占荧光体陶瓷板1的比例为例如12.0体积%以下、优选为9.0体积%以下、更优选为5.0体积%以下、进一步优选为2.0体积%以下。需要说明的是,大空孔的孔径的上限为例如30.0μm以下。大空孔的体积比例为上述上限以下时,荧光体陶瓷板1的透明性、生产率变得良好。另外,能够降低荧光体陶瓷板1中所含的杂质。
小空孔的体积占荧光体陶瓷板1的比例为例如2.0体积%以下、优选为1.2体积%以下、更优选为1.0体积%以下、进一步优选为0.8体积%以下。需要说明的是,小空孔的孔径的下限为例如0.3μm以上。小空孔的体积比例为上述上限以下时,荧光体陶瓷板1的透明性、生产率变得良好。
空孔的平均孔径为例如2.5μm以上、优选为3.0μm以上,另外,例如为20.0μm以下、优选为15.0μm以下、更优选为10.0μm以下、进一步优选为5.5μm以下。空孔的平均孔径为上述范围时,荧光体陶瓷板1的透明性、散射性变得良好。另外,从散斑噪声(散斑对比度:speckle contrast ratio)降低的观点出发,优选为10.0μm以下。
接着,参照图1A~图1B对制造荧光体陶瓷板1的方法进行说明。
荧光体陶瓷板1的制造方法例如具备坯片制作工序(参照图1A)、和焙烧工序(图1B)。以下对各工序进行详细说明。
在坯片制作工序中,对含有荧光体材料和有机颗粒的荧光体组合物进行焙烧。优选如图1A所示,将含有荧光体组合物的浆料(荧光体组合物浆料)涂布在剥离基材14的上表面并进行干燥。由此,得到坯片15。
荧光体组合物浆料含有:含有荧光体材料和有机颗粒的荧光体组合物、和溶剂。即,荧光体组合物浆料含有荧光体材料、有机颗粒和溶剂。
荧光体材料是构成上述荧光体的原材料,可根据荧光体进行适当选择。作为荧光体,例如可列举出:构成荧光体的金属单质、其金属氧化物、金属氮化物等。具体而言,作为荧光体,形成Y3Al5O12:Ce的情况下,作为荧光体材料,例如可列举出:氧化钇等含钇的化合物、氧化铝等含铝的化合物、氧化铈等含铈的化合物等金属氧化物。荧光体材料形成为例如颗粒状。
荧光体材料的纯度为例如99.0质量%以上、优选为99.9质量%以上。由此,能够降低荧光体陶瓷板1中所含的杂质。
为了在荧光体陶瓷板1上形成规定的空孔而在荧光体组合物浆料中包含有机颗粒。
作为有机颗粒的材料,只要是在焙烧工序时可被完全热降解的材料即可,例如可列举出:热塑性树脂和热固化性树脂。
作为热塑性树脂,例如可列举出:丙烯酸系树脂、苯乙烯树脂、丙烯酸-苯乙烯系树脂、聚碳酸酯树脂、苯并胍胺树脂、聚烯烃树脂、聚酯树脂、聚酰胺树脂、聚酰亚胺树脂等。从生产率的观点出发,优选列举出:丙烯酸系树脂(特别是聚甲基丙烯酸甲酯等)。
作为热固化性树脂,例如可列举出:环氧树脂、有机硅树脂、氨酯树脂等。
有机颗粒的平均粒径为例如2.0μm以上、优选为3.4μm以上、更优选为4.0μm以上,另外,为例如25.0μm以下、优选为15.0μm以下、更优选为8.0μm以下。有机颗粒的平均粒径低于上述下限时,在对坯片15进行焙烧来制造荧光体陶瓷板1时,有荧光体陶瓷板1的晶体向空孔内部过度生长,而使空孔消失的担心。另一方面,有机颗粒的平均粒径超过上述上限时,在荧光体陶瓷板1内部形成大量的大空孔,有使荧光体陶瓷板1的透过性、强度等降低的担心。另外,有使荧光体陶瓷板1内所含的杂质增加的担心。
有机颗粒的平均粒径例如可以使用粒度分布测定装置(Beckman Coulter,Inc.制造、“LS13 320”)并通过激光衍射散射法进行测定。
相对于荧光体材料和有机颗粒的总含量,有机颗粒的含有比例为例如1.5体积%以上、优选为2.0体积%以上,另外为例如12.0体积%以下、优选为10.0体积%以下、更优选为8.0体积%以下。
通过将有机颗粒的含有比例设在上述范围内,从而能够将在荧光体陶瓷板1内形成的空孔的体积比例调节在适当的范围内。
根据需要,荧光体组合物中可以进一步含有粘结剂树脂。
粘结剂树脂只要使用用于制作坯片15的公知的粘结剂树脂即可,例如可列举出:丙烯酸系聚合物、丁缩醛系聚合物、乙烯基系聚合物、氨酯系聚合物等。优选列举出丙烯酸系聚合物。
相对于荧光体材料100体积份,粘结剂树脂的含有比例为例如5体积份以上、优选为15体积份以上,另外为例如120体积份以下、优选为80体积份以下、更优选为60体积份以下。
根据需要,荧光体组合物中可以进一步含有分散剂、增塑剂、烧结助剂等公知的添加剂。
作为荧光体组合物浆料中所含有的溶剂,可列举出:例如水;例如丙酮、甲乙酮、甲醇、乙醇、甲苯、丙酸甲酯、甲基溶纤剂等有机溶剂。
溶剂的含有比例在荧光体组合物浆料中为例如1~30质量%。
荧光体组合物浆料通过以上述比例配混上述成分并用球磨机等进行湿式混合来制备。即,准备荧光体组合物浆料。
需要说明的是,此时,可以将上述成分一并进行湿式混合。另外,也可以通过对除有机颗粒外的成分进行湿式混合来制备第1浆料,接着,向该第1浆料中湿式混合有机颗粒来制备荧光体组合物浆料。
作为剥离基材14,可列举出:例如,聚对苯二甲酸乙二醇酯(PET)薄膜等聚酯薄膜;例如,聚碳酸酯薄膜;例如,聚乙烯薄膜、聚丙烯薄膜等聚烯烃薄膜;例如,聚苯乙烯薄膜;例如,丙烯酸系薄膜;例如,有机硅树脂薄膜、氟树脂薄膜等树脂薄膜等。进而还可列举出:例如铜箔、不锈钢箔等金属箔。可列举出:优选为树脂薄膜、进一步优选为聚酯薄膜。为了提高剥离性,可根据需要对剥离基材14的表面实施剥离处理。
例如从操作性、成本的观点出发,剥离基材14的厚度为例如10~200μm。
作为将荧光体组合物浆料涂布至剥离基材14的方法,可列举出:刮刀涂布、凹版涂布、喷泉涂布、铸涂、旋涂、辊涂等公知的涂布方法。
干燥温度为例如20℃以上、优选为50℃以上,另外为例如200℃以下、优选为150℃以下。
干燥时间为例如1分钟以上、优选为2分钟以上,另外为例如24小时以下、优选为5小时以下。
由此操作而得到的坯片15是荧光体陶瓷板1的烧结前陶瓷,形成为板状。
然后,如图1A的虚线所示,从坯片15上剥离剥离基材14。
需要说明的是,为了得到期望的厚度,坯片15还可以通过热层压层叠多个(多层)坯片15而形成。
坯片15的厚度为例如10μm以上、优选为30μm以上,另外为例如500μm以下、优选为200μm以下。
如图1B所示,在焙烧工序中,对坯片15进行焙烧。由此,得到荧光体陶瓷板1。
焙烧温度为例如1300℃以上、优选为1500℃以上、另外,例如,为2000℃以下、优选为1800℃以下。
焙烧时间为例如1小时以上、优选为2小时以上,另外为例如24小时以下、优选为8小时以下。
焙烧也可以在常压下实施,另外,也可以在减压下或真空下实施。
另外,焙烧时的升温速度为例如0.5~20℃/分钟。
为了在上述焙烧(主焙烧)之前使粘结剂树脂、分散剂等有机成分热降解和除去,也可以使用电炉,在空气中,例如在600~1300℃下进行预加热,实施脱粘结剂处理。
通过焙烧(实施粘结剂处理时为焙烧和粘结剂处理),有机颗粒焙烧,在荧光体陶瓷板1上形成空孔。由此操作而得到的荧光体陶瓷板1形成为板状。
荧光体陶瓷板1的厚度T为例如10μm以上、优选为30μm以上,另外为例如500μm以下、优选为200μm以下、更优选为130μm以下。
荧光体陶瓷板1优选满足下述的式子。
V≤1.30×(-log T)
V表示孔径低于3.0μm的空孔(小空孔)的体积比例(%)。T表示荧光体陶瓷板1的厚度(mm)。
由此,能够降低厚度足够厚时的过量空孔的产生,能够抑制荧光体陶瓷板1的透过性、强度等的降低。
荧光体陶瓷板1优选满足下述(1)~(3)中的至少1个条件。
(1)钠元素为67ppm以下、优选为50ppm以下。
(2)镁元素为23ppm以下、优选为20ppm以下。
(3)铁元素为21ppm以下、优选为15ppm以下、更优选为10ppm以下。
上述元素可以通过例如ICP-MS分析进行测定。
上述元素为杂质,通过将上述杂质设为上述上限以下,量子效率优异。
而且,该荧光体陶瓷板1具有孔径为3.0μm以上且12.0μm以下的空孔,空孔的体积占荧光体陶瓷板1的比例为1.5体积%以上且9.5体积%以下。因此,能够良好地透射从光半导体元件入射至荧光体陶瓷板1内部的光的同时使其散射。因此,透过性和散射性优异。
另外,特别是对于使用该陶瓷板1使由LD发出的光波长转换而成的光,能够降低散斑噪声。
另外,荧光体陶瓷板1具有规定量的较大的空孔(中空孔)。因此,在其荧光体陶瓷板1的制造(坯片的焙烧)时,无需形成难以形成的微小的空孔。因此,生产率优异。
进而,荧光体陶瓷板1由荧光体的陶瓷形成,因此耐热性和散热性优异。
这样的荧光体陶瓷板1可作为光半导体装置8的部件单独作为商品交易对象。
2.光半导体装置
以下对具备荧光体陶瓷板1的光半导体装置8进行说明。
(第1实施方式)
参照图2A~图2C对光半导体装置8的第1实施方式及其制造方法进行说明。
光半导体装置8的第1实施方式的制造方法具备例如:荧光粘接片制作工序(参照图2A)、荧光粘接片配置工序(参照图2B)、和粘接工序(参照图2C)。
如图2A所示,在荧光粘接片制作工序中,将粘接层2层叠于荧光体陶瓷板1。
粘接层2配置于荧光体陶瓷板1的整个上表面(一面),由粘接剂组合物形成为片状。
作为粘接剂组合物没有限定,可列举出:例如,有机硅系、丙烯酸系等压敏粘接剂组合物;例如,有机硅系、环氧系等热固化型粘接剂组合物;例如,玻璃、陶瓷等无机系粘接剂组合物。从量产性、耐久性、耐热性的观点出发,优选列举出有机硅系组合物。
从压敏粘接性的观点出发,粘接层2的厚度例如为5μm以上且200μm以下,从导热性的观点出发,优选为100μm以下、更优选为50μm以下。
在将粘接层2层叠于荧光体陶瓷板1的上表面时,在将粘接剂组合物制备成清漆的情况下,例如,通过例如棒涂等公知的涂布方法将清漆涂布在荧光体陶瓷板1的整个上表面。由此形成粘接剂组合物的覆膜。接着,根据需要蒸馏除去溶剂。
或者,也可以将清漆涂布在脱模片等的表面来形成覆膜,根据需要对该覆膜蒸馏除去溶剂,然后从剥离片转印至荧光体陶瓷板1。
由此,得到具备荧光体陶瓷板1、和层叠在其上的粘接层2的荧光粘接片6。荧光粘接片6由荧光体陶瓷板1和粘接层2构成,不包括光半导体元件5,作为光半导体装置8的部件单独作为商品交易对象。
如图2B所示,在荧光粘接片配置工序中,将安装有光半导体元件5的基板7和荧光粘接片6对向配置。即,以光半导体元件5和粘接层2相向的方式将基板7和荧光粘接片6隔开间隔地对向配置。
基板7在俯视时形成为大于光半导体元件5的平板状。基板7包括例如硅基板、陶瓷基板、聚酰亚胺树脂基板、在金属基板上层叠有绝缘层的层叠基板等绝缘基板。在基板7的上表面形成了包含电极的导体图案(未图示)。
光半导体元件5为例如发出蓝色光的元件(具体而言,蓝色LED、蓝色LD),对于基板7的电极(未图示),例如通过倒装芯片安装或引线接合连接来进行连接。需要说明的是,在基板7上对光半导体元件5进行引线接合连接时,粘接于光半导体元件5的荧光粘接片6形成为绕开引线(迂回)的形状。
如图2C所示,在粘接工序中,将荧光粘接片6贴附于光半导体元件5。
具体而言,介由粘接层2将荧光体陶瓷板1粘接在光半导体元件5上。
荧光粘接片6和光半导体元件5的粘贴在常温(具体而言,20~25℃)下实施。根据需要,也可以将荧光粘接片6在例如30~150℃下加热来实施。
由此,得到借助粘接层2而粘接了荧光体陶瓷板1的光半导体装置8。
即,光半导体装置8具备:基板7、安装在基板7上的光半导体元件5、在光半导体元件5上形成的粘接层2、和配置在粘接层2上(与光半导体元件5相反侧)并与光半导体元件5对向配置的荧光体陶瓷板1。
需要说明的是,光半导体元件5为蓝色LED时,可将光半导体装置8作为白色发光装置。
然后,根据需要,如图2C的虚线所示,也可以将封装层3设置在光半导体装置8上。封装层3以覆盖光半导体元件5和荧光粘接片6的方式配置在基板7上。
封装层3由封装树脂组合物形成。封装树脂组合物包含用于埋设和封装光半导体元件5的公知的透明性树脂,作为透明性树脂,还可列举出:例如,有机硅树脂、环氧树脂、氨酯树脂等热固化性树脂;例如,丙烯酸系树脂、苯乙烯树脂、聚碳酸酯树脂、聚烯烃树脂等热塑性树脂等。
作为将封装层3设置于光半导体装置8的方法,例如可列举出:将封装层3直接形成于光半导体装置8的方法;在将封装层3形成于其它的剥离片等后,通过层压、热压接等将该封装层3由该剥离片转印至光半导体装置8的方法等。
而且,第1实施方式的光半导体装置8具备荧光体陶瓷板1,因此能够提高由光半导体元件5发出的光的透过性和散射性。因此,能够抑制发光效率的降低,使视角变得良好。另外,特别是使用LD作为光半导体元件5时,能够降低由光半导体装置8照射的光的散斑噪声。另外,光半导体装置8的生产率良好,因此能够降低制造成本。进而,光半导体装置8的耐热性和散热性优异。
(第2实施方式)
参照图3A~图3C对光半导体装置8的第2实施方式的一实施方式及其制造方法进行说明。在第2实施方式中,与上述的第1实施方式同样的构件使用同样的符号,省略其说明。
光半导体装置8的第2实施方式的制造方法具备例如封装片制作工序(参照图3A)、封装片配置工序(参照图3B)、和封装工序(参照图3C)。以下对各工序进行详细说明。
如图3A所示,封装片制作工序中,在荧光体陶瓷板1层叠封装层3。
封装层3配置于荧光体陶瓷板1的整个上表面(一面),由上述的封装树脂组合物形成为片状。
作为将封装层3层叠在荧光体陶瓷板1的上表面的方法,例如可列举出:在荧光体陶瓷板1上直接形成封装层3的方法;在将封装层3形成于其它的剥离片等后,通过层压、热压接等将该封装层3由该剥离片转印至荧光体陶瓷板1的方法等。
需要说明的是,封装树脂组合物含有热固化性树脂时,对封装层3进行加热,将由封装树脂组合物构成的封装层3制成B阶段状态(半固化状态)。
作为加热条件,温度为例如50℃以上、优选为80℃以上,另外,为例如150℃以下、优选为140℃以下。加热时间为例如1分钟以上、优选为5分钟以上,另外,为例如100分钟以下、优选为15分钟以下。需要说明的是,封装层3是否为B阶段状态可以根据热固化性树脂的种类进行适当设定。
由此,得到具备荧光体陶瓷板1、和层叠在其上的封装层3的波长转换用封装片4。波长转换用封装片4由荧光体陶瓷板1和封装层3构成,不包含光半导体元件5,可作为光半导体装置8的部件单独作为商品交易对象。
如图3B所示,封装片配置工序中,将安装有光半导体元件5的基板7与波长转换用封装片4对向配置。即,以光半导体元件5和封装层3相向的方式将基板7和波长转换用封装片4隔开间隔地对向配置。
光半导体元件5与基板7的电极(未图示)引线接合连接。引线接合连接中,借助引线16(参照虚线)来电连接设置在光半导体元件5的上表面的端子(未图示)和设置在基板7的上表面的电极(未图示)。
需要说明的是,光半导体元件5倒装芯片安装于基板7(参照实线)。
如图3C所示,封装工序中,通过波长转换用封装片4的封装层3来埋设光半导体元件5。需要说明的是,在光半导体元件5与基板7引线接合连接时,对光半导体元件5和引线16进行埋设。
具体而言,对基板7热压接封装层3。优选为对波长转换用封装片4和基板7进行平板压制。
作为热压接条件,温度为例如80~220℃,压力为例如0.01~1MPa,压制时间为例如1~10分钟。
通过该热压接,光半导体元件5的上表面和侧面和引线被封装层3覆盖。即,光半导体元件5和引线被封装层3埋设。
另外,从光半导体元件5露出的基板7的上表面被封装层3覆盖,波长转换用封装片4粘接于光半导体元件5和基板7。
而且,通过该热压接,在封装树脂组合物含有热固化性树脂时,封装层3分别为C阶状态(完全固化状态)。
由此,得到通过封装层3封装有光半导体元件5的光半导体装置8。
即,光半导体装置8具备:基板7、安装于基板7的光半导体元件5、形成于基板7上的封装光半导体元件5的封装层3、和配置于封装层3上的与光半导体元件5对向配置的荧光体陶瓷板1。
而且,第2实施方式的光半导体装置8也能够发挥与第1实施方式同样的作用效果。
(第2实施方式的第1变形例)
上述的光半导体装置8的第2实施方式的一实施方式中,如图3C所示,通过波长转换用封装片4,对安装于基板7的光半导体元件5进行封装来直接制造光半导体装置8,但例如也可如图4C所示那样对还未安装于基板7而支撑于支撑片9的光半导体元件5进行封装来制作封装光半导体元件12,然后制造光半导体装置8。
在第1变形例中,光半导体装置8的制造方法具备:例如封装片制作工序(参照图4A)、封装片配置工序(参照图4B)、封装工序(参照图4C)、剥离工序(参照图4D)、和安装工序(参照图4E)。以下对各工序进行详细说明。
如图4A所示,封装片制作工序与图3A中上述的封装片制作工序相同。
如图4B所示,封装片配置工序中,支撑片9和被支撑片9支撑的光半导体元件5与波长转换用封装片4对向配置。即,以光半导体元件5和封装层3相向的方式将支撑片9和波长转换用封装片4隔开间隔地对向配置。
支撑片9具备支撑板10和层叠于支撑板10的上表面的粘合层11。
支撑板10成为在面方向上延伸的板形状,设置在支撑片9的下部,形成与支撑片9呈俯视时大致相同的形状。支撑板10由不能在面方向上延伸的硬质的材料构成,具体而言,作为这样的材料,可列举出:例如氧化硅(石英等)、蓝宝石、氧化铝等氧化物、例如不锈钢等金属、例如硅等。支撑板10的厚度为例如0.1~2mm。
粘合层11形成于支撑板10的整个上表面。作为形成粘合层11的粘合材料,例如可列举出:丙烯酸系压敏粘接剂、有机硅系压敏粘接剂等压敏粘接剂。另外,例如也可以由通过活性能量射线的照射而粘合力降低的活性能量射线照射剥离片(具体而言,日本特开2005-286003号公报等中记载的活性能量射线照射剥离片)等形成粘合层11。粘合层11的厚度为例如0.1~1mm。
在准备支撑片9时,例如粘贴支撑板10和粘合层11。需要说明的是,也可以首先,准备支撑板10,接着,将由上述的粘合材料和根据需要配混的溶剂制备的清漆涂布于支撑板10,然后,根据需要利用干燥溶剂的涂布方法等将粘合层11直接层叠于支撑板10。
支撑片9的厚度为例如0.2~6mm。
接着,对支撑片9层叠光半导体元件5。具体而言,使光半导体元件5的下表面与粘合层11的上表面接触。
由此,将光半导体元件5配置(载置)于支撑片9。即,使支撑片9支撑光半导体元件5。
如图4C所示,封装工序与图3C中上述的封装工序相同。
剥离工序中,如图4D的箭头所示,从粘合层11的上表面剥离封装光半导体元件12。具体而言,粘合层11为活性能量射线照射剥离片时,对粘合层11照射活性能量射线。
由此,得到封装光半导体元件12,其具备:光半导体元件5、封装光半导体元件5的封装层3、配置于封装层3上的与光半导体元件5对向配置的荧光体陶瓷板1。封装光半导体元件12由光半导体元件5、封装层3和荧光体陶瓷板1构成,不包含基板7,作为光半导体装置8的部件单独作为商品交易对象。
封装光半导体元件12具备荧光体陶瓷板1,因此能够提高由光半导体元件5发出的光的透过性和散射性。因此,能够抑制发光效率的降低,使视角变得良好。另外,特别是使用LD作为光半导体元件5时,能够降低由封装光半导体元件12照射的光的散斑噪声。另外,封装光半导体元件12的生产率良好,因此能够降低制造成本。进而,封装光半导体元件12的耐热性和散热性优异。
安装工序中,然后,如图4E所示,将封装光半导体元件12安装于基板7。具体而言,连接设置于光半导体元件5的下表面的端子(未图示)和基板7的电极(未图示),并将封装光半导体元件12倒装芯片安装于基板7。
由此,制造具备基板7、光半导体元件5、封装层3和荧光体陶瓷板1的光半导体装置8。
第1变形例的光半导体装置8也能够发挥与上述同样的作用效果。
(第2实施方式的第2变形例)
上述的光半导体装置8的第2实施方式的一实施方式中,如图3C所示,光半导体装置8在基板7上不具备以包围光半导体元件5的方式配置的外壳,但如图5所示,例如光半导体装置8也可具备外壳13。
图5的第2变形例的光半导体装置8具备:基板7、安装于基板7的光半导体元件5、形成于基板7上的外壳13、封装光半导体元件5的封装层3和形成于封装层3上的荧光体陶瓷板1。
外壳13呈俯视时大致框形,形成为面向上方逐渐宽度变窄的大致梯形筒状。另外,以包围光半导体元件5的方式与光半导体元件5隔开间隔地配置外壳13。
封装层3填充在外壳13内。
荧光体陶瓷板1也配置于封装层3的整个上表面、和外壳13的上表面的内侧端部。
第2变形例所示的光半导体装置8也能够发挥与上述同样的作用效果。
(第3实施方式)
参照图6A~图6C对光半导体装置8的第3实施方式及其制造方法进行说明。第3实施方式中,与上述的第1实施方式同样的构件使用同样的符号,省略其说明。
光半导体装置8的第3实施方式的制造方法例如具备电路板制作工序(参照图6A)、电路板配置工序(参照图6B)、和安装工序(参照图6C)。以下对各工序进行详细说明。
如图6A所示,电路板制作工序中,将电极布线41层叠于荧光体陶瓷板1。
电极布线41以一体化地具备用于与光半导体元件5的端子44电连接的电极42、和与其连接的布线43的导体图案的形式形成。电极布线41由例如金、铜、银、镍等的导体形成。
相对于1个光半导体元件5(参照图6B)设置2个(1对)电极42,具体而言,与形成于1个光半导体元件5的2个端子44对应地设置。
另外,也可以在电极布线41的表面(上表面和侧面)形成未图示的保护膜。从抗氧化或连接性的观点出发,保护膜例如以由Ni和/或Au构成的镀层的形式形成。
适当设定电极布线41的尺寸,具体而言,电极42的最大长度为例如0.03mm以上、优选为0.05mm以上,另外,为例如50mm以下、优选为5mm以下。另外,相邻的电极42之间的间隔为例如0.05mm以上、优选为0.1mm以上,另外,为例如3mm以下、优选为1mm以下。另外,布线43的宽度为例如20μm以上、优选为30μm以上,另外,为例如400μm以下、优选为200μm以下。
电极布线41的厚度为例如10μm以上、优选为25μm以上,另外,为例如200μm以下、优选为100μm以下。另外,未图示的保护膜的厚度为例如100nm以上、优选为300nm以上,另外,为例如5μm以下、优选为1μm以下。
该方法中,如图6A所示,将电极布线41层叠于荧光体陶瓷板1的上表面(一面)。
作为将电极布线41层叠于荧光体陶瓷板1的上表面的方法,例如可列举出:加热接合法、印刷-加热接合法、Mo-Mn法、硫化铜法、铜金属化法、印刷法、转印法等,优选列举出:加热接合法、印刷-加热接合法。
加热接合法中,例如使用于形成电极布线41的导体片与荧光体陶瓷板1的整个上表面接触,接着,在例如Ar、N2等的非活性气氛下、以800~1200℃的温度进行加热,形成由荧光体陶瓷板1和导体片构成的接合基板。然后,通过对导体片进行蚀刻等而形成电极布线41。
印刷-加热接合法中,例如将在导体的粉末中混合有机化合物等粘结剂和溶剂而制备的糊剂在荧光体陶瓷板1的上表面印刷成上述的图案而形成印刷图案,沿着其印刷图案,通过分配器配置导体片,在非活性气氛或真空下以上述的温度进行加热而接合。然后,通过对导体片进行蚀刻等而形成导体图案。
由此,得到电路板40,其具备:用于将光半导体元件5安装于其上的荧光体陶瓷板1、和层叠于其上的用于与光半导体元件5电连接的电极布线41。电路板40由荧光体陶瓷板1和电极布线41构成,不包含光半导体元件5,作为光半导体装置8的部件单独作为商品交易对象。
电路板40具备荧光体陶瓷板1,因此能够提高由光半导体元件5发出的光的透过性和散射性。因此,能够抑制发光效率的降低,使视角变得良好。另外,特别是使用LD作为光半导体元件5来制造光半导体装置8时,能够降低由光半导体装置8照射的光的散斑噪声。另外,电路板40的生产率良好,因此能够降低制造成本。进而,电路板40的耐热性和散热性优异。
另外,电路板40具备荧光体陶瓷板1,因此无需另行将荧光体层设置在基板的下表面就能够通过荧光体陶瓷板1对向下方发出的光进行波长转换。因此,能够提高光半导体装置8的下方的光束,同时降低光半导体装置8中的部件个数,使光半导体装置8的构成简便。其结果,能够降低光半导体装置8的制造工时,使制造方法简便,提高光半导体装置8的生产率并降低制造成本。
电路板配置工序中,如图6B所示,将光半导体元件5与电路板40对向配置。即,以设置于光半导体元件5的下表面的端子44与设置于电路板40的上表面的电极布线41相向的方式将光半导体元件5和电路板40隔开间隔地对向配置。
安装工序中,然后,如图6C所示,对电路板40安装光半导体元件5。具体而言,连接光半导体元件5的端子44和电路板40的电极42,将光半导体元件5倒装芯片安装于电路板40。
由此,得到端子44与电极42电连接的光半导体装置8。
即,光半导体装置8具备:电路板40、和在电路板40上以与电极布线41电连接的方式安装的光半导体元件5。
然后,也可根据需要如图6C的虚线所示那样将封装层3设置于光半导体装置8。封装层3以覆盖光半导体元件5的方式配置于电路板40上。需要说明的是,封装层3也可以制成由含有上述荧光体和上述透明性树脂的封装树脂组合物形成的荧光体封装层。
第3实施方式的光半导体装置8也能够发挥与第1实施方式同样的作用效果。
此外,第3实施方式的光半导体装置8中,电路板40具备荧光体陶瓷板1,因此无需另行将荧光体层设置在荧光体陶瓷板1的下侧就能够通过荧光体陶瓷板1对从光半导体元件5在下方发出的光进行波长转换。因此,下方的光束优异,且能够降低部件个数,使光半导体装置8的构成简便。其结果,能够提高光半导体装置8的生产率。
进而,该光半导体装置8中,若将封装层3制成荧光封装层,则能够对光半导体元件5进行封装来提高可靠性、且能够通过荧光封装层对由光半导体元件5在上方和侧面发出的光进行波长转换来提高这些光的光束。因此,能够将光半导体装置8制成可以由上下两面发光的两面发光型。
3.发光装置
接着,参照图7~图8对作为具备荧光体陶瓷板1的发光装置的一个例子的照明装置20进行说明。
如图7所示,照明装置20具备照明外壳22、透明构件23、光源24、反射镜25和波长转换散热构件26。
照明外壳22形成为在前后方向延伸、闭合后侧、开放前侧的大致圆筒状。照明外壳22将后述的透明构件23、光源24、反射镜25和波长转换散热构件26收纳于内部。
透明构件23在后视时呈大致圆形,形成为前后方向厚度薄的板状。透明构件23的外形形状以投影在前后方向上时与照明外壳22的前端的内周缘一致的方式形成。
透明构件23设置在照明外壳22的前端。具体而言,透明构件23以照明外壳22的前端边缘与透明构件23的前面(前侧表面)在上下方向成为一面的方式收纳于照明外壳22内。
作为光源24,例如可列举出:发光二极管(LED)、激光二极管(LD)等半导体光源。光源24在透明构件23的后侧隔开间隔地设置于照明外壳22内部的上下方向和宽度方向(左右方向)的大致中央部。光源24连接由照明外壳22的外部环绕的外部布线28。光源24通过从外部布线28接收的电力而朝向前侧照射单色光等光。
反射镜25为后视大致圆形,形成为侧截面视大致半圆弧状的圆顶形状。反射镜25的外形形状以投影在前后方向上时与透明构件23的外端边缘一致的方式形成。反射镜25为透明构件23的另一侧(后侧),在光源24的一侧(前侧)与光源24隔开间隔地配置。另外,反射镜25以其前端边缘与透明构件23的后面接触的方式收纳于照明外壳22内。
在反射镜25的中心(上下方向和宽度方向的中央)形成有用于使由光源24发出的光通过的贯通孔27。反射镜25朝向前侧反射扩散光,所述扩散光朝向前侧透过贯通孔27并通过波长转换散热构件26(后述)朝向后侧扩散。
波长转换散热构件26设置在照明外壳22内的前侧。具体而言,与反射镜25隔开间隔地对向配置于前侧,与透明构件23的后面(后侧表面)相邻配置。如图8A和图8B所示,波长转换散热构件26具备热扩散保持构件29和波长转换接合构件30。
热扩散保持构件29形成为在上下方向上延伸的后视大致长方形,相邻配置于透明构件23。具体而言,热扩散保持构件29以热扩散保持构件29的前面与透明构件23的后面接触的方式进行配置。
热扩散保持构件29具备载置部31和固定部32。
载置部31形成为在前后方向上具有厚度的后视大致长方形。载置部31以载置部31的前面与透明构件23的后面的后视大致中央部接触的方式进行配置。
固定部32以由载置部31的前侧下端向下侧延伸的方式与载置部31一体形成。固定部32呈在上下方向上延伸的后视大致长方形,形成为前后方向的厚度比载置部31还薄的板状。固定部32以上侧前面与透明构件23的后面接触、在上下方向中途与透明构件23分开的方式向后侧弯曲。固定部32的一端(下端)贯通反射镜25并固定于照明外壳22的周面(内边缘)。
热扩散保持构件29由导热性良好的材料形成,例如由铝、铜等导热性金属、AlN等陶瓷材料形成。
波长转换接合构件30设置于载置部31的后面。
波长转换接合构件30具备接合层34和荧光体陶瓷板1。
接合层34呈后视大致长方形,形成为板状。接合层34设置于载置部31的后面和荧光体陶瓷板1的前面(一面)。即,接合层34配置于载置部31和荧光体陶瓷板1之间。接合层34在投影在前后方向上时,与载置部31重叠,具体而言,在后视时形成与载置部31相同的形状。
接合层34优选具备光反射性和散热性,例如通过对光反射性散热性固化性组合物进行固化而形成。
作为光反射性散热性固化性组合物,例如可列举出:陶瓷墨、含有固化性树脂和无机颗粒的固化性树脂组合物、含有碱金属硅酸盐和无机颗粒的硅酸盐水溶液。
作为陶瓷墨,可以使用市售品,具体而言,可列举出Ain Co.,Ltd.制造的陶瓷墨(RG型、AN型、UV型、SD型)等。
作为固化性树脂组合物中所含的固化性树脂,例如可列举出:固化性有机硅树脂、环氧树脂、丙烯酸类树脂等。作为固化型有机硅树脂,可以使用市售品(商品名:KER-2500、信越化学工业公司制造、商品名:LR-7665、Wacker Asahikasei Silicone Co.,Ltd.制造)。
作为构成无机颗粒的无机物,可列举出:例如二氧化硅、二氧化钛等无机氧化物、例如银、铝等金属、例如钛酸复合氧化物(例如,钛酸钡、钛酸钾)等复合氧化物等。
无机颗粒的平均粒径(平均最大长度)为例如0.1~50μm。
荧光体陶瓷板1呈后视大致长方形,形成为板状。荧光体陶瓷板1设置于接合层34的后面。荧光体陶瓷板1在投影在前后方向上时,与接合层34和载置部31重叠,具体而言,在后视时,形成为与接合层34和载置部31相同的形状。
另外,荧光体陶瓷板1以与光源24和贯通孔27在同一直线上的方式进行配置。具体而言,光源24、贯通孔27和荧光体陶瓷板1以排列在与照明外壳22的轴线一致的直线上的方式收纳于照明外壳22内。
而且,具备荧光体陶瓷板1的照明装置20中,由光源24照射的光h0通过贯通孔27,通过荧光体陶瓷板1波长转换为白色光的同时,扩散至全部方向。此时,荧光体陶瓷板1的透过性和散射性优异,因此白色光能够有效且广范围地反射至反射镜25侧(后侧)(参照图7的光h1~h4)。即,能够降低波长转换散热构件26的光量的损耗,同时高效且广范围地反射至反射镜25侧。因此,通过反射镜25发射至前侧(进而外部)的发光效率良好,视角变得良好。另外,能够降低由照明装置20照射的光的散斑噪声。
另外,照明装置20的生产率良好,因此能够降低制造成本。进而,照明装置20的耐热性和散热性优异。
该照明装置20可以适合地用于例如车载灯具、天花板上悬挂的灯具、街道灯具、表演灯具等远处照射用途。
实施例
以下列举实施例和比较例对本发明进行进一步详细说明,但本发明不限定于这些。另外,以下的记载中使用的配混比例(含有比例)、物性值、参数等的具体数值可以替换为在上述的“具体实施方式”中所记载的、与它们对应的配混比例(含有比例)、物性值、参数等相应记载的上限值(以“以下”、“低于”的形式定义的数值)或下限值(以“以上”、“超过”的形式定义的数值)。
实施例1
制备由氧化钇颗粒(纯度99.99质量%、lot:N-YT4CP、Nippon Yttrium Co.,Ltd.制造)11.34g、氧化铝颗粒(纯度99.99质量%、型号“AKP-30”、住友化学株式会社制造)8.577g、和氧化铈颗粒(纯度99.99质量%)0.087g构成的荧光体材料的原料粉末。
将制备的荧光体材料的原料粉末20g、和水溶性粘结剂树脂(“WB4101”、PolymerInovations,Inc.制造)以固体成分的体积比率为60:40的方式进行混合,进而加入蒸馏水并投入氧化铝制容器中,加入直径3mm的氧化锆球并利用球磨机进行24小时湿式混合,从而制备了荧光体的原料颗粒的浆料。
接着,以相对于荧光体材料粉末和有机颗粒的总含量成为3.0体积%的方式向制备的浆料中添加有机颗粒(聚甲基丙烯酸甲酯、平均粒径3.5μm),进一步进行湿式混合,得到荧光体组合物浆料。
接着,利用刮刀法将得到的荧光体组合物浆料在PET薄膜上流延成型(tapecasting),在70℃下干燥5分钟,得到厚度90μm的坯片。然后,从PET薄膜上剥离坯片。
接着,将坯片切成20mm×20mm的大小。制作2张切取的坯片,使用2轴热压机对该2张坯片进行热层压,从而制作坯片层叠体。
接着,在马弗炉中将制作的坯片层叠体在大气中、以1℃/分钟的升温速度加热至1200℃,实施降解除去粘结剂树脂等有机成分的脱粘结剂处理。然后,将坯片层叠体移至高温环境炉中,在还原气氛下、以5℃/分钟的升温速度加热至1750℃,在该温度下进行5小时焙烧,从而制造厚度(T)120μm的、由Y3Al5O12:Ce构成的荧光体陶瓷板。
实施例2
代替添加3.0体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径3.5μm),添加3.0体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径4.0μm),除此以外与实施例1相同地制造荧光体陶瓷板。
实施例3
代替添加3.0体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径3.5μm),添加3.0体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径5.0μm),除此以外与实施例1相同地制造荧光体陶瓷板。
实施例4
代替添加3.0体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径3.5μm),添加6.5体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径6.5μm),除此以外与实施例1相同地制造荧光体陶瓷板。
实施例5
代替添加3.0体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径3.5μm),添加12.0体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径12.5μm),除此以外与实施例1相同地制造荧光体陶瓷板。
实施例6
代替添加3.0体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径3.5μm),添加9.0体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径18.0μm),除此以外与实施例1相同地制造荧光体陶瓷板。
实施例7
制备荧光体组合物浆料的涂布量,将坯片的厚度调厚,除此以外与实施例1相同地制造厚度(T)150μm的荧光体陶瓷板。
实施例8
将氧化钇颗粒(纯度99.99质量%、lot:N-YT4CP、Nippon Yttrium Co.,Ltd.制造)变更为氧化钇颗粒(纯度99.8质量%、Nanostructured&Amorphous Materials公司制造),除此以外,与实施例2相同地制造荧光体陶瓷板。
比较例1
代替添加3.0体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径3.5μm),添加4.0体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径2.5μm),除此以外与实施例1相同地制造荧光体陶瓷板。
比较例2
代替添加3.0体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径3.5μm),添加1.5体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径4.0μm),除此以外与实施例1相同地制造荧光体陶瓷板。
比较例3
代替添加3.0体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径3.5μm),添加15.0体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径4.0μm),除此以外与实施例1相同地制造荧光体陶瓷板。
比较例4
代替添加3.0体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径3.5μm),添加10.0体积%的有机颗粒(聚甲基丙烯酸甲酯、平均粒径25.0μm),除此以外与实施例1相同地制造荧光体陶瓷板。
(孔径的体积的计算)
沿面方向(与厚度方向垂直的方向,水平方向)切断各实施例和各比较例的荧光体陶瓷板,使用激光显微镜(装置名:LASERTEC、VL2000D、物镜20倍、倍率1800倍)对该切断表面(面方向)的孔径进行观察。然后,进一步以0.5μm间隔沿面方向进行切断,观察总计15面(厚度方向7.5μm)的切断表面。此时,对于切断表面所观察到的各空孔中的相同空孔,将15面的切断表面中的最大长度作为各空孔的孔径(面方向)(参照图9。)。
将各空孔区分成:孔径低于3.0μm的空孔(小空孔)、3.0μm以上且12.0μm以下的空孔(中空孔)、和超过12.0μm的空孔(大空孔),通过球形换算分别计算空孔体积,计算出所区分的空孔的总体积。通过算出的总体积除以荧光体陶瓷板的体积(也包括测定了空孔的部分、空孔)来求出孔径的体积比例(面方向)。
另外,沿荧光体陶瓷板的厚度方向进行切断,对于该切断表面(厚度方向)而言,也与上述相同地观察15面,通过与上述相同的方法求出孔径的体积比例(厚度方向)。
将孔径的体积比例(面方向)和孔径的体积比例(厚度方向)的平均值作为本发明的荧光体陶瓷板的孔径的体积比例。结果示于表1。
(平均孔径的计算)
由上述计算出的各空孔的孔径求出各空孔的孔径的平均值(各空孔的孔径的总和/空孔的数)。需要说明的是,将孔径(面方向)的平均值和孔径(厚度方向)的平均值的平均值作为平均孔径。结果示于表1。
(透过率)
对于各实施例和各比较例的荧光体陶瓷板而言,使用分光光度计(紫外可见近红外分光光度计V-670、JASCO Corporation制造)在任意3点测定总透光率(波长800nm),将3点的平均值作为透过率。结果示于表1。
(散射性)
通过下述的光半导体装置的配光性评价各实施例和各比较例的荧光体陶瓷板的散射性。
利用Au-Sn焊料将蓝色发光二极管芯片(Cree公司制造、型号“C450EZ1000-0123”)芯片贴装于带有空腔的多层陶瓷基板(Sumitomo Metal Electronics Devices,Inc.制造、型号“207806”、外壳高度0.6mmt、外壳材质氧化铝反射率75%)的空腔内,制作通过Au线引线接合的光半导体装置。
在其光半导体装置的外壳上配置各荧光体陶瓷板,评价与垂直方向成45度的角度的封装体的角度依赖性。CIE色度x的差以垂直方向为基准,将为±0.02以内的情况评价为○、将为±0.04以内的情况评价为△、将除此以外的情况评价为×。结果示于表1。
(杂质的测定)
通过ICP-MS分析测定各实施例和各比较例的荧光体陶瓷板的Na元素、Mg元素和Fe元素的杂质。结果示于表1。
(量子效率的测定)
通过量子效率测定系统(大塚电子公司制造、“QE2100”)测定各实施例和比较例的荧光体陶瓷板的量子效率。结果示于表1。
(散斑对比度的测定)
作为光源24,使用蓝色LD光源(NEOARK Corporation制造、“TCSQ0445-1600”),作为荧光体陶瓷板1,使用各实施例和各比较例的荧光体陶瓷板,制作图7所示的LD激发的照明装置。
使用散斑对比度测定装置(OXIDE公司制造、“Dr.SPECKLE”),测定由照明装置照射的照射光(h1~h4的各地点的光的平均值)的散斑对比度。结果示于表1。需要说明的是,未使用荧光体陶瓷板时的照射光(仅LD光)的散斑对比度为0.45。
[表1]
Figure BDA0001335251540000291
产业上的可利用性
本发明的荧光体陶瓷可以应用于各种工业产品中,例如可以用于光半导体装置等光学用途等中。
附图标记说明
1 荧光体陶瓷板
2 粘接层
3 封装层
5 半导体元件
7 基板
20 照明装置
24 光源
25 反射镜
27 贯通孔
40 电路板
41 电极布线

Claims (9)

1.一种荧光体陶瓷,其特征在于,其具有:
孔径为3.0μm以上且12.0μm以下的中空孔、
孔径为0.3μm以上且小于3.0μm的小空孔、和
孔径为超过12.0μm且30μm以下的大空孔,
所述中空孔占所述荧光体陶瓷的体积比例为1.5体积%以上且9.5体积%以下,
所述小空孔占所述荧光体陶瓷的体积比例为2.0体积%以下,
所述大空孔占所述荧光体陶瓷的体积比例为12.0体积%以下。
2.根据权利要求1所述的荧光体陶瓷,其特征在于,所述荧光体陶瓷具有板状,满足下式:
V≤1.30×(-log T)
V表示孔径小于3.0μm的空孔的体积比例,以%计,
T表示所述荧光体陶瓷的厚度,以mm计。
3.根据权利要求1所述的荧光体陶瓷,其特征在于,其满足下述(1)~(3)中至少一个条件:
(1)钠元素为67ppm以下;
(2)镁元素为23ppm以下;
(3)铁元素为21ppm以下。
4.根据权利要求1所述的荧光体陶瓷,其特征在于,所述荧光体陶瓷的平均孔径为3.0μm以上且10.0μm以下。
5.一种光半导体装置,其特征在于,其具备:
基板、
安装于所述基板的光半导体元件、
粘接层、和
配置于所述粘接层的与所述光半导体元件处于相反侧的面上、与所述光半导体元件对向配置的权利要求1所述的荧光体陶瓷。
6.一种光半导体装置,其特征在于,其具备:
基板、
安装于所述基板的光半导体元件、
对所述光半导体元件进行封装的封装层、和
配置于所述封装层的与所述光半导体元件处于相反侧的面上、与所述光半导体元件对向配置的权利要求1所述的荧光体陶瓷。
7.一种封装光半导体元件,其特征在于,其具备:
光半导体元件、
对所述光半导体元件进行封装的封装层、和
配置于所述封装层的与所述光半导体元件处于相反侧的面上、与所述光半导体元件对向配置的权利要求1所述的荧光体陶瓷。
8.一种电路板,其特征在于,其具备:
用于将光半导体元件安装于厚度方向一侧的权利要求1所述的荧光体陶瓷、和
层叠于所述荧光体陶瓷的厚度方向一面上、用于与所述光半导体元件电连接的电极布线。
9.一种发光装置,其特征在于,其具备:
向一侧照射光的光源、
与所述光源隔开间隔地对向配置于一侧、形成有用于通过所述光的贯通孔的反射镜、和
以照射所述光的方式与所述反射镜隔开间隔地对向配置于一侧的权利要求1所述的荧光体陶瓷。
CN201680004659.1A 2015-02-18 2016-02-02 荧光体陶瓷、封装光半导体元件、电路板、光半导体装置和发光装置 Active CN107112396B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015029592 2015-02-18
JP2015-029592 2015-02-18
JP2016000707A JP5989268B2 (ja) 2015-02-18 2016-01-05 蛍光体セラミックス、封止光半導体素子、回路基板、光半導体装置および発光装置
JP2016-000707 2016-01-05
PCT/JP2016/053069 WO2016132890A1 (ja) 2015-02-18 2016-02-02 蛍光体セラミックス、封止光半導体素子、回路基板、光半導体装置および発光装置

Publications (2)

Publication Number Publication Date
CN107112396A CN107112396A (zh) 2017-08-29
CN107112396B true CN107112396B (zh) 2020-06-16

Family

ID=56761217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680004659.1A Active CN107112396B (zh) 2015-02-18 2016-02-02 荧光体陶瓷、封装光半导体元件、电路板、光半导体装置和发光装置

Country Status (7)

Country Link
US (1) US10001657B2 (zh)
EP (1) EP3144985B1 (zh)
JP (1) JP5989268B2 (zh)
KR (1) KR102520727B1 (zh)
CN (1) CN107112396B (zh)
MY (1) MY166217A (zh)
TW (1) TWI695054B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10288258B1 (en) * 2017-12-31 2019-05-14 Shih-Fu Huang Lighting module
JP7224579B2 (ja) * 2018-02-09 2023-02-20 株式会社タムラ製作所 波長変換部材
JP7178074B2 (ja) * 2018-03-20 2022-11-25 国立研究開発法人物質・材料研究機構 波長変換部材及び波長変換素子、並びに波長変換部材の製造方法
JP2019164258A (ja) * 2018-03-20 2019-09-26 セイコーエプソン株式会社 波長変換素子、波長変換素子の製造方法、光源装置及びプロジェクター
US11217734B2 (en) 2018-12-27 2022-01-04 Lumileds Llc Patterned lumiramic for improved PCLED stability
JP7449271B2 (ja) * 2019-02-21 2024-03-13 デンカ株式会社 蛍光体基板、発光基板、照明装置、蛍光体基板の製造方法及び発光基板の製造方法
CN116730711A (zh) * 2019-11-26 2023-09-12 深圳市中光工业技术研究院 荧光陶瓷及其制备方法、发光装置以及投影装置
CN111076103A (zh) * 2019-11-28 2020-04-28 中国科学院宁波材料技术与工程研究所 一种荧光模组及激光照明系统
CN115003957B (zh) * 2020-06-08 2024-10-15 日本特殊陶业株式会社 荧光板、波长转换构件和光源装置
JP7387898B2 (ja) * 2020-06-08 2023-11-28 日本特殊陶業株式会社 蛍光板、波長変換部材、および、光源装置
KR102665901B1 (ko) 2020-06-08 2024-05-13 니혼도꾸슈도교 가부시키가이샤 형광판, 파장 변환 부재, 및, 광원 장치
JP7554125B2 (ja) 2021-01-28 2024-09-19 日本特殊陶業株式会社 波長変換部材及びそれを備える光源装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103347982A (zh) * 2010-12-01 2013-10-09 日东电工株式会社 具有掺杂浓度梯度的发射性陶瓷材料及其制造方法和使用方法
CN104143601A (zh) * 2013-05-09 2014-11-12 日东电工株式会社 电路基板、光半导体装置及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576579B2 (en) * 2000-10-03 2003-06-10 Corning Incorporated Phosphate-based ceramic
US7554258B2 (en) * 2002-10-22 2009-06-30 Osram Opto Semiconductors Gmbh Light source having an LED and a luminescence conversion body and method for producing the luminescence conversion body
EP1862035B1 (en) 2005-03-14 2013-05-15 Koninklijke Philips Electronics N.V. Phosphor in polycrystalline ceramic structure and a light-emitting element comprising same
CN101405368B (zh) * 2006-03-21 2012-05-30 皇家飞利浦电子股份有限公司 电致发光器件
RU2510946C1 (ru) * 2010-01-28 2014-04-10 Осрам Сильвания Инк. Люминесцентный керамический преобразователь и способ его изготовления
JP2012064484A (ja) * 2010-09-17 2012-03-29 Stanley Electric Co Ltd 光源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103347982A (zh) * 2010-12-01 2013-10-09 日东电工株式会社 具有掺杂浓度梯度的发射性陶瓷材料及其制造方法和使用方法
CN104143601A (zh) * 2013-05-09 2014-11-12 日东电工株式会社 电路基板、光半导体装置及其制造方法

Also Published As

Publication number Publication date
JP2016154220A (ja) 2016-08-25
KR102520727B1 (ko) 2023-04-11
TWI695054B (zh) 2020-06-01
EP3144985A1 (en) 2017-03-22
CN107112396A (zh) 2017-08-29
MY166217A (en) 2018-06-22
KR20170118726A (ko) 2017-10-25
TW201702352A (zh) 2017-01-16
EP3144985B1 (en) 2020-06-17
EP3144985A4 (en) 2018-03-07
US20170139224A1 (en) 2017-05-18
US10001657B2 (en) 2018-06-19
JP5989268B2 (ja) 2016-09-07

Similar Documents

Publication Publication Date Title
CN107112396B (zh) 荧光体陶瓷、封装光半导体元件、电路板、光半导体装置和发光装置
KR102117909B1 (ko) 발광 장치
JP6599295B2 (ja) 斜角反射体を備えた発光素子およびその製造方法
JP6459354B2 (ja) 透光部材及びその製造方法ならびに発光装置及びその製造方法
KR101549736B1 (ko) 파장 변환용 무기 성형체 및 그 제조 방법, 및 발광 장치
TWI535056B (zh) 螢光反射片材、發光二極體裝置及其製造方法
WO2014181757A1 (ja) 回路基板、光半導体装置およびその製造方法
KR102393760B1 (ko) 발광 장치 및 그 제조 방법
US9401462B2 (en) Light emitting device exhibiting excellent heat resistance and good color reproducibility through fluorescent material arrangement
US20120262054A1 (en) Reflecting resin sheet, light emitting diode device and producing method thereof
CN104716247A (zh) 发光装置
JP2012023288A (ja) 発光装置用部品、発光装置およびその製造方法
JP2017054894A (ja) 発光装置
KR20120024422A (ko) 발광 장치
JP2018107285A (ja) 発光装置及びその製造方法
JP2017143236A (ja) セラミックスプレート、その製造方法および光半導体装置
JP2016072475A (ja) セラミックスパッケージ、発光装置及びそれらの製造方法
WO2017221606A1 (ja) 蛍光体層付光半導体素子およびその製造方法
JP6464877B2 (ja) 発光装置の製造方法
JP6521032B2 (ja) 光半導体装置及びその製造方法
JP6658829B2 (ja) 発光装置の製造方法
WO2014020897A1 (ja) 波長変換粒子、波長変換部材及び発光装置
JP2010199454A (ja) 発光素子用回路基板及び発光装置並びにそれらの製造方法
WO2016132890A1 (ja) 蛍光体セラミックス、封止光半導体素子、回路基板、光半導体装置および発光装置
US9761766B2 (en) Chip on board type LED module

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20191111

Address after: Germany Mainz

Applicant after: Schott AG

Address before: Osaka Japan

Applicant before: Nitto Denko Corporation

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant