CN107099785B - 一种纳米薄膜的制备方法 - Google Patents

一种纳米薄膜的制备方法 Download PDF

Info

Publication number
CN107099785B
CN107099785B CN201710270602.2A CN201710270602A CN107099785B CN 107099785 B CN107099785 B CN 107099785B CN 201710270602 A CN201710270602 A CN 201710270602A CN 107099785 B CN107099785 B CN 107099785B
Authority
CN
China
Prior art keywords
film
duration
salt
substrate
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710270602.2A
Other languages
English (en)
Other versions
CN107099785A (zh
Inventor
赵世峰
白玉龙
郭飞
陈介煜
王一帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University
Original Assignee
Inner Mongolia University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University filed Critical Inner Mongolia University
Priority to CN201710270602.2A priority Critical patent/CN107099785B/zh
Publication of CN107099785A publication Critical patent/CN107099785A/zh
Application granted granted Critical
Publication of CN107099785B publication Critical patent/CN107099785B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种纳米薄膜的制备方法。将镧盐、钴盐和锰盐与乙二醇与甲醚的混合溶液混合搅拌,加入乙酰丙酮,以单晶Si为衬底,在衬底上沉积薄膜,将薄膜用快速热处理系统氧气气氛下退火,升温至700‑800℃,在700‑800℃时长150‑250s;重复步骤2和3至10‑20次使得薄膜厚度达到一百纳米以上;将最终所得到的薄膜在RTP中,在700‑800℃时长850‑950s即得。本发明采用简易溶胶‑凝胶法制备纳米薄膜,具有溶胶‑凝胶的工艺优点和固态制冷技术的优点。绿色、低成本,高效率、低噪音,抗氧化、器件微型化,适用于工业生产。

Description

一种纳米薄膜的制备方法
技术领域
本发明涉及一种纳米薄膜的制备方法,属于纳米薄膜材料制备技术领域。
背景技术
制冷技术在当今世界起着十分重要的作用,在工业生产、国防建设、医疗器械和日常生活都用重要的作用。而目前重要的制冷方式主要有三种:利用气体膨胀产生冷效应制冷,也是应用最为广泛的一种;利用固态物质相变的热效应实现制冷,如磁卡效应;利用半导体的温差效应实现制冷,如铅基热电材料。就这三种制冷方式而言目前最有发展前景的是固态磁制冷技术。
固态制冷技术与传统的制冷技术相比有许多不可以替代的优点:(1)绿色安全。工作物质不存在固-液-气三相转变,无气体工质的挥发、泄露、易燃、易爆等问题;(2)制冷能力强。固体材料通常密度较大,制冷能力强,易于小型化;(3)成本小,无噪音。利用外磁场或者电场调控磁相变或者电相变代替机械压力使工作物质的三相转变,使得设备简单噪音小;(4)高效节能。磁制冷的效率可达到卡诺循环的30%~60%,而气体压缩制冷一般仅为5%~10%,热电材料的制冷效率更低。而目前最固态制冷材料的研究主要集中在稀土合金顺磁材料,如ReAl2系,ReNi2系;3d过渡金属的合金或化合物如La(Fe,Co,Al)Si3,以及一些钙钛矿氧化物和过渡金属基材料。但是这些材料有非常严重的缺点不耐氧化,氧化后失去制冷能力,且工作范围集中在某个较窄的温度区域,忽略了对低温磁制冷的研究。同时目前的磁致冷材料的磁热效应小,使得磁致冷机的工作磁场高、结构复杂、价格昂贵,造成磁致冷技术的进展和应用都非常缓慢,至今还没有在日常生活中商业化。
La(Fe,Si)13基磁制冷材料因原材料价格低廉、无毒,成为磁制冷工作物质的备选。固态工作物质与热交换液体接触,形成热交换平衡,从而实现制冷;La(Fe,Si)13材料的多物相组织特点使其浸润在交换液中(尤其是水基交换液)极易腐蚀。腐蚀导致磁制冷机的效率下降;为提高室温磁熵变,长时间的高温退火制备出的样品有大量次级相,同样不利于获得较大的绝热温变。
氧化物CrO2颗粒作为磁性工作物质,有低场磁制冷效应;不同颗粒尺寸对磁卡效应具有调控作用,以单晶中的磁制冷热效应最为显著。绝热温变小,在1.7T下达到2.0K;单晶制备困难,成本高;磁熵变主要来源于自旋极化的改变,晶格熵和电子熵贡献量小,不利于从材料设计的角度来提高磁熵变。
双钙钛矿型锰氧化物La2CoMnO6由于其低温的强铁磁性和磁电阻效应得到人们的极大关注。同时Mn原子其电子结构复杂与过渡金属和稀土元素一起构织成一种强关联材料La2CoMnO6,电子的自旋熵和磁极化明显易于受外场的调控,从而表现出大的磁熵变和绝热温变。然而对于La2CoMnO6纳米薄膜的磁制冷效应的研究少之又少。
发明内容
针对以上问题,本专利提出了一种采用简易溶胶-凝胶法经RTP快速热处理工艺提供制备抗氧化型双钙钛矿La2CoMnO6低温磁制冷纳米薄膜的方法。采用简易溶胶-凝胶法制备纳米薄膜,具有溶胶-凝胶的工艺优点和固态制冷技术的优点。绿色、低成本,高效率、低噪音,抗氧化、器件微型化,适用于工业生产。
本发明解决其技术问题所采用的技术方案是:一种纳米薄膜的制备方法,其包括以下步骤:
(1)将镧盐、钴盐和锰盐按照摩尔比2:1:1混合,然后倒入到乙二醇与甲醚的混合溶液中,然后密封保存,将混合物搅拌400-600min,形成镧盐、钴盐和锰盐总浓度为0.15-0.25mol/l呈透明清晰的溶胶,加入乙酰丙酮,室温静置老化70-80小时;
(2)以单晶Si为衬底,在衬底上沉积薄膜,慢速350-450r/min时长15-20s,快速3800-4200r/min时长40-60s,薄膜在衬底上旋涂甩膜沉积,烘烤温度250-300℃时长1-3min;
(3)将步骤2所得初始薄膜用快速热处理系统(RTP)在氧气气氛中退火,按照升温速率100-200℃/s,升温至700-800℃,在700-800℃时长150-250s,气体流量0.3-0.5L/min;
(4)重复步骤(2)和(3)10-20次使得薄膜厚度达到一百纳米以上;
(5)将步骤4最终所得到的薄膜在RTP中,在700-800℃时长850-950s,气体束流0.3-0.5L/min即得。
所述镧盐、钴盐和锰盐分别为分析纯的La(NO3)3·5H2O、Co(NO3)2·4H2O和Mn(CH3COO)2,乙二醇与甲醚的混合溶液中乙二醇与甲醚的体积比为6:4,搅拌采用磁力搅拌或者机械搅拌。
所述乙酰丙酮的加入量为质量分数0.05-0.15%。
所述步骤(3)和步骤(5)的薄膜生长气氛均为氧气气氛。
本发明提出了一种制备抗氧化型双钙钛矿结构多晶La2CoMnO6低温磁制冷纳米薄膜、低温氧化物固态制冷技术,即在La2CoMnO6纳米薄膜的相变点210K附近发生磁熵变,外加磁场下磁制冷薄膜从一种无序态变化到一种有序态,随着磁熵的减小放热过程。撤去外磁场时,磁矩杂乱排布,磁熵增大的吸热过程。在连续变化的磁场中,把这样退场吸热和加场放的热过程连接起来,就可以使磁性薄膜材料从一端放热而在另一端吸热,类似于气体制冷技术中的工作原理,从而达到通过改变外加磁场来实现制冷的目的,实现氧化物低温磁制冷的固态制冷技术。所制备的薄膜通过等电子替代掺杂调控电子结构和相变温度,拓宽制冷工作范围和制冷效率,使得固体磁制冷薄膜的工作温度在一个较宽的低温区域,且有较大的制冷效率。可以用于低温固态制冷器件的开发,并设计了相关技术的应用原理图。
本发明提供了抗氧化型双钙钛矿La2CoMnO6低温磁制冷纳米薄膜、低温氧化物固态制冷技术。采用简易溶胶-凝胶法制备纳米薄膜,具有溶胶-凝胶的工艺优点和固态制冷技术的优点。绿色、低成本,高效率、低噪音,抗氧化、器件微型化,适用于工业生产。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1为本发明制备出的双钙钛矿La2CoMnO6低温磁制纳米冷薄膜的XRD衍射图。
图2为本发明制备出的双钙钛矿La2CoMnO6低温磁制冷纳米薄膜在不同温度下的磁性。
图3为本发明制备出的双钙钛矿La2CoMnO6低温磁制冷纳米薄膜在不同温度下的磁熵变、绝热温变。
图4为本发明制备出的双钙钛矿La2CoMnO6低温磁制冷纳米薄膜的制冷效率和循环制冷示意图。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
实施例一
(1)将纯度为分析纯的La(NO3)3·5H2O,Co(NO3)2·4H2O,Mn(CH3COO)2按通式La2CoMnO6混合成原料并溶于乙二醇甲醚与乙二醇体积比为6:4的溶剂中,配制成混合物20ml。用保鲜膜密封烧杯口,将该混合物在室温下磁力搅拌器上室温30℃搅拌500分钟,形成浓度为0.2mol/l透明清晰的溶胶,加入1ml乙酰丙酮,室温静置老化72小时。
(2)选取衬底为单晶Si(100),慢速400r/min时长18s;快速4000r/min时长50s,在衬底上旋涂甩膜沉积,薄膜烘烤温度280℃时长2min。
(3)将步骤2所得初始薄膜用RTP退火,升温速率110℃/s,氧气氛750℃退火时长210s,氧气束流0.4L/min。
(4)重复步骤2、3达18次所得薄膜厚度约700nm。
(5)步骤4所得到的薄膜在RTP中氧气氛750℃时长900s,氧气束流0.4L/min即得。
实施例2
一种纳米薄膜的制备方法,其包括以下步骤:
(1)将镧盐、钴盐和锰盐按照摩尔比2:1:1混合,然后倒入到乙二醇与甲醚的混合溶液中,然后密封保存,将混合物搅拌500min,形成镧盐、钴盐和锰盐总浓度为0.19mol/l呈透明清晰的溶胶,加入乙酰丙酮,室温静置老化78小时;
(2)以单晶Si(111)为衬底,在衬底上沉积薄膜,慢速420r/min时长19s,快速3850r/min时长45s,薄膜在衬底上旋涂甩膜沉积,烘烤温度280℃时长1.3min;
(3)将步骤2所得初始衬底薄膜用RTP退火气氛中,按照升温速率150℃/s,升温至780℃,在780℃时长170s,气体束流0.35L/min;
(4)重复步骤(2)和(3)14次使得薄膜厚度达到一百纳米以上;
(5)将步骤4最终所得到的薄膜在RTP中,在750℃时长870s,气体束流0.4L/min即得。
所述镧盐、钴盐和锰盐分别为分析纯的La(NO3)3·5H2O、Co(NO3)2·4H2O和Mn(CH3COO)2,乙二醇与甲醚的混合溶液中乙二醇与甲醚的体积比为6:4,搅拌采用磁力搅拌或者机械搅拌。
所述乙酰丙酮的加入量为质量分数0.01%。
所述步骤(3)和步骤(5)的薄膜生长气氛均为氧气气氛。
实施例3
一种纳米薄膜的制备方法,其包括以下步骤:
(1)将镧盐、钴盐和锰盐按照摩尔比2:1:1混合,然后倒入到乙二醇与甲醚的混合溶液中,然后密封保存,将混合物搅拌550min,形成镧盐、钴盐和锰盐总浓度为0.195mol/l呈透明清晰的溶胶,加入乙酰丙酮,室温静置老化76小时;
(2)以单晶Si为衬底,在衬底上沉积薄膜,慢速390r/min时长18.5s,快速4100r/min时长52s,薄膜在衬底上旋涂甩膜沉积,烘烤温度285℃时长1.5min;
(3)将步骤2所得初始衬底薄膜用RTP退火气氛中,按照升温速率120℃/s,升温至700℃,在700℃时长185s,气体束流0.35L/min;
(4)重复步骤(2)和(3)15次使得薄膜厚度达到一百纳米以上;
(5)将步骤4最终所得到的薄膜在RTP中,在750℃时长895s,气体束流0.35L/min即得。
所述镧盐、钴盐和锰盐分别为分析纯的La(NO3)3·5H2O、Co(NO3)2·4H2O和Mn(CH3COO)2,乙二醇与甲醚的混合溶液中乙二醇与甲醚的体积比为6:4,搅拌采用磁力搅拌或者机械搅拌。
所述乙酰丙酮的加入量为质量分数0.12%。
所述步骤(3)和步骤(5)的薄膜生长气氛均为氧气气氛。
如图1所示,XRD图片显示出成功制备多晶La2CoMnO6纳米薄膜。通过精修确认薄膜为单相的双钙钛矿结构,纯相物质的磁极化比较大且相变明显,从而具备了表现出显著的磁制冷性能。
如图2和图3所示,变温磁行为,磁熵变、绝热温变指出所制备双钙钛矿抗氧化La2CoMnO6低温磁制冷纳米薄膜有明显的相变点。磁学行为在210K附近有最大的磁熵变6.5J/Kg·K,外加3T磁场有最大绝热温变4.3K,该数值可以达到实用范围,实现了低温制冷的效果。
图4给出了这种新型的双钙钛矿抗氧化La2CoMnO6低温磁制冷纳米薄的制冷效率,相对制冷功率(RCP)在3T时到最大360J/Kg,比传统的稀土合金磁制冷材料要高;同时也给出了低温稳态制冷技术器件的设计原理图。
本发明的有益性体现在采用溶胶-凝胶快速热处理过程制备出双钙钛矿抗氧化La2CoMnO6低温磁制冷纳米薄膜,实现了低温固态磁制冷技术。3T外磁场210K最大绝热温变达4.3K。随着外磁场的交替变化可以实现低温持续制冷,有很大的实用价值和科研意义。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (1)

1.一种纳米薄膜的制备方法,其特征在于,包括以下步骤:
1.将镧盐、钴盐和锰盐按照摩尔比2:1:1混合,然后倒入到乙二醇与甲醚的混合溶液中,然后密封保存,将混合物搅拌400-600min,形成镧盐、钴盐和锰盐总浓度为0.15-0.25mol/l呈透明清晰的溶胶,加入乙酰丙酮,室温静置老化70-80小时;
2.以单晶Si为衬底,在衬底上沉积薄膜,慢速350-450r/min时长15-20s,快速3800-4200r/min时长40-60s,薄膜在衬底上旋涂甩膜沉积,烘烤温度250-300℃时长1-3min;
3.将步骤2所得初始衬底薄膜用快速热处理系统氧气气氛下退火,按照升温速率100-200℃/s,升温至700-800℃,在700-800℃时长150-250s,气体流量0.3-0.5L/min;
4.重复步骤2和3至10-20次使得薄膜厚度达到一百纳米以上;
5.将步骤4最终所得到的薄膜在RTP中,在700-800℃时长850-950s,气体流量0.3-0.5L/min即得;
所述步骤3和步骤5的薄膜生长气氛均为氧气气氛;
所述镧盐、钴盐和锰盐分别为分析纯的La(NO3)3·5H2O、Co(NO3)2·4H2O和Mn(CH3COO)2,乙二醇与甲醚的混合溶液中乙二醇与甲醚的体积比为6:4,搅拌采用磁力搅拌或者机械搅拌;
所述乙酰丙酮的加入量为质量分数0.05-0.15%。
CN201710270602.2A 2017-04-24 2017-04-24 一种纳米薄膜的制备方法 Expired - Fee Related CN107099785B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710270602.2A CN107099785B (zh) 2017-04-24 2017-04-24 一种纳米薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710270602.2A CN107099785B (zh) 2017-04-24 2017-04-24 一种纳米薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN107099785A CN107099785A (zh) 2017-08-29
CN107099785B true CN107099785B (zh) 2019-08-23

Family

ID=59656348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710270602.2A Expired - Fee Related CN107099785B (zh) 2017-04-24 2017-04-24 一种纳米薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN107099785B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109960246B (zh) 2017-12-22 2021-03-30 华为技术有限公司 动作控制方法及装置
CN110018009B (zh) * 2019-03-29 2022-12-27 昂纳信息技术(深圳)有限公司 一种热电制冷器胶组装的研究装置及其方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555595A (zh) * 2009-05-08 2009-10-14 中山大学 纳米复合稀土掺杂钛酸铋铁电薄膜及其制备方法
CN102658163A (zh) * 2012-04-28 2012-09-12 内蒙古大学 一种生物质与煤在超临界水中共气化制备合成气的稀土催化剂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555595A (zh) * 2009-05-08 2009-10-14 中山大学 纳米复合稀土掺杂钛酸铋铁电薄膜及其制备方法
CN102658163A (zh) * 2012-04-28 2012-09-12 内蒙古大学 一种生物质与煤在超临界水中共气化制备合成气的稀土催化剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Control of magnetic properties and band gap by Co/Mn ordering and oxygen distributions of La2CoMnO6;Fang Liu et al.;《Journal of Magnetism and Magnetic Materials》;20170323;第435卷;217-222
Structure and current-induced effect on the resistivity of La2CoMnO6 thin films;Yijing Gu et al.;《Materials Chemistry and Physics》;20121231;第132卷;466-470

Also Published As

Publication number Publication date
CN107099785A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
JP5882227B2 (ja) 磁気熱量材料
JP2011523771A (ja) 熱交換器用の連続気泡多孔性成型物
CN105347797B (zh) 应用于低温磁制冷中的R2Cu2O5氧化物材料及其制备方法
CA2789797A1 (en) Magnetocaloric materials
CN107099785B (zh) 一种纳米薄膜的制备方法
US20110126550A1 (en) Magnetocaloric refrigerators
CN115353149B (zh) 一种钙钛矿锰氧化物多孔纳米球及其制备方法与应用
Wu et al. Giant reversible magnetocaloric effect in orthorhombic GdScO3
CN103194654B (zh) 一种室温磁制冷材料及其制备工艺
CN102576587A (zh) 多晶磁热材料
Zhang et al. Structural and cryogenic magnetic properties of rare earth rich RE 11 Co 4 In 9 (RE= Gd, Dy and Ho) intermetallic compounds
CN112852388A (zh) 一种低温区稀土金属氧化物磁热效应材料、其制备方法及应用
Yang et al. Large magnetic entropy change in weberite-type oxides Gd3MO7 (M= Nb, Sb, and Ta)
Jia et al. Structural, magnetic properties and large cryogenic magnetocaloric effect (MCE) in RE2MgTiO6 (RE= Tb, Dy, Ho and Er) double perovskite (DP) oxides
WO2019109059A1 (en) Perovskite manganese oxides with strong magnetocaloric effect and uses thereof
Abhinav et al. Magnetocaloric Properties of A-Site-Doped La 2 NiMnO 6 for Environmentally Friendly Refrigeration
CN107574347B (zh) 一种镨钴基合金磁制冷材料及其制备方法和应用
CN102465225B (zh) 一种磁制冷材料及其制备方法和用途
CN103334043B (zh) 一种可用作磁制冷材料的磁性合金
CN105390223B (zh) 一种室温磁制冷合金材料及制备方法
Lun et al. A chiral coordination polymer with double coaxially nested helical chains exhibiting spin-canting antiferromagnetism
CN107910151B (zh) 一种非稀土磁致冷材料kbbfo及其制备方法和应用
CN105836755A (zh) 硼酸钆及其制备方法与应用
CN105112025B (zh) 一种固体磁制冷材料、制备方法及磁制冷器
CN102383017B (zh) 一种铕基ThCr2Si2结构的低温磁制冷材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190823

CF01 Termination of patent right due to non-payment of annual fee