CN107910151B - 一种非稀土磁致冷材料kbbfo及其制备方法和应用 - Google Patents

一种非稀土磁致冷材料kbbfo及其制备方法和应用 Download PDF

Info

Publication number
CN107910151B
CN107910151B CN201711153313.0A CN201711153313A CN107910151B CN 107910151 B CN107910151 B CN 107910151B CN 201711153313 A CN201711153313 A CN 201711153313A CN 107910151 B CN107910151 B CN 107910151B
Authority
CN
China
Prior art keywords
magnetic
kbbfo
kba
magnetic refrigeration
reaction kettle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711153313.0A
Other languages
English (en)
Other versions
CN107910151A (zh
Inventor
庄乃锋
吴璇
赵中胜
吴舒婷
胡晓琳
陈新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201711153313.0A priority Critical patent/CN107910151B/zh
Publication of CN107910151A publication Critical patent/CN107910151A/zh
Application granted granted Critical
Publication of CN107910151B publication Critical patent/CN107910151B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/017Compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties

Abstract

本发明提供一种非稀土磁致冷材料KBBFO及其制备方法和应用。所述的磁致冷材料KBBFO的化学式为KBa8Fe12(Bi6‑xFex)O38,x=0~5。该材料属立方晶系,空间群为。该材料具有晶体结构新颖、物化性能优良,在超低温段(2K)的磁化强度和磁热效应大等优点,有望在超低温磁致冷领域获得应用。该材料采用水热法制备,因此还具有工艺简单,周期短的优点。

Description

一种非稀土磁致冷材料KBBFO及其制备方法和应用
技术领域
本发明是一种新型的非稀土磁热材料,可应用于磁制冷、磁致热领域,更具体涉及到这类材料的制备方法、结构及用途。
背景技术
磁制冷技术是以磁性材料为工质,利用材料的磁热效应来达到制冷目的。与传统制冷技术相比,磁制冷技术不会产生温室气体、无臭氧层破坏作用、噪音小、可操作性好、安全、效率高,是一种绿色环保的制冷技术。其作用机理是顺磁或铁磁性物质在外磁场的作用下,磁矩由杂乱变为有序,材料的磁熵减小而对外放热。当外磁场取消,磁性物质的磁矩又由有序而变为杂乱,因而磁熵增加须从外界吸收能量,在系统绝热的情况下则磁性物质本身温度降低。磁热效应的大小可用最大磁熵变值(ΔSM),相对制冷能力(RCP),绝热温变(ΔTad)来衡量[1]
一些具有低温磁有序的化合物具有较高的磁热效应[2]。如Gd3Ga5-xAlxO12(0≤x≤5)[3],EuTiO3 [4],ErRuSi[5]等在小于10K的超低温温度下都具有很高的最大磁熵变值。但是就目前的文献报道来看,超低温磁热效应较好的化合物都含有高浓度的重稀土元素。而地球上Gd等重稀土元素丰度小,资源矿少,因此市场价格高,不利于制冷材料的大规模应用。因此,探索不含稀土的新型磁制冷材料也成为近年来的研究热点。2014年Shahida Akhter等人合成出了非稀土的Cu1-xZnxFe2O4(x=0.6, 0.7, 0.8),在140~370K表现出磁热效应,磁熵变最大值为1.27J·kg−1·K−1[6]。2015年Elaa Oumezzine等人采用Pechini溶胶-凝胶法合成了非稀土的Zn0.6−xNixCu0.4Fe2O4纳米粒子在200K~800K都具有磁热效应[7]。然而现已报道的这些磁热材料磁熵变值比较小,应用的温度范围都相对比较高,超低温段(小于10K)的磁热材料还是主要集中在稀土材料。本发明使用水热法合成了一种新的非稀土磁致冷材料KBBFO——KBa8Fe12(Bi6-xFex)O38,在超低温下(2K)具有较好的磁热效应,因此有望替代稀土低温磁制冷材料而获得大范围应用。
发明内容
本发明提供一类新型磁致冷材料KBa8Fe12(Bi6-xFex)O38(x=0~5)的制备方法、结构及用途。该晶体属立方晶系,空间群为。该晶体是一种新型的非稀土磁致冷材料,在超低温下具有较好的磁热效应。该材料采用水热法制备,具有工艺简单,周期短的优点。KBa8Fe12(Bi6-xFex)O38(x=0~5)磁致冷材料还具有结构新颖、物化性能优良、磁化强度大、磁热效应好等优点,可在磁制冷领域获得广泛应用,具有显著的经济效益和社会效益。
本发明的KBa8Fe12(Bi6-xFex)O38(x=0~5)磁致冷材料的制备方法为:水热法制备,水热反应结束后用去离子水超声清洗,然后采用pH=1~2的硝酸溶液搅拌洗涤,最后去离子水超声洗涤三遍后烘干。
具体包括如下步骤:
(1)晶体生长:按KBa8Fe12(Bi6-xFex)O38,x=0~5,化学计量比准确称取Bi(NO3)3·5H2O、Ba(NO3)2放于反应釜内衬中,再加入高于化学计量比20%的Fe(NO3)3·9H2O,最后量取14mol·L-1的KOH溶液缓慢滴加入反应釜内衬中,直至填充度为60%,磁力搅拌40min,取出磁子,将反应釜置于180℃ 温度下恒温反应36 h,2天程序降温至室温;
(2)分离提纯:取出反应釜,将反应物倒入玻璃烧杯中,用去离子水超声清洗直至上层溶液无色,倒去上清液,然后加入pH=1~2的稀硝酸搅拌10分钟,待晶体沉降完全后倒去上清液,加入去离子水超声清洗三遍,经过滤后于80℃下烘干10h得到产物。
本发明的KBa8Fe12(Bi6-xFex)O38(x=0~5)磁致冷材料结构:所述的材料是一种晶体结构新颖的新材料,结构中含有钾氧八面体、Fe4O4八元环、钡氧笼和(Bi/Fe)6O8多面体。
本发明的KBa8Fe12(Bi6-xFex)O38(x=0~5)磁致冷材料用途在于:所述的材料可直接作为磁热材料应用于磁制冷器件中。
本发明的显著优点:本发明的KBa8Fe12(Bi6-xFex)O38(x=0~5)磁致冷材料是一类新型的磁热材料,属立方晶系(a=10.1085(8) Å,α=90°),空间群为。该系列材料可以采用水热法进行制备,并通过调节原料中Bi与Fe比例来调控材料的磁性和磁热性能。本发明的晶体在结构上存在钾氧八面体、Fe4O4八元环、钡氧笼和(Bi/Fe)6O8多面体。晶体在性能方面具有较大的磁化强度和高热稳定磁结构,而且在低温至2K时仍表现出超顺磁特性而不发生磁相变,说明该晶体可用于超低温段的多种磁制冷器件中,具有显著的经济效益和社会效益。
附图说明
图1为 KBa8Fe12(Bi5Fe)O38的单胞结构示意图;
图2为KBa8Fe12(Bi5Fe)O38的单胞拆解图,(a)钾氧八面体,(b) 钡氧笼,(c) 铁氧笼,(d) (Bi/Fe)6O8多面体;
图3 KBa8Fe12(Bi3Fe3)O38晶体粉末的Rietveld精修谱图;
图 4 KBa8Fe12(Bi6-xFex)O38(x=0~5)的磁滞回线,插图为0.8T条件下的磁化强度M~x关系曲线;
图5 KBa8Fe12(Bi5Fe)O38化合物在0.5-8T磁场下的磁熵变曲线;
图6 KBa8Fe12(Bi3Fe3)O38 化合物的M-T曲线,插图为KBa8Fe12(Bi5Fe)O38和KBa8Fe12(Bi3Fe3)O38化合物在T=2~30K的M-T曲线。
具体实施方式
本发明KBa8Fe12(Bi6-xFex)O38(x=0~5)磁致冷材料的制备步骤:
1. 晶体生长:按KBa8Fe12(Bi6-xFex)O38(x=0~5)化学计量比准确称取Bi(NO3)3·5H2O(AR)、Ba(NO3)2(99.5%)放于反应釜内衬中,再加入高于化学计量比20%的Fe(NO3)3·9H2O(98.5%),最后量取14mol·L-1的KOH(AR)溶液缓慢滴加入反应釜内衬中,直至填充度为60%,磁力搅拌40min,取出磁子。将反应釜置于180℃ 温度下恒温反应36 h时间,然后经48h程序降温至室温。
2. 分离提纯:取出反应釜,将反应物倒入玻璃烧杯中,用去离子水超声清洗直至上层溶液无色,倒去上清液,然后加入pH=1~2的稀硝酸搅拌10分钟,待晶体沉降完全后倒去上清液,加入去离子水超声清洗三遍,经过滤后于80℃下烘干10h得到产物。
以下实施例进一步阐述本发明,但是本发明不仅限于此。
实施例1
水热法生长KBa8Fe12(Bi5Fe)O38晶体。
(1)按KBa8Fe12(Bi5Fe)O38化学计量比准确称取Bi(NO3)3·5H2O(AR)、Ba(NO3)2(99.5%)放于反应釜内衬中,再加入高于化学计量比20%的Fe(NO3)3·9H2O(98.5%),最后量取14mol·L-1的KOH(AR)溶液缓慢滴加入反应釜内衬中,直至填充度为60%,磁力搅拌40min,取出磁子。将反应釜置于180℃ 温度下恒温反应36 h时间,然后经48h程序降温至室温。
(2)取出反应釜,取出反应釜,将反应物倒入玻璃烧杯中,用去离子水超声清洗直至上层溶液无色,倒去上清液,然后加入pH=1的稀硝酸搅拌10分钟,待晶体沉降完全后倒去上清液,加入去离子水超声清洗三遍,经过滤后于80℃下烘干10h得到产物。
上述磁致冷材料进行X-射线单晶衍射测试。用SHELX-97程序进行晶体初始结构的解析,并用直接法解出。图1和图2分别是KBa8Fe12(Bi5Fe)O38的单胞结构图和单胞结构的拆解图。在KBa8Fe12(Bi5Fe)O38单胞的中心位置是钾与氧以六配位的形式形成的钾氧八面体(如图2中(a)所示),外层是钡和氧形成的笼(如图2中(b)所示)包裹住钾氧八面体。最外层是铁和氧在立方体的六个面上形成Fe4O4八元环,Fe4O4八元环之间又通过一个桥氧连接形成的铁氧笼(如图2中(c)所示)。在晶胞八个顶角处的Bi/Fe、O分别与其近邻7个单胞中的Bi/Fe、O共同形成如图2中(d)所示的(Bi/Fe)6O8多面体。
实施例2
(1)按KBa8Fe12(Bi3Fe3)O38化学计量比准确称取Bi(NO3)3·5H2O(AR)、Ba(NO3)2(99.5%)放于反应釜内衬中,再加入高于化学计量比20%的Fe(NO3)3·9H2O(98.5%),最后量取14mol·L-1的KOH(AR)溶液缓慢滴加入反应釜内衬中,直至填充度为60%,磁力搅拌40min,取出磁子。将反应釜置于180℃ 温度下恒温反应36 h时间,然后经48h程序降温至室温。
(2)取出反应釜,将反应物倒入玻璃烧杯中,用去离子水超声清洗直至上层溶液无色,倒去上清液,然后加入pH=2的稀硝酸搅拌10分钟,待晶体沉降完全后倒去上清液,加入去离子水超声清洗三遍,经过滤后于80℃下烘干10h得到产物。
基于Rietveld原理对KBa8Fe12(Bi3Fe3)O38晶体粉末的结构进行精修。精修所得的模拟XRD粉末衍射谱图与实测谱吻合比较好。图3中的插图均为各自的单胞结构图,结构与KBa8Fe12(Bi5Fe)O38一致,Bi/Fe含量的改变没有破坏单胞结构,而且Fe原子也没有填充到原子间的空隙中,而是替代了Bi原子的位置,导致Bi/Fe双掺位置中的Fe的占有率增加。
采用振动样品磁强计测试了晶体的磁滞回线,图4给出了KBa8Fe12(Bi6-xFex)O38(x=0~5)的磁滞回线。化合物的磁滞回线基本没有磁滞现象,整体变化趋势是随着x值增加而呈现出锯齿状增加。KBa8Fe12(BiFe5)O38晶体具有最大的磁化强度,在8000Oe的外加磁场下磁化强度为1.48emu/g。
采用PPMS MODEL 6000测试KBa8Fe12(Bi5Fe)O38和KBa8Fe12(Bi3Fe3)O38晶体的M-T曲线,经计算得到KBa8Fe12(Bi5Fe)O38晶体在2K温度下外加磁场为8T时的磁熵变值为1.5402J/(kg·K)(图5)。图6给出了KBa8Fe12(Bi3Fe3)O38晶体在0.5T下的M-T曲线,插图为KBa8Fe12(Bi5Fe)O38和KBa8Fe12(Bi3Fe3)O38在T=0~30K的M-T曲线。在2-30K的区间内KBa8Fe12(Bi3Fe3)O38的磁性变化趋势与KBa8Fe12(Bi5Fe)O38类似,磁化强度相对比较大,说明KBa8Fe12(Bi3Fe3)O38的磁热效应要优于KBa8Fe12(Bi5Fe)O38。可以合理推测,如果进一步提高Fe的比例和降低温度,我们可以获得更高的磁热效应,KBa8Fe12(Bi6-xFex)O38材料整体表现出较大的磁热潜力。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
[1] Bhumireddi S., Bhatnagar A. K., Vinod K., et al. Magnetocaloriceffect in In doped YbMnO3. Physica B Condensed Matter, 2017(514):37-40.
[2] Matsumoto K, Matsuzaki A, Kamiya K, et al. Magnetocaloric Effect,Specific Heat, and Entropy of Iron-Substituted Gadolinium Gallium Garnets Gd3(Ga1-xFex)5O12. Japanese Journal of Applied Physics, 2009(48): 113002.
[3] Sackville H. A. C., Lampronti G. I., Rowley S.E., et al.Enhancement of the magnetocaloric effect driven by changes in the crystalstructure of Al-doped GGG, Gd3Ga5−xAlxO12 (0≤x≤5). Journal of PhysicsCondensed Matter An Institute of Physics Journal, 2014(26):116001.
[4] Mo Z. J., Shen J., Li L., et al. Observation of giantmagnetocaloric effect in EuTiO3. Materials Letters, 2015(158):282-284.
[5] Gupta S. B., Suresh K. G., Giant low field magnetocaloric effectin soft ferromagnetic ErRuSi. Applied Physics Letters, 2013(102):022408.
[6] Akhter S., Paul D. P., Hoque S. M., et al. Magnetic andmagnetocaloric properties of Cu1−xZnxFe2O4, ( x =0.6, 0.7, 0.8) ferrites.Journal of Magnetism & Magnetic Materials, 2014(367):75-80.
[7] Oumezzine E., Hcini S., Baazaoui M., et al. Structural, magneticand magnetocaloric properties of Zn0.6−xNixCu0.4Fe2O4 ferrite nanoparticlesprepared by Pechini sol-gel method. Powder Technology, 2015(278): 189-195.

Claims (4)

1.一种非稀土磁致冷材料KBBFO,其特征在于:所述的磁致冷材料KBBFO的化学式为KBa8Fe12(Bi6-xFex)O38,x=0~5;所述非稀土磁致冷材料KBBFO属立方晶系,空间群为,晶胞参数a=10.1085(8) Å;具有独特的晶体结构,结构中包含了钾氧八面体、Fe4O4八元环、钡氧笼和(Bi/Fe)6O8多面体。
2.如权利要求1所述的非稀土磁致冷材料KBBFO的制备方法,其特征在于:采用水热法制备,水热反应结束后用去离子水超声清洗,然后采用pH=1~2的硝酸溶液搅拌洗涤,最后去离子水超声洗涤三遍后烘干。
3.根据权利要求2所述的非稀土磁致冷材料KBBFO的制备方法,其特征在于:具体包括如下步骤:
(1)晶体生长:按KBa8Fe12(Bi6-xFex)O38,x=0~5,化学计量比准确称取Bi(NO3)3·5H2O、Ba(NO3)2放于反应釜内衬中,再加入高于化学计量比20%的Fe(NO3)3·9H2O,最后量取14mol·L-1的KOH溶液缓慢滴加入反应釜内衬中,直至填充度为60%,磁力搅拌40min,取出磁子,将反应釜置于180℃ 温度下恒温反应36 h时间,2天程序降温至室温;
(2)分离提纯:取出反应釜,将反应物倒入玻璃烧杯中,用去离子水超声清洗直至上层溶液无色,倒去上清液,然后加入pH=1~2的稀硝酸搅拌10分钟,待晶体沉降完全后倒去上清液,加入去离子水超声清洗三遍,经过滤后于80℃下烘干10h得到产物。
4.如权利要求1所述的非稀土磁致冷材料KBBFO的应用,其特征在于:非稀土磁致冷材料KBBFO用于制备磁制冷器件。
CN201711153313.0A 2017-11-20 2017-11-20 一种非稀土磁致冷材料kbbfo及其制备方法和应用 Active CN107910151B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711153313.0A CN107910151B (zh) 2017-11-20 2017-11-20 一种非稀土磁致冷材料kbbfo及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711153313.0A CN107910151B (zh) 2017-11-20 2017-11-20 一种非稀土磁致冷材料kbbfo及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107910151A CN107910151A (zh) 2018-04-13
CN107910151B true CN107910151B (zh) 2019-07-12

Family

ID=61846492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711153313.0A Active CN107910151B (zh) 2017-11-20 2017-11-20 一种非稀土磁致冷材料kbbfo及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107910151B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072063A (zh) * 2018-10-22 2020-04-28 天津理工大学 一种钙钛矿稀土金属氧化物低温磁制冷材料及其制备方法
CN114634359B (zh) * 2022-03-01 2023-01-31 中国科学院赣江创新研究院 一种磁制冷微球及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004781A (ja) * 2006-06-23 2008-01-10 Fujifilm Corp 圧電膜、圧電素子、インクジェット式記録ヘッド、及びインクジェット式記録装置
CN101942695A (zh) * 2010-10-20 2011-01-12 福州大学 一种导模提拉法生长纯及掺杂钇铁石榴石晶体的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004781A (ja) * 2006-06-23 2008-01-10 Fujifilm Corp 圧電膜、圧電素子、インクジェット式記録ヘッド、及びインクジェット式記録装置
CN101942695A (zh) * 2010-10-20 2011-01-12 福州大学 一种导模提拉法生长纯及掺杂钇铁石榴石晶体的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The effect of Fe-O-Fe bond angle on modulating multiferroic properties of ba-K-codoped BiFeO3 nanoparticles;Minchen Guo等;《J Nanopart Res》;20151126;全文

Also Published As

Publication number Publication date
CN107910151A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
Ke et al. Anisotropic magnetic entropy change in R FeO3 single crystals (R= Tb, Tm, or Y)
Peng et al. Effect of Pr3+ doping on magnetic and dielectric properties of Ni–Zn ferrites by “one-step synthesis”
Gopalan et al. Inverse magnetocaloric effect in sol–gel derived nanosized cobalt ferrite
Zhang et al. Cryogenic magnetic properties and magnetocaloric effects (MCE) in B-site disordered RE2CuMnO6 (RE= Gd, Dy, Ho and Er) double perovskites (DP) compounds
Li et al. A comparative study on magnetic behaviors and magnetocaloric effect in heavy rare-earth antiferromagnetic orthoferrites RFeO3 (R= Dy, Ho and Er)
Wu et al. Giant reversible magnetocaloric effect in orthorhombic GdScO3
Li et al. Magnetocaloric effect and sign reversal of magnetic entropy change across the spin reorientation temperature in R3Fe5O12 (R= Gd, Dy)
CN107910151B (zh) 一种非稀土磁致冷材料kbbfo及其制备方法和应用
Cao et al. Magnetic properties and magnetic entropy changes of perovskite manganese oxide La0. 8-xEuxSr0. 2MnO3 (x= 0, 0.075)
Zhao et al. Anisotropic magnetocaloric effect and magnetoresistance in antiferromagnetic HoNiGe3 single crystal
Li et al. Spin reorientation, normal and inverse magnetocaloric effects in heavy rare-earth iron garnets
Liu et al. Effect of Bi doping on the crystal structure, magnetic and magnetocaloric properties of La0. 7-xBixSr0. 15Ca0. 15MnO3 (x= 0, 0.05, 0.10, 0.15) manganites
Shi et al. Structure-property correlations and scaling in the magnetic and magnetocaloric properties of GdCrO3 particles
Ayaş et al. Magnetic refrigeration: Current progress in magnetocaloric properties of perovskite manganite materials
Zhang et al. Structural, magnetic and magnetocaloric properties in distorted RE 2NiTiO6 double perovskite compounds
Xie et al. Enhanced magnetocaloric effect from Zn substitution in perovskite Eu (Ti, Zn) O3 compounds
Jia et al. Structural, magnetic properties and large cryogenic magnetocaloric effect (MCE) in RE2MgTiO6 (RE= Tb, Dy, Ho and Er) double perovskite (DP) oxides
Xie et al. Enhanced and giant low-field magnetocaloric effects in Eu (Ti, Nb, M) O3 (M= Cu or Zn) compounds
Rawat et al. Investigation of structural, magnetic, and magnetocaloric properties of nanocrystalline double perovskite Pr2CoMnO6
Ryu et al. Magnetocaloric effects of DyVO4 nanoparticles
Hu et al. Effects of Nd doping on the magnetocaloric properties of double perovskite Sr2FeMoO6
Liu et al. Effect of Dy doping on magnetism of La 0.7 Sr 0.3 CoO 3 system
Kumar et al. Effect of structural stacking on magnetocaloric and magnetodielectric properties of Ba1-xSrxCo0. 9Mn0. 1O3-δ (0≤ x≤ 0.5)
Khan et al. The effect of antisite disorder on magnetic and exchange bias properties of Gd-substituted Y2CoMnO6 double perovskite
Zhang et al. Large reversible room-temperature magnetocaloric effect in the Ba0. 5Sr1. 5Zn2Fe12O22-related hexaferrites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant