CN107098332A - 一种高温碳化有机物制备碳基吸波材料的方法 - Google Patents

一种高温碳化有机物制备碳基吸波材料的方法 Download PDF

Info

Publication number
CN107098332A
CN107098332A CN201710492621.XA CN201710492621A CN107098332A CN 107098332 A CN107098332 A CN 107098332A CN 201710492621 A CN201710492621 A CN 201710492621A CN 107098332 A CN107098332 A CN 107098332A
Authority
CN
China
Prior art keywords
absorbing material
high temperature
temperature cabonization
carbon
based absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710492621.XA
Other languages
English (en)
Other versions
CN107098332B (zh
Inventor
祁阳
戚聿杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201710492621.XA priority Critical patent/CN107098332B/zh
Publication of CN107098332A publication Critical patent/CN107098332A/zh
Application granted granted Critical
Publication of CN107098332B publication Critical patent/CN107098332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明公开了一种碳基吸波材料的制备方法,以糖水热碳化产物作为前驱物,经过高温碳化,在丙酮中与石蜡均匀混合分散后固化成型。本发明原料价格低廉资源丰富,制备过程重复性好,节能环保,制备的碳基吸波材料密度低,优于传统的金属基体吸波材料,在电磁波X波段具有优异的吸波性能,吸收能力强,并且能够吸收的有效频宽范围宽,满足有效损耗(‑10dB)的最小厚度低,符合新型吸波材料薄、轻、宽、强的要求,而且制备出的吸波材料表层孔洞多,可提供通道与其它材料进行复合,可以作为复合吸波材料的基体材料,应用更加广泛。

Description

一种高温碳化有机物制备碳基吸波材料的方法
技术领域
本发明属于吸波材料技术领域,具体是一种碳基吸波材料的制备方法。
背景技术
伴随着电子信息技术的飞速发展,电磁波作为信息传播的载体已经渗入到人类生活的方方面面。无论军事还是民用,信息的产生、传递、接受和处理都要依赖于作为载体的电磁波,与此同时,信息时代电子电气产品的广泛应用形成了复杂的电磁环境,也带来了大量的负面效应,诸如电磁干扰(EMI)、电磁信息的安全性和电磁辐射对人体的危害等。因此,吸波材料作为可以有效屏蔽电磁波的介质得到极大地关注,特别是在军事隐身涂层等相关领域具有极大地应用价值。根据材料损耗机理的不同,吸波材料主要分为电阻型、电介质型和磁介质型。电阻型吸波材料主要通过与电场的相互作用来吸收电磁波,吸收效率取决于材料的电导和介电常数,主要有炭黑、金属粉、碳化硅、石墨以及特种碳纤维等;电介质型吸波材料主要通过介质极化弛豫损耗来吸收电磁波,主要以钛酸钡铁电陶瓷为代表;磁介质型吸波材料对电磁波的衰减主要来自于自然共振、畴壁共振、磁滞损耗和后效损耗等,如铁氧体和羧基铁等。迄今为止,对金属粉体等传统吸波材料的研究较为深入,但传统吸波材料主要以强吸收为主而普遍存在密度大、吸收率低等缺点。新型吸波材料则要求满足“薄、轻、宽、强”等特点,以促进实际应用,特别在军事飞行器隐身技术领域。
碳基吸波材料具有耐腐蚀、介电常数高、密度低等优点而受到科研者的青睐。石墨很早以前就被用来填充在飞机蒙皮的夹层中吸收雷达波,碳纤维复合材料被大量用于F-117、B-2等隐身战机的发动机四周、尾翼、机身等部位的蒙皮材料。碳纤维属于有机物转化而成的过渡态碳,这类电阻型碳基吸波材料内会产生趋肤效应使电磁波衰减。因此,对于有机物制备的碳基吸波材料,可通过合理引入含氧官能团及调控处于不同化学环境的碳含量进而对碳基吸波材料的吸波性能如吸收频带、有效带宽、厚度等进行改善。
目前常见制备吸波材料为金属基吸波材料,如羟基铁、四氧化三铁等,但这些方法制备出的吸波材料密度较大,而且满足有效损耗(-10dB)的最小厚度很高,材料不轻薄,不符合新型吸波材料薄、轻、宽、强的要求,使得所制备的吸波材料应用受到很大局限。
发明内容
针对上述技术问题,本发明公开了一种碳基吸波材料的制备方法,以糖水热碳化产物作为前驱物,经过高温碳化后,在丙酮中与石蜡均匀混合分散后固化成型。解决了现有技术中粉类吸波材料密度大、涂层厚、成本高、制备工艺复杂、吸波效果不佳的问题。
具体技术方案如下:
一种高温碳化有机物制备碳基吸波材料的方法,以糖的水热碳化产物作为前驱物,采用高温碳化法制备,具体步骤如下:
(1)糖的水热碳化:将糖与去离子水按照一定摩尔比配制成溶液后加入聚四氟乙烯内衬,将内衬放入不锈钢反应釜中,置于马弗炉中,在160~200℃的温度下反应5~20h,使糖经过脱水、缩聚充分转化为前驱物;
(2)前驱物的高温碳化:取上述前驱物置入加盖坩埚中,置于井式炉中密闭高温碳化,碳化温度为600~1000℃,碳化时间为10~120min,升温速率为5℃/min,整个碳化过程持续通入惰性气体隔绝氧气;
(3)固化成型:将上述高温碳化产物与石蜡按照质量比1:0.5~1.5充分混合,加入一定量的丙酮,超声震荡分散均匀,再于60℃水浴下将丙酮蒸出,剩余混合物烘干后自然冷却,得到所述碳基吸波材料粉末。
所述糖可以为单糖、二糖或多糖中的一种。
所述糖与去离子水的摩尔比为1:50~1:250。
所述丙酮与所述高温碳化产物的质量比为10:1。
本方法的优点是:
1、生物质制备,原料来源广泛且价格低廉,常见的糖如蔗糖就可作为反应物,价格低廉,均属于环境友好型材料,制备过程中不产生有害物质,重复性好;
2、本发明制备的碳基吸收波材料在X波段有十分优异的吸收性能,吸收能力强,并且能够吸收的有效频宽范围宽,而且满足有效损耗(-10dB)的最小厚度很低,制备的碳基吸波材料更轻薄;
3、本发明制备的碳基吸收波材料产率高,密度低,优于传统的金属基体吸波材料,可应用于飞行器涂层等领域;
4、由BET测试可见,本发明方法制备出的碳基吸收波材料比表面积大,表层孔洞很多,说明表层可以提供通道与其它材料进行复合,可以作为复合吸波材料的基体材料,应用更加广泛;
5、固化成型过程中加入石蜡,可以为电磁波透入吸波材料提供通道,石蜡与碳化产物的比例决定了阻抗匹配的程度,良好的阻抗匹配是吸波性能优异的必要条件。电导率的差异会造成吸波性能的差异,如果混合不均匀,吸波材料的各个部分电导率差异会比较大,电磁波在材料中的电导损耗即涡流流经的路径就会有选择性,涡流会趋向于阻碍小的路径,走的路径越少,对电磁波的阻碍作用越小,吸波性能也就越差。因此在高温碳化产物与石蜡混合过程中加入丙酮,将原本的固体混合转化为在液体中混合,可以将高温碳化产物和石蜡充分分散均匀,混合后将丙酮蒸出,制备的材料中不会引入多余杂质且无残留。
附图说明
图1为本发明经过800℃碳化20min后的碳基吸波材料反射损耗图谱;
图2为本发明经过700℃碳化90min后的碳基吸波材料反射损耗图谱;
图3为本发明经过900℃碳化60min后的碳基吸波材料反射损耗图谱;
图4为本发明经过800℃碳化20min后的碳基吸波材料对应不同厚度的反射损耗图谱;
图5为本发明经过700℃碳化90min后的碳基吸波材料对应不同厚度的反射损耗图谱;
图6为本发明经过900℃碳化60min后的碳基吸波材料对应不同厚度的反射损耗图谱。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明,但本发明的保护范围不受附图和实施例所限。
实施例1:利用糖水热反应后的产物作为前驱物,在保护气氛下,经过高温碳化处理获得碳基吸波材料的具体步骤如下:
(1)糖的水热碳化:将蔗糖与去离子水按照1:100的摩尔比配制成溶液,搅拌均匀后倒入聚四氟乙烯内衬,将内衬放入不锈钢反应釜中,置于马弗炉中反应,反应温度为180℃,反应时间为12h,使糖经过脱水、缩聚等有机反应充分转化为前驱物;
(2)前驱物的高温碳化:取适量前驱物于刚玉坩埚中,盖上坩埚盖,放入炉中进行高温碳化处理,碳化温度为800℃,碳化时间为20min,升温速率为5℃/min,整个碳化过程中都通入氩气保护以隔绝氧气。
(3)固化成型:将上述高温碳化产物与石蜡按照1:1比例充分混合,再加入一定量的丙酮,丙酮与高温碳化产物质量比为10:1,超声分散均匀,再于60℃水浴下将丙酮蒸出,剩余混合物置于烘箱中烘干,取出后自然冷却,得到所述碳基吸波材料。
将得到的碳基吸波材料用安捷伦E071C矢量网络分析仪进行电磁参数测量,测试频率为1~18GHz,图1为为本发明经过800℃碳化20min后的碳基吸波材料反射损耗图谱,图4为本发明800℃碳化20min样品对应不同厚度的反射损耗图谱。
由图可见,该吸波材料的最优反射损耗厚度为1.93mm,此时最低反射损耗为-40.36dB,峰值频率为10.18GHz,小于-10dB的有效带宽为2GHz。而X波段为8~12GHz,可见该碳基吸波材料在X波段吸波性能优异,在10.18GHz下吸收最强,可以达到99.99%以上,能够吸收的有效频宽为2GHz。此外,经过BET测试,比表面积为554.8127m2/g,可见其表层孔洞很多,表面积大。
实施例2:
利用糖水热反应后的产物作为前驱物,在保护气氛下,一种高温碳化有机物制备的碳基吸波材料的具体步骤如下:
(1)糖的水热碳化:将葡萄糖与去离子水按照1:50的摩尔比配制成溶液,搅拌均匀后倒入聚四氟乙烯内衬,将内衬放入不锈钢反应釜中,置于马弗炉中反应,反应温度为160℃,反应时间为20h,使糖经过脱水、缩聚等有机反应充分转化为前驱物;
(2)前驱物的高温碳化:取适量前驱物于刚玉坩埚中,盖上坩埚盖,放入炉中进行高温碳化处理,碳化温度为700℃,碳化时间为90min,升温速率为5℃/min,整个碳化过程中都通入氩气保护以隔绝氧气。
(3)固化成型:将上述高温碳化产物与石蜡按照1:1比例充分混合,再加入一定量的丙酮,丙酮与高温碳化产物质量比为10:1,超声分散均匀,再于60℃水浴下将丙酮蒸出,剩余混合物置于烘箱中烘干,取出后自然冷却,得到所述碳基吸波材料。
将得到的碳基吸波材料用安捷伦E071C矢量网络分析仪进行电磁参数测量,测试频率为1~18GHz,图2为本发明经过700℃碳化90min后的碳基吸波材料反射损耗图谱,图5为本发明700℃碳化90min样品对应不同厚度的反射损耗图谱。
由图可见,该吸波材料的最优反射损耗厚度为2.02mm,此时最低反射损耗为-28.20dB,峰值频率为10.35GHz,小于-10dB的有效带宽为2.1GHz,而X波段为8~12GHz,可见该碳基吸波材料在X波段吸波性能优异,在10.35GHz下吸收最强,可以达到99.9%以上,能够吸收的有效频宽为2.1GHz。
实施例3:
利用糖水热反应后的产物作为前驱物,在保护气氛下,一种高温碳化有机物制备的碳基吸波材料的具体步骤如下:
(1)糖的水热碳化:将果糖与去离子水按照1:250的摩尔比配制成溶液,搅拌均匀后倒入聚四氟乙烯内衬,将内衬放入不锈钢反应釜中,置于马弗炉中反应,反应温度为200℃,反应时间为6h,使糖经过脱水、缩聚等有机反应充分转化为前驱物;
(2)前驱物的高温碳化:取适量前驱物于刚玉坩埚中,盖上坩埚盖,放入炉中进行高温碳化处理,碳化温度为900℃,碳化时间为60min,升温速率为5℃/min,整个碳化过程中都通入氩气保护以隔绝氧气。
(3)固化成型:将上述高温碳化产物与石蜡按照1:1比例充分混合,再加入一定量的丙酮,丙酮与高温碳化产物质量比为10:1,超声分散均匀,再于60℃水浴下将丙酮蒸出,剩余混合物置于烘箱中烘干,取出后自然冷却,得到所述碳基吸波材料。
将得到的碳基吸波材料用安捷伦E071C矢量网络分析仪进行电磁参数测量,测试频率为1~18GHz。图3为本发明经过900℃碳化60min后的碳基吸波材料反射损耗图谱,图6为本发明900℃碳化60min样品对应不同厚度的反射损耗图谱。
由图可见,该吸波材料的最优反射损耗厚度为1.86mm,此时最低反射损耗为-42.29dB,峰值频率为9.50GHz,小于-10dB的有效带宽为1.6GHz,而X波段为8~12GHz,可见该碳基吸波材料在X波段吸波性能优异,在9.50GHz下吸收最强,可以达到99.99%以上,能够吸收的有效频宽为1.6GHz。

Claims (4)

1.一种高温碳化有机物制备碳基吸波材料的方法,其特征在于:以糖的水热碳化产物作为前驱物,采用高温碳化法制备,具体步骤如下:
(1)糖的水热碳化:将糖与去离子水按照一定摩尔比配制成溶液后加入聚四氟乙烯内衬,将内衬放入不锈钢反应釜中,置于马弗炉中,在160~200℃的温度下反应5~20h,使糖经过脱水、缩聚充分转化为前驱物;
(2)前驱物的高温碳化:取上述前驱物置入加盖坩埚中,置于井式炉中密闭高温碳化,碳化温度为600~1000℃,碳化时间为10~120min,升温速率为5℃/min,整个碳化过程持续通入惰性气体隔绝氧气;
(3)固化成型:将上述高温碳化产物与石蜡按照质量比1:0.5~1.5充分混合,加入一定量的丙酮,超声震荡分散均匀,再于60℃水浴下将丙酮蒸出,剩余混合物烘干后自然冷却,得到所述碳基吸波材料粉末。
2.根据权利要求1所述的高温碳化有机物制备碳基吸波材料的方法,其特征在于:所述糖可以为单糖、二糖或多糖中的一种。
3.根据权利要求1所述的高温碳化有机物制备碳基吸波材料的方法,其特征在于:所述糖与去离子水的摩尔比为1:50~1:250。
4.根据权利要求1所述的高温碳化有机物制备碳基吸波材料的方法,其特征在于:所述丙酮与所述高温碳化产物的质量比为10:1。
CN201710492621.XA 2017-06-26 2017-06-26 一种高温碳化有机物制备碳基吸波材料的方法 Active CN107098332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710492621.XA CN107098332B (zh) 2017-06-26 2017-06-26 一种高温碳化有机物制备碳基吸波材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710492621.XA CN107098332B (zh) 2017-06-26 2017-06-26 一种高温碳化有机物制备碳基吸波材料的方法

Publications (2)

Publication Number Publication Date
CN107098332A true CN107098332A (zh) 2017-08-29
CN107098332B CN107098332B (zh) 2019-01-25

Family

ID=59663604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710492621.XA Active CN107098332B (zh) 2017-06-26 2017-06-26 一种高温碳化有机物制备碳基吸波材料的方法

Country Status (1)

Country Link
CN (1) CN107098332B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107698257A (zh) * 2017-10-09 2018-02-16 常州凯途纺织品有限公司 一种宽频带高强型碳基复合吸波材料的制备方法
CN110116999A (zh) * 2019-06-05 2019-08-13 张家港宝诚电子有限公司 一种利用石蜡制备高纯碳的装置与方法
CN111807346A (zh) * 2020-07-20 2020-10-23 山东理工大学 一种宽频高效吸波的大孔薄层碳材料的制备方法
CN111961441A (zh) * 2020-08-26 2020-11-20 浙江理工大学桐乡研究院有限公司 一种基于桑蚕丝生物质炭的吸波材料制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102205963A (zh) * 2011-03-16 2011-10-05 吉林大学 生物质基超级电容器用活性炭的制备方法
CN103601185A (zh) * 2013-12-05 2014-02-26 天津工业大学 一种超级电容器用球形多孔碳的制备方法
WO2015007741A1 (fr) * 2013-07-16 2015-01-22 Commissariat à l'énergie atomique et aux énergies alternatives Procede de preparation d'un materiau carbone aromatique par voie hydrothermale
WO2015009758A1 (en) * 2013-07-17 2015-01-22 Peerless Worldwide, Llc Process for the synthesis of graphene and graphene derivatives from so-called greenhouse gasses and other carbonaceous waste products
CN104310376A (zh) * 2014-10-10 2015-01-28 江苏省特种设备安全监督检验研究院无锡分院 一种生物质碳源材料水热碳化球体颗粒的后处理交联方法
CN106467298A (zh) * 2016-05-04 2017-03-01 济南圣泉集团股份有限公司 一种石墨烯材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102205963A (zh) * 2011-03-16 2011-10-05 吉林大学 生物质基超级电容器用活性炭的制备方法
WO2015007741A1 (fr) * 2013-07-16 2015-01-22 Commissariat à l'énergie atomique et aux énergies alternatives Procede de preparation d'un materiau carbone aromatique par voie hydrothermale
WO2015009758A1 (en) * 2013-07-17 2015-01-22 Peerless Worldwide, Llc Process for the synthesis of graphene and graphene derivatives from so-called greenhouse gasses and other carbonaceous waste products
CN103601185A (zh) * 2013-12-05 2014-02-26 天津工业大学 一种超级电容器用球形多孔碳的制备方法
CN104310376A (zh) * 2014-10-10 2015-01-28 江苏省特种设备安全监督检验研究院无锡分院 一种生物质碳源材料水热碳化球体颗粒的后处理交联方法
CN106467298A (zh) * 2016-05-04 2017-03-01 济南圣泉集团股份有限公司 一种石墨烯材料及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107698257A (zh) * 2017-10-09 2018-02-16 常州凯途纺织品有限公司 一种宽频带高强型碳基复合吸波材料的制备方法
CN110116999A (zh) * 2019-06-05 2019-08-13 张家港宝诚电子有限公司 一种利用石蜡制备高纯碳的装置与方法
CN111807346A (zh) * 2020-07-20 2020-10-23 山东理工大学 一种宽频高效吸波的大孔薄层碳材料的制备方法
CN111807346B (zh) * 2020-07-20 2023-03-14 山东理工大学 一种宽频高效吸波的大孔薄层碳材料的制备方法
CN111961441A (zh) * 2020-08-26 2020-11-20 浙江理工大学桐乡研究院有限公司 一种基于桑蚕丝生物质炭的吸波材料制备方法

Also Published As

Publication number Publication date
CN107098332B (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
CN107098332B (zh) 一种高温碳化有机物制备碳基吸波材料的方法
Feng et al. Fabrication of NiFe 2 O 4@ carbon fiber coated with phytic acid-doped polyaniline composite and its application as an electromagnetic wave absorber
CN109233740B (zh) 基于改性MOF材料热解制备Fe/Co/C复合吸波材料的方法
CN102775604B (zh) 核壳型钛酸钡/聚苯胺复合吸波材料的制备方法
CN105694810A (zh) 一种以ZIF-67为模板制备CuO/多孔碳复合吸波材料的方法
CN110342531B (zh) 一种铁粉包覆二氧化硅材料及其制备方法
US20230063025A1 (en) Preparation and application in wave absorption of titanium sulfide nanomaterial and composite material thereof
CN101329921A (zh) 用于电磁吸波的铁氧体-镍复合粉体及制备方法
CN113088251A (zh) 一种双金属MOFs衍生Fe3O4/Fe/C复合吸波材料的制备方法
CN109896520A (zh) 一种磁性还原氧化石墨烯纳米复合材料及其制备方法和应用
CN113840529A (zh) 一种NiCo2O4@木耳碳气凝胶复合材料及其制备方法和应用
CN110125428B (zh) MOF衍生的分层蛋黄-壳ZnO-Ni@CNT微球的制备及应用
CN106350003A (zh) 一种多孔石墨烯/四氧化三铁复合吸波材料的制备方法
CN108192565A (zh) 一种纳米复合吸波材料的制备方法
CN102807840B (zh) 纳米Fe3O4-SrFe12O19复合吸波材料的制备方法
CN104927761A (zh) 一种SiC@C核壳结构纳米线的制备方法
Guo et al. Construction of Bi2S3/Ti3C2Tx layered composites for highly efficient electromagnetic wave absorption
CN110922942B (zh) 一种氮化二维碳材料及其制备方法和应用
CN100581335C (zh) 氧化锌吸波材料及其制备工艺
Hasegawa et al. Pilot-plant scale 12 kW microwave irradiation reactor for woody biomass pretreatment
CN113697795A (zh) 以高粱秸秆芯为载体Fe3C/C复合吸波材料及其制备方法
CN115003142A (zh) 一种碳基/金属单质/氮化硼核壳结构微波吸收材料的制备方法
CN112391143A (zh) 一种宽频高效碳基金属钴吸波材料的合成及应用
CN104140642B (zh) 一种聚(吡咯-二氧乙撑噻吩)/Fe3O4复合物及其制备方法
CN110041884B (zh) 一种树叶状纳米Fe3O4填充的蜂窝夹芯结构吸波复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant