CN107093734A - 一种一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的制备方法 - Google Patents

一种一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的制备方法 Download PDF

Info

Publication number
CN107093734A
CN107093734A CN201710342975.6A CN201710342975A CN107093734A CN 107093734 A CN107093734 A CN 107093734A CN 201710342975 A CN201710342975 A CN 201710342975A CN 107093734 A CN107093734 A CN 107093734A
Authority
CN
China
Prior art keywords
dimensional
cnt
graphene
molybdenum disulfide
nucleocapsid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710342975.6A
Other languages
English (en)
Other versions
CN107093734B (zh
Inventor
陶华超
杜少林
张亚琼
杨学林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201710342975.6A priority Critical patent/CN107093734B/zh
Publication of CN107093734A publication Critical patent/CN107093734A/zh
Application granted granted Critical
Publication of CN107093734B publication Critical patent/CN107093734B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料及其制备方法,属于电化学和新能源材料领域。本发明直接将碳纳米管和四硫代钼酸铵均匀混合,进一步与氧化石墨烯混合,水热得到碳纳米管/硫化钼/石墨烯泡沫。该泡沫经冷冻干燥后进一步氮气气氛保护下煅烧。二硫化钼包裹在碳纳米管表面形成一维核壳结构,一维碳纳米管显著提高了材料的导电性,同时与二维片状石墨烯交织组装成三维泡沫结构,形成三维导电网络,极大增强了材料的电子导电性和循环性能。该泡沫可直接切割作为电极材料,无需粘接剂和集流体,具有良好的力学柔韧性。作为锂离子电池负极材料,表现出了较高的比容量和优异的循环稳定性。

Description

一种一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫 负极材料的制备方法
技术领域
本发明公开了一种一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的制备方法,属于电化学和新能源材料领域。
背景技术
石墨烯自发现以来就受到人们的广范研究,层状的石墨烯具有以下优点:很高的比表面积、良好的导电性和机械性能、极高的电荷载流子迁移率。石墨烯的诸多优点使其在电化学方面得到了极大应用与研究。二维层状纳米材料因为有了通向低维体系的新方法而受到广泛关注,二硫化钼是准二维层状结构,呈现典型的S-Mo-S三层式结构,其各层之间通过范德华力相互作用,有利于锂离子的嵌入,作为锂离子电池负极理论容量大。但二硫化钼电导率较低,在充放电过程中会产生体积变化,破坏材料的结构从而降低材料的循环稳定性。碳纳米管具有优良的电导率、良好的机械性能、较高的比表面积以及低成本,作为理想的支持材料已被广泛的研究。多层堆叠的石墨烯材料是一种稳定的三维结构,其具有较好的柔韧性及力学性能。
传统的锂离子电池主要是将活性材料、导电剂、粘结剂混合涂覆在金属集流体上,经过烘干辊压而成,粘结剂的加入降低了电极材料的电子电导率,阻碍了锂离子在电极材料中扩散,增加了电极材料的极化。而导电剂几乎不贡献容量,所以导电剂和粘结剂的存在会降低电池的能量密度。另外,传统的锂离子电池负极材料是以铜箔作为集流体,铜箔集流体降低了电池的能量密度。在较大弯曲变形的情况下,活性材料与集流体易于发生脱离,进一步影响材料的电化学性能。所以无粘结剂、导电剂和集流体的自支撑柔性电极材料可以显著提高材料的能量密度与弯曲条件下的电化学性能。
为解决二硫化钼在充放电过程中的体积膨胀问题,王云松等人将二硫化钼包覆在碳纳米管表面制备出一种以二硫化钼为壳体包覆碳纳米管的海绵状纳米材料,在100 mAg-1的电流密度下循环100次后的比容量为740 mAh g-1 (Adv. Mater., 2016, 28,10175-10181.)。碳纳米管与片层状的二硫化钼复合得到的三维材料也显示出了较高的比容量,在100 A g-1的极大电流密度下可逆容量达到了512 mAh g-1,在1 A g−1的电流密度下循环425次后可逆容量为1679 mAh g -1(Nano Energy, 2015, 25, 2211-2855.)。这些研究进一步证实了二硫化钼与碳纳米管经复合后具有优异的电化学性能。
综上分析,将二硫化钼包覆在碳纳米管表面形成一维壳体,能提高材料的带电性与循环性能。再结合石墨烯材料的特点,生成的泡沫状复合材料能很好的发挥各自的优点,使其具有极高的比容量、良好的导电性及很好循环稳定性。
发明内容
本发明的目的在于提供一种一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的制备方法。该方法是将石墨烯与碳纳米管、四硫代钼酸铵混合均匀后水热,水热后的产物进行冷冻干燥,冷冻干燥后在保护气氛下煅烧,最终形成一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料。
本发明的目的是这样实现的:一种一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的制备方法,其工艺步骤:
将氧化石墨烯与碳纳米管、四硫代钼酸铵混合均匀后在180-220℃下水热反应12-24h,水热后的产物用去离子水和无水乙醇清洗数次后-8~-12℃下低温冷冻,之后在-50~-60℃进行冷冻干燥,冷冻干燥时间为20-24小时冷冻干燥后的样品在氮气气氛炉中在600℃-900℃下煅烧2-5h得到目标产物,即一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料。
所述的石墨烯、碳纳米管质量比为1:1-5之间,碳纳米管与四硫代钼酸铵质量比为1:1-10之间。所述的氧化石墨烯的浓度为2-10 mg/mL。
所述的冷冻干燥后的材料需要在氮气气氛炉中煅烧,煅烧温度为800℃,煅烧时间为4 h。
本发明提供的一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料,具备以下有益效果:
(1)该法制备的一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料具有超轻的质量,显示出良好的机械柔韧性能。
(2)该法制备的电极材料为由石墨烯与碳纳米管构成的三维导电网络,能有效的提高材料的导电性与循环稳定性。
(3)该法制备的电极材料为无需粘结剂、导电剂和集流体的自支撑柔性电极材料,可以显著提高材料的能量密度。
(4)该法制备的电极材料为泡沫状,具有良好的力学柔韧性。
(5)二硫化钼包裹碳纳米管形成的一维壳体,再次提高了材料导电性与循环稳定性。
本发明采用一种简单方法制备一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料,该材料为泡沫状,具有良好的力学柔韧性,作为锂离子电池负极材料表现出超高的比容量和超好的循环稳定性能。本发明以石墨烯为改性材料,用水热法使二硫化钼生长在碳纳米管表面。首先将石墨烯与碳纳米管、四硫代钼酸铵混合后进行水热,水热后的材料经冷冻干燥后在高温下烧结得到产物, 即一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料。该材料具有较轻的质量与良好的力学柔韧性,作为锂离子电池负极材料显示出超高的比容量和优异的循环稳定性能。这种方法尚未见任何文献和专利报道。
附图说明
图1为本发明实施例1制备的一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的照片。
图2为本发明实施例1制备的一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的X-射线衍射(XRD)图谱。
图3为本发明实施例1制备的一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的扫描电镜照片(SEM),其中a为放大30000倍率的附图,b为放大50000倍率的附图。
图4为本发明实施例1制备的一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料作为锂离子电池负极材料的前2次充放电曲线。
图5为本发明实施例1制备的一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的循环稳定性能。
具体实施方式
下面结合具体实例对本发明进一步说明。
实施例1:一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料Ⅰ
将制备的氧化石墨烯(35 mL,4 mg/mL)和碳纳米管(0.14g)及四硫代钼酸铵(0.42 g)搅拌20分钟后超声20分钟,之后置于反应釜中水热。水热温度200℃,水热时间24小时。产物用去离子水和无水乙醇清洗数次后-10℃下低温冷冻,之后在-50℃进行冷冻干燥,冷冻干燥时间为24小时冷冻干燥后的样品在氮气气氛下煅烧,煅烧温度为800℃,保温时间为4小时,最终得到一维核壳碳纳米管/二硫化钼/二维氧化石墨烯构筑三维泡沫负极材料。图1为制备的三维泡沫负极材料照片。图2为制备的一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料XRD图谱,可以看出在13.8o、33o、59.8o有明显的衍射峰,并与二硫化钼的XRD标准卡片一致,确定了该材料中二硫化钼的存在。碳为无定形结构。图3为中制备的一维核壳碳纳米管/二硫化钼/二维氧化石墨烯构筑三维泡沫负极材料的SEM照片,可以看出石墨烯与碳纳米管构成了导电网络。同时从高倍的SEM可以看出大量碳纳米管相互交错连接在一起,为电子的传输和离子的扩散提供了良好的通道。所制备的一维核壳碳纳米管/二硫化钼/二维氧化石墨烯构筑三维泡沫负极材料显示出较高的比容量和优异的循环稳定性能。将该电极直接作为工作电极,锂片为对电极,前2次充放电曲线如图4所示,可以看出,该材料的首次放电容量为800 mAh g-1,首次可逆充电容量为470 mAh g-1,第二次可逆容量为493 mAh g-1。经100次循环后,可逆充电容量为728 mAh g-1。从循环性能图可以看出,该材料具有很好的循环性能。
实施例2一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料Ⅱ
将制备的氧化石墨烯(35 mL,4 mg/mL)和碳纳米管(0.14 g)及四硫代钼酸铵(0.56 g)置于水热反应釜内衬中,搅拌20分钟后超声20分钟,之后置于反应釜中水热。水热温度200℃,水热时间24小时。水热后的产物用去离子水和无水乙醇清洗数次后-10℃下低温冷冻,之后在-50℃进行冷冻干燥,冷冻干燥时间为24小时,冷冻干燥后的材料在氮气气氛下煅烧,煅烧温度为800 ℃,保温时间为4小时,最终得到一维核壳碳纳米管/二硫化钼/二维氧化石墨烯构筑三维泡沫负极材料。该电极材料测试条件如实施例Ⅰ中所述,作为锂离子电池负极材料,以100 m Ag-1电流密度进行充放电,首次可逆容量为440 mAhg-1,100次循环后的可逆容量为680mAh g-1
实施例3一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料Ⅲ
将制备的氧化石墨烯(35 mL,4 mg/mL)和碳纳米管(0.14g)及四硫代钼酸铵(0.28 g)置于水热反应釜内衬中,搅拌20分钟后超声20分钟,之后置于反应釜中水热。水热温度200℃,水热时间24小时。水热后的产物用去离子水和无水乙醇清洗数次后-10℃下低温冷冻,之后在-50℃进行冷冻干燥,冷冻干燥时间为24小时,冷冻干燥后的材料在氮气气氛下煅烧,煅烧温度为800℃,保温时间为4小时,最终得到一维核壳碳纳米管/二硫化钼/二维氧化石墨烯构筑三维泡沫负极材料。该电极材料测试条件如实施例Ⅰ中所述,作为锂离子电池负极材料,以100 mAg-1电流密度进行充放电,首次可逆容量为453 mAh g-1,100次循环后的可逆容量为675 mAhg-1
实施例4一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料Ⅳ
将制备的氧化石墨烯(35 mL,4 mg/mL)和碳纳米管(0.14 g)及四硫代钼酸铵(0.7 g)置于水热反应釜内衬中,搅拌20分钟后超声20分钟,之后置于反应釜中水热。水热温度200℃,水热时间24小时。水热后的产物用去离子水和无水乙醇清洗数次后-10℃下低温冷冻,之后在-50℃进行冷冻干燥,冷冻干燥时间为24小时,冷冻干燥后的材料在氮气气氛下煅烧,煅烧温度为800℃,保温时间为4小时,最终得到一维核壳碳纳米管/二硫化钼/二维氧化石墨烯构筑三维泡沫负极材料。该电极材料测试条件如实施例1中所述,作为锂离子电池负极材料,以100m A g-1电流密度进行充放电,首次可逆容量为418 mAh g-1,100次循环后的可逆容量为665 mAh g-1

Claims (4)

1. 一种一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的制备方法,其特征在于:将氧化石墨烯与碳纳米管、四硫代钼酸铵混合均匀后在180-220℃下水热反应12-24 h,水热后的产物用去离子水和无水乙醇清洗数次后-8~-12℃下低温冷冻,之后在-50~-60℃进行冷冻干燥,冷冻干燥时间为20-24小时冷冻干燥后的样品在氮气气氛炉中在600℃-900℃下煅烧2-5h得到目标产物,即一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料。
2.如权利要求1所述的一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的制备方法,其特征在于:石墨烯、碳纳米管质量比为1:1-5之间,碳纳米管与四硫代钼酸铵质量比为1:1-10之间。
3. 如权利要求1所述的一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的制备方法,其特征在于:氧化石墨烯的浓度为2-10 mg/mL。
4. 如权利要求1所述的一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的制备方法,其特征在于:冷冻干燥后的材料需要在氮气气氛炉中煅烧,煅烧温度为800℃,煅烧时间为4 h。
CN201710342975.6A 2017-05-16 2017-05-16 一种一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的制备方法 Active CN107093734B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710342975.6A CN107093734B (zh) 2017-05-16 2017-05-16 一种一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710342975.6A CN107093734B (zh) 2017-05-16 2017-05-16 一种一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的制备方法

Publications (2)

Publication Number Publication Date
CN107093734A true CN107093734A (zh) 2017-08-25
CN107093734B CN107093734B (zh) 2019-06-18

Family

ID=59638574

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710342975.6A Active CN107093734B (zh) 2017-05-16 2017-05-16 一种一维核壳碳纳米管/二硫化钼/二维石墨烯构筑三维泡沫负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN107093734B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410230A (zh) * 2020-02-18 2020-07-14 天津大学 石墨烯/二硫化钼复合材料及其液相制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835964A (zh) * 2015-05-14 2015-08-12 哈尔滨工业大学 一种三维大孔石墨烯-碳纳米管-二硫化钼复合材料及其制备方法和应用
CN104966812A (zh) * 2014-12-01 2015-10-07 天津大学 三维多孔类石墨烯负载二硫化钼复合材料及制备方法
CN105742073A (zh) * 2015-12-17 2016-07-06 中国科学技术大学 一种石墨烯基复合材料及其制备方法
CN105753073A (zh) * 2016-01-22 2016-07-13 南京理工大学 快速制备四硫化三镍/二硫化钼/石墨烯水凝胶复合物的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966812A (zh) * 2014-12-01 2015-10-07 天津大学 三维多孔类石墨烯负载二硫化钼复合材料及制备方法
CN104835964A (zh) * 2015-05-14 2015-08-12 哈尔滨工业大学 一种三维大孔石墨烯-碳纳米管-二硫化钼复合材料及其制备方法和应用
CN105742073A (zh) * 2015-12-17 2016-07-06 中国科学技术大学 一种石墨烯基复合材料及其制备方法
CN105753073A (zh) * 2016-01-22 2016-07-13 南京理工大学 快速制备四硫化三镍/二硫化钼/石墨烯水凝胶复合物的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAJID KHAN等: "Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions", 《NANO RESEARCH》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410230A (zh) * 2020-02-18 2020-07-14 天津大学 石墨烯/二硫化钼复合材料及其液相制备方法

Also Published As

Publication number Publication date
CN107093734B (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
Lu et al. Nanostructured Bi 2 S 3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries
Cai et al. Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells
Zhu et al. Rational design of intertwined carbon nanotubes threaded porous CoP@ carbon nanocubes as anode with superior lithium storage
Liu et al. Mild and cost-effective synthesis of iron fluoride–graphene nanocomposites for high-rate Li-ion battery cathodes
Ma et al. Reduced graphene oxide anchored with MnO2 nanorods as anode for high rate and long cycle Lithium ion batteries
JP5826405B2 (ja) ナノシリコン炭素複合材料及びその調製方法
Cao et al. Layer structured graphene/porous ZnCo2O4 composite film for high performance flexible lithium-ion batteries
Kang et al. Effects of carbonaceous materials on the physical and electrochemical performance of a LiFePO4 cathode for lithium-ion batteries
He et al. Enhanced rate capabilities of Co 3 O 4/carbon nanotube anodes for lithium ion battery applications
Zhang et al. Free-standing and consecutive ZnSe@ carbon nanofibers architectures as ultra-long lifespan anode for flexible lithium-ion batteries
Yu et al. Three-dimensional porous LiFePO4: Design, architectures and high performance for lithium ion batteries
Li et al. Carbon coated sodium-titanate nanotube as an advanced intercalation anode material for sodium-ion batteries
CN103236528B (zh) 一种锗碳石墨烯复合材料及其制备方法和应用
Jin et al. Pomegranate-like Li3VO4/3D graphene networks nanocomposite as lithium ion battery anode with long cycle life and high-rate capability
Lu et al. High-performance cathode material of FeF 3· 0.33 H 2 O modified with carbon nanotubes and graphene for lithium-ion batteries
Zhang et al. Synthesis of expanded graphite-based materials for application in lithium-based batteries
CN108091878A (zh) 一种锂硫电池用石墨烯碳纳米管复合导电骨架的制备方法
Yu et al. Olivine LiFePO4 nanocrystals grown on nitrogen-doped graphene sheets as high-rate cathode for lithium-ion batteries
CN111668453A (zh) 柔性自支撑正极材料及其制备方法和应用
Fan et al. Biotemplated synthesis of LiFePO4/C matrixes for the conductive agent-free cathode of lithium ion batteries
Lu et al. Advances of graphene application in electrode materials for lithium ion batteries
Wei et al. Multifunctional Co9S8 nanotubes for high-performance lithium-sulfur batteries
CN108091868B (zh) 一种多维复合高性能锂离子电池负极材料及其制备方法
Li et al. Recycling materials from degraded lithium-ion batteries for Na-ion storage
Park et al. Trimodally porous N-doped carbon frameworks with an interconnected pore structure as selenium immobilizers for high-performance Li-Se batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant