CN107083254A - 一种利用γ‑戊内酯制备液体燃料的方法 - Google Patents

一种利用γ‑戊内酯制备液体燃料的方法 Download PDF

Info

Publication number
CN107083254A
CN107083254A CN201710498072.7A CN201710498072A CN107083254A CN 107083254 A CN107083254 A CN 107083254A CN 201710498072 A CN201710498072 A CN 201710498072A CN 107083254 A CN107083254 A CN 107083254A
Authority
CN
China
Prior art keywords
liquid fuel
phosphoric acid
gamma
valerolactone
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710498072.7A
Other languages
English (en)
Other versions
CN107083254B (zh
Inventor
康世民
杨其飞
杨学斯
王泽潘
谭炯豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shuiranbao (Beijing) New Energy Co.,Ltd.
Original Assignee
Dongguan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan University of Technology filed Critical Dongguan University of Technology
Priority to CN201710498072.7A priority Critical patent/CN107083254B/zh
Publication of CN107083254A publication Critical patent/CN107083254A/zh
Priority to US16/620,460 priority patent/US20200148958A1/en
Priority to PCT/CN2017/112483 priority patent/WO2019000819A1/zh
Application granted granted Critical
Publication of CN107083254B publication Critical patent/CN107083254B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G57/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one cracking process or refining process and at least one other conversion process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G57/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one cracking process or refining process and at least one other conversion process
    • C10G57/005Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one cracking process or refining process and at least one other conversion process with alkylation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G57/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one cracking process or refining process and at least one other conversion process
    • C10G57/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one cracking process or refining process and at least one other conversion process with polymerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/12Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明提供了一种利用γ‑戊内酯制备液体燃料的方法,步骤如下:将磷酸溶液、γ‑戊内酯置于反应罐中,在220‑260℃下反应3‑12 h,冷却至室温得到液体燃料。本发明利用磷酸溶液作为催化剂,在温和温度下(220‑260℃)可以一步催化转化γ‑戊内酯制得高热值的轻油和重油产物,总油产率可高达33.5 wt%,此技术工艺流程简单、操作方便,具有工业化应用前景。与其它催化转化γ‑戊内酯制备高品位油产物技术相比,磷酸溶液催化转化具有无需外部提供昂贵氢气,反应工艺简单(一步反应),温度温和(温度低于260℃)的明显优势。

Description

一种利用γ-戊内酯制备液体燃料的方法
技术领域
本发明涉及可再生液体燃料制备技术领域,具体涉及一种利用磷酸溶液催化转化γ-戊内酯制备高品位液体燃料的方法。
背景技术
随着石化资源的日益枯竭,开发利用可再生生物质液体燃料是解决能源危机的一种重要手段。γ-戊内酯是一种重要的生物基平台化合物,可以通过植物中纤维素酸水解生成乙酰丙酸,再通过乙酰丙酸加氢反应和自身酯化反应获得。但是,γ-戊内酯具有高的水溶解性和低的热值,极大限制了其作为高品位车用燃料的应用。一种利用γ-戊内酯的可行方法是把其转化为适度分子量大小的碳氢化合物基液体燃料,可以用来代替石化汽油(主要C4-C12)或者柴油(C10-C22)。由于γ-戊内酯是含有酯键的低分子化合物(C5H8O2),其转化为高品位液体燃料需要多步反应,包括加氢脱氧反应和酸催化低聚反应等。通常情况下,γ-戊内酯加氢脱氧反应需要较高的反应温度(如300 ℃)和较高的压力(如35 MPa)条件下进行。加氢反应过程中昂贵的氢气价格是限制γ-戊内酯制备高品位液体燃料的一个重要因素,此外,γ-戊内酯转化过程中所需的多步反应以及较高温度也造成高的工艺成本。因此,开发一种新型的催化反应体系,在无需加氢且温度温和的条件下,一步转化γ-戊内酯为高品位液体燃料具有非常重要的意义。
发明内容
本发明提供了一种利用100 %磷酸溶液为催化剂,在温和条件下把γ-戊内酯一步转化为高品位液体燃料,解决了目前利用γ-戊内酯制备高品位液体燃料所需要的多步反应工艺和苛刻的反应条件(如高温,催化加氢等)。
实现本发明的技术方案是:一种利用γ-戊内酯制备液体燃料的方法,步骤如下:将磷酸溶液、γ-戊内酯置于反应罐中,在220-260 ℃下反应3-12 h,冷却至室温得到液体燃料。
所述磷酸溶液的为质量浓度为100 %。
所述γ-戊内酯与磷酸溶液的质量比为1:(2-100)。
将磷酸溶液、γ-戊内酯置于反应罐中,从室温以5-10 ℃/min升温到220-260 ℃。
优选的,利用γ-戊内酯制备液体燃料的方法,步骤如下:
(1)将γ-戊内酯、磷酸溶液置于反应罐中,在220-260 ℃下反应3-12 h,反应完全后冷却至室温得到液体燃料;
(2)将步骤(1)冷却后的液体燃料旋转蒸发得到油水混合物及磷酸混合液,将油水混合物油水分离得到轻油,旋转蒸发温度为240 ℃,压力为-0.09 MPa;
(3)将步骤(2)得到的磷酸混合液用二氯甲烷萃取,萃取后的二氯甲烷溶液通过旋转蒸发仪得到二氯甲烷和重油,旋转蒸发温度为60 ℃,压力为-0.09 MPa。
所述轻油的沸点≤240 ℃,重油的沸点≥240 ℃。
所得轻油和重油分离的温度压力临界条件为240 ℃,-0.09 MPa。基于沸点与压力的对应关系,在常压下所述轻油的的沸点≤245 ℃,重油的沸点≥245 ℃。
γ-戊内酯催化转化为液体燃料的主要反应路径见下图。在酸性溶液中,γ-戊内酯转化为4-羟基戊酸是可逆反应,同时4-羟基戊酸在加热酸催化条件下可脱水生成3-戊烯酸。以100 %磷酸为催化剂,以γ-戊内酯和3-戊烯酸分别作为反应原料,发现两者产物完全一致,证明了3-戊烯酸是γ-戊内酯转化为液体燃料的一个重要中间产物。反应完后,通过顶空气质联用分析,在气体产物中检测到了CO2和2-丁烯,说明3-戊烯酸发生了脱羧反应;同时,反应过程中产生的CO2、水以及一些不饱和酮类化合物说明了3-戊烯酸在反应过程中发生了酮基化反应。在磷酸催化条件下,这些不饱和酮类化合物之间、以及不饱和酮类化合物与2-丁烯之间进一步发生芳环化反应、烷基化反应、低聚反应等生成芳香化合物和环烃类化合物。
γ-戊内酯转化为碳氢化合物的主要反应路径
本发明的有益效果是:
(1)利用磷酸溶液作为催化剂,在温和温度下(220-260 ℃)可以一步催化转化γ-戊内酯制得高热值的轻油和重油产物,总油产率可高达31 wt%,此技术工艺流程简单、操作方便,具有工业化应用前景;
(2)轻油C、H质量分数分别为88.0 %和8.9 %,热值高达42.4 MJ/kg;重油产物C、H质量分数分别高达85.7% 和9.5 %,热值高达41.6 MJ/kg;轻油和重油的热值与商业含氧汽油的热值相当(见表1)。
(3)在磷酸催化条件下,γ-戊内酯中的部分氧以二氧化碳的形式脱除,脱羧率达49 %;
(4)与其它催化转化γ-戊内酯制备高品位油产物技术相比,磷酸溶液催化转化具有无需外部提供昂贵氢气,反应工艺简单(一步反应),温度温和(温度低于260 ℃)的明显优势。
附图说明
图1是本发明工艺流程图。
图2是实例1中轻油气质联用分析产物。
图3是实施例1中轻油和重油的红外光谱谱图。
具体实施方式
实施例1
本实施例利用磷酸催化转化聚3-羟基丁酸酯制备液体燃料的具体步骤如下(流程图见图1):
(1)取15 g γ-戊内酯和60 mL磷酸溶液(112.2 g)放入100 mL对位聚苯反应罐中。以5℃/min程序升温到240 ℃,并在240 ℃恒温保持6 h,反应完后用冷水迅速冷却至室温,通过高效液相色谱检测发现γ-戊内酯基本完全转化,其中γ-戊内酯中的氧49 %以二氧化碳形成脱除,另有部分氧以水和一氧化碳形式脱除;
(2)对所述步骤(1)反应后产物在240 ℃,-0.09 Mpa条件下旋转蒸发得到油水混合物和磷酸混合液,油水混合物通过分液漏斗分离后得到轻油,轻油产率24.8 wt%;
(3)对所述步骤(2)所得蒸发后的磷酸混合液采用二氯甲烷萃取,并对萃取所得的二氯甲烷溶液进行在60 ℃,-0.09 Mpa条件下旋转蒸馏,回收二氯甲烷,并获得重油,重油产率8.7 %。
本实施例中所得氢油和重油产率,C、H元素分布和热值见表1。
表1 轻油和重油产率,C、H元素分布和热值
图2是制备的轻油产物通过气质联用分析所鉴别主要产物的分子结构式,从图2可以看出,主要产物为低分子不饱和苯环类化合物,环烃类化合物。
图2中的这些主要产物通过图3的轻油产物红外光谱分析进一步得到验证,从图3可以看出轻油产物含有包括甲基、亚甲基和次甲基在内的C-H振动峰(2800-3100 cm-1)和芳香环官能团(1600 cm-1, 1460 cm-1);在3200-3670 cm-1处没有明显振动峰,说明油产物中基本没有羟基和羧基官能团,γ-戊内酯成功脱羧;在1780 cm-1有一个很小的振动峰,说明油产物中含少量的酮基化合物,与图2中的GCMS分析结果一致;此外,重油的红外光谱图与轻油基本类似,说明重油中主要组分同样包括甲基、亚甲基和次甲基在内的C-H官能团和芳香基官能团。
实施例2
取15 g γ-戊内酯和15 mL磷酸溶液(28 g)放入100 mL对位聚苯反应罐中。程序升温到260 ℃,并在260 ℃恒温保持6 h,反应完后冷却至室温,通过旋转蒸发得到轻油,再通过二氯甲烷萃取及蒸馏得到重油。
实施例3
取1 g γ-戊内酯和50 mL磷酸溶液(93.7 g)放入100 mL对位聚苯反应罐中。以8 ℃/min程序升温到220 ℃,并在220 ℃恒温保持12 h,反应完后冷却至室温,通过旋转蒸发得到轻油,再通过二氯甲烷萃取及蒸馏得到重油。
实施例4
取10 g γ-戊内酯和60 mL磷酸溶液放入对位聚苯反应罐中。以10 ℃/min程序升温到250 ℃,并在250 ℃恒温保持3 h,反应完后冷却至室温,通过旋转蒸发得到轻油,再通过二氯甲烷萃取及蒸馏得到重油。
实施例5
将1 g γ-戊内酯和1.07 mL质量浓度为100 %的磷酸溶液(2 g)置于20 mL对位聚苯反应罐中,以10 ℃/min程序升温到260 ℃保持5 h,反应完后冷却至室温,通过旋转蒸发得到轻油,再通过二氯甲烷萃取及蒸馏得到重油。
实施例6
将1 g γ-戊内酯和53.4 mL质量浓度为100 %的磷酸溶液(100 g)置于对位聚苯反应罐中,以5 ℃/min程序升温到230 ℃保持8 h,反应完后冷却至室温,通过旋转蒸发得到轻油,再通过二氯甲烷萃取及蒸馏得到重油。
实施例7
将1g γ-戊内酯和26.7 mL质量浓度为100 %的磷酸溶液(50 g)置于对位聚苯反应罐中,以10 ℃/min程序升温到260 ℃保持5 h,反应完后冷却至室温,通过旋转蒸发得到轻油,再通过二氯甲烷萃取及蒸馏得到重油。

Claims (6)

1.一种利用γ-戊内酯制备液体燃料的方法,其特征在于步骤如下:将磷酸溶液、γ-戊内酯置于反应罐中,在220-260 ℃下反应3-12 h,冷却至室温得到液体燃料。
2.根据权利要求1所述的利用γ-戊内酯制备液体燃料的方法,其特征在于:所述磷酸溶液的质量浓度为100 %。
3.根据权利要求1所述的利用γ-戊内酯制备液体燃料的方法,其特征在于:所述γ-戊内酯和磷酸溶液的质量比为1:(2-100)。
4.根据权利要求1所述的利用γ-戊内酯制备液体燃料的方法,其特征在于:将磷酸溶液、γ-戊内酯置于反应罐中,从室温以5-10 ℃/min升温到220-260 ℃。
5.根据权利要求1-4所述的利用γ-戊内酯制备液体燃料的方法,其特征在于步骤如下:
(1)将γ-戊内酯、磷酸溶液置于反应罐中,在220-260 ℃下反应3-12 h,反应完全后冷却至室温得到液体燃料;
(2)将步骤(1)冷却后的液体燃料旋转蒸发得到油水混合物及磷酸混合液,将油水混合物油水分离得到轻油,旋转蒸发温度为240 ℃,压力为-0.09 MPa;
(3)将步骤(2)所得的磷酸混合液用二氯甲烷萃取,萃取后的二氯甲烷溶液通过旋转蒸发仪蒸馏得到二氯甲烷和重油,旋转蒸发仪温度为60℃,压力为-0.09 MPa。
6.根据权利要求5所述的利用γ-戊内酯制备液体燃料的方法,其特征在于步骤如下:常压下,所述轻油的沸点≤245℃,重油的沸点≥245℃。
CN201710498072.7A 2017-06-27 2017-06-27 一种利用γ-戊内酯制备液体燃料的方法 Active CN107083254B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710498072.7A CN107083254B (zh) 2017-06-27 2017-06-27 一种利用γ-戊内酯制备液体燃料的方法
US16/620,460 US20200148958A1 (en) 2017-06-27 2017-11-23 METHOD FOR PREPARING LIQUID FUEL BY USING y- VALEROLACTONE
PCT/CN2017/112483 WO2019000819A1 (zh) 2017-06-27 2017-11-23 一种利用γ-戊内酯制备液体燃料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710498072.7A CN107083254B (zh) 2017-06-27 2017-06-27 一种利用γ-戊内酯制备液体燃料的方法

Publications (2)

Publication Number Publication Date
CN107083254A true CN107083254A (zh) 2017-08-22
CN107083254B CN107083254B (zh) 2018-11-06

Family

ID=59607086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710498072.7A Active CN107083254B (zh) 2017-06-27 2017-06-27 一种利用γ-戊内酯制备液体燃料的方法

Country Status (3)

Country Link
US (1) US20200148958A1 (zh)
CN (1) CN107083254B (zh)
WO (1) WO2019000819A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019000819A1 (zh) * 2017-06-27 2019-01-03 东莞理工学院 一种利用γ-戊内酯制备液体燃料的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162548A (ja) * 1982-03-19 1983-09-27 Asahi Chem Ind Co Ltd 3−メチル−2−シクロペンテノン類の製造方法
US20100324310A1 (en) * 2009-06-23 2010-12-23 Dumesic James A Catalytic Conversion of Cellulose to Liquid Hydrocarbon Fuels by Progressive Removal of Oxygen to Facilitate Separation Processes and Achieve High Selectivities
CN104230615A (zh) * 2014-08-25 2014-12-24 南京林业大学 生物质衍生物γ-戊内酯催化转化制芳烃和环戊烯酮的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8410326B2 (en) * 2010-01-14 2013-04-02 Wisconsin Alumni Research Foundation Integrated process and apparatus to produce hydrocarbons from aqueous solutions of lactones, hydroxy-carboxylic acids, alkene-carboxylic acids, and/or alcohols
CN101885978A (zh) * 2010-07-20 2010-11-17 中国科学院广州能源研究所 利用木质素直接生产烷烃燃料的方法
CN106316767B (zh) * 2015-06-19 2019-06-11 中国石油化工股份有限公司 内酯类化合物芳构化方法
CN106256807B (zh) * 2015-06-19 2019-01-25 中国石油化工股份有限公司 四氢呋喃类化合物芳构化生产芳烃的方法
CN107083254B (zh) * 2017-06-27 2018-11-06 东莞理工学院 一种利用γ-戊内酯制备液体燃料的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162548A (ja) * 1982-03-19 1983-09-27 Asahi Chem Ind Co Ltd 3−メチル−2−シクロペンテノン類の製造方法
US20100324310A1 (en) * 2009-06-23 2010-12-23 Dumesic James A Catalytic Conversion of Cellulose to Liquid Hydrocarbon Fuels by Progressive Removal of Oxygen to Facilitate Separation Processes and Achieve High Selectivities
CN104230615A (zh) * 2014-08-25 2014-12-24 南京林业大学 生物质衍生物γ-戊内酯催化转化制芳烃和环戊烯酮的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JESSE Q. BOND,: "Integrated Catalytic Conversion of g-Valerolactone to Liquid Alkenes for Transportation Fuels", 《SCIENCE》 *
XIA HAI-AN: "Catalytic conversion of biomass derivative γ-valerolactone to aromatics over Zn/ZSM-5 catalyst", 《JOURNAL OF FUEL CHEMISTRY AND TECHNOLOGY》 *
张战 等: "介孔SiO2/Al2O3 固体酸催化γ-戊内酯脱羰基制备丁烯", 《过程工程学报》 *
魏珺楠 等: "新型生物质基平台分子γ-戊内酯的应用", 《化学进展》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019000819A1 (zh) * 2017-06-27 2019-01-03 东莞理工学院 一种利用γ-戊内酯制备液体燃料的方法

Also Published As

Publication number Publication date
WO2019000819A1 (zh) 2019-01-03
CN107083254B (zh) 2018-11-06
US20200148958A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
Okoye et al. Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst
Long et al. An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran
Cantero et al. High glucose selectivity in pressurized water hydrolysis of cellulose using ultra-fast reactors
Motagamwala et al. An engineered solvent system for sugar production from lignocellulosic biomass using biomass derived γ-valerolactone
Zhang et al. Continuous synthesis of 5-hydroxymethylfurfural using deep eutectic solvents and its kinetic study in microreactors
Shen et al. The alcohol-mediated reduction of CO 2 and NaHCO 3 into formate: a hydrogen transfer reduction of NaHCO 3 with glycerine under alkaline hydrothermal conditions
Drabo et al. Anionic extraction for efficient recovery of biobased 2, 3‐butanediol—a platform for bulk and fine chemicals
EA028987B1 (ru) Способ превращения фенольных соединений в ароматические углеводороды
Arora et al. pH‐Controlled Efficient Conversion of Hemicellulose to Furfural Using Choline‐Based Deep Eutectic Solvents as Catalysts
Zhou et al. Reactive extraction for synthesizing long chain ester butyl hexanoate intensified by deep eutectic solvent
CN100554231C (zh) 制备乙二醇丁醚的方法
CN107083254B (zh) 一种利用γ-戊内酯制备液体燃料的方法
CN112717939B (zh) 一种用于辛酸催化加氢提质的乳液Ni/ZrO2催化剂的制备方法
CN106866382B (zh) 一种木质素催化解聚液体产物中酚类物质的提取方法
Yu et al. Liquefaction of corn cobs with supercritical water treatment
CN101735847B (zh) 松香燃料油生产方法
CN106316767B (zh) 内酯类化合物芳构化方法
CN104311394B (zh) 一种苯酚脱氧的方法
Papadogianakis et al. Aqueous-phase catalytic conversions of renewable feedstocks for sustainable biorefineries
CN107602516B (zh) 氨基酸类离子液体催化合成δ-环戊内酯的方法
Ghodke et al. Effect of heterogeneous catalyst on esterification of pyrolysis oil
Yi et al. Deoxygenative hydroboration of primary, secondary, and tertiary amides: Catalyst‐free synthesis of various substituted amines
CN105579441A (zh) 从来自生物质的糠醛生产呋喃的方法
CN106866392A (zh) 一种由糠醇制备4-羟基环戊-2-烯酮的方法
CN106316735B (zh) 生产芳烃的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170822

Assignee: Dongguan Senhong Polymer Co.,Ltd.

Assignor: DONGGUAN University OF TECHNOLOGY

Contract record no.: X2022980024348

Denomination of invention: A utilization g- Preparation of liquid fuel from pentolactone

Granted publication date: 20181106

License type: Common License

Record date: 20221201

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170822

Assignee: Dongguan Creative Environmental New Materials Technology Co.,Ltd.

Assignor: DONGGUAN University OF TECHNOLOGY

Contract record no.: X2022980027689

Denomination of invention: A kind of utilization g- Preparation of liquid fuel from pentolactone

Granted publication date: 20181106

License type: Common License

Record date: 20221230

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240520

Address after: Room 413, 4th Floor, Building 1, Courtyard 1, Wanxing Road, Fengtai District, Beijing, 100000

Patentee after: Shuiranbao (Beijing) New Energy Co.,Ltd.

Country or region after: China

Address before: 523000, 1, University Road, Songshan science and Technology Industrial Park, Guangdong, Dongguan

Patentee before: DONGGUAN University OF TECHNOLOGY

Country or region before: China