CN107082578A - 一种HoSrMnNi共掺三方铁酸铋超晶格薄膜及其制备方法 - Google Patents

一种HoSrMnNi共掺三方铁酸铋超晶格薄膜及其制备方法 Download PDF

Info

Publication number
CN107082578A
CN107082578A CN201710254326.0A CN201710254326A CN107082578A CN 107082578 A CN107082578 A CN 107082578A CN 201710254326 A CN201710254326 A CN 201710254326A CN 107082578 A CN107082578 A CN 107082578A
Authority
CN
China
Prior art keywords
film
crystalline state
tripartite
hosrmnni
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710254326.0A
Other languages
English (en)
Other versions
CN107082578B (zh
Inventor
谈国强
郭美佑
杨玮
刘云
任慧君
夏傲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201710254326.0A priority Critical patent/CN107082578B/zh
Publication of CN107082578A publication Critical patent/CN107082578A/zh
Application granted granted Critical
Publication of CN107082578B publication Critical patent/CN107082578B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本发明提供了一种HoSrMnNi共掺三方铁酸铋超晶格薄膜及其制备方法,用晶体结构为三方结构,空间群为R3c:H和R3m:R共存的不同元素掺杂的铁酸铋薄膜制备出Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3/Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3超晶格薄膜,即HoSrMnNi共掺三方铁酸铋超晶格薄膜。本发明采用溶胶凝胶工艺,并采用旋涂和层层退火法,设备要求简单,适宜在大的表面和形状不规则的表面上制备薄膜,且化学组分精确可控,可改善BiFeO3薄膜的多铁性能。

Description

一种HoSrMnNi共掺三方铁酸铋超晶格薄膜及其制备方法
技术领域
本发明属于功能材料领域,涉及在功能化FTO/glass基板表面制备HoSrMnNi共掺三方铁酸铋超晶格薄膜,具体为Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3/Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3超晶格薄膜。
背景技术
BiFeO3是少数的单相多铁材料之一,具有扭曲的钙钛矿结构(属于R3c点群),由立方结构沿(111)方向拉伸而形成的一种偏离理想钙钛矿结构的斜六方结构,在室温下同时具有铁电有序和反铁磁有序,由于具有较高的铁电相变温度(Tc=1103K)和磁相变温度(TN=643K),在磁电传感器,自旋电子器件,存储器等方面有广泛的应用前景而得到关注。但是,BiFeO3主要存在着以下几方面的问题,如漏电流大、剩余极化小、磁性弱、磁电耦合效应弱等,极大程度上限制了它的应用。
超晶格是由两种或多种不同材料在一个维度上层状排列而成的周期结构,其周期必须小于电子的平均自由程,每一层的厚度只有几纳米或几十纳米,基本上是原子间距的量级,层数由几层至几百层。目前研究比较多的一维ABO3型的钛矿氧化物超晶格有铁电/(反)铁电、铁电/介电、以及(反)铁磁/(反)铁磁等超晶格。其中调制掺杂超晶格是在同种材料中有规则地掺入不同浓度的杂质,在界面处由于费米能级的不同,会产生电荷迁移,能带发生弯曲;可以通过改变超晶格薄膜的界面化学环境来控制界面结构,可以显著提高界面的电学性质。通过利用超晶格薄膜的应力或应变、层间耦合等物理效应,可得到高性能或单一结构材料不具有的多铁性能。超晶格不仅能够增强其单个组元所具有的性质,还可以实现单个组元不具有的性质。从对称性的角度看,即使各个组元都是中心对称的,但由于界面两侧是不同的材料组元,也能够提供空间反演对称性破缺条件,并且,界面处的应变又可以提供或者增强铁电序。在超晶格中,通过控制周期和组元厚度,可以控制组元和组元之间界面处的应变等参数,从而调控微观结构和宏观性质,实现性质增强或性质突变。设计和制备不同厚度、不同周期长度和周期数的钙钛矿氧化物单层外延薄膜和超晶格,是系统地研究应变的可控性以及这种可控性对外延薄膜和超晶格宏观性质的影响规律,最终寻找具有优异的电、磁性质的人工微结构材料的有效途径之一。
目前,还没有关于Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3/Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3超晶格薄膜及其制备方法的相关报道。
发明内容
本发明的目的在于提供一种HoSrMnNi共掺三方铁酸铋超晶格薄膜及其制备方法,该方法设备要求简单,实验条件容易达到,掺杂量容易控制,制得的HoSrMnNi共掺三方铁酸铋超晶格薄膜为Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3/Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3超晶格薄膜,可改善BiFeO3基薄膜的多铁性能。
为了实现上述目的,本发明采用如下技术方案:
一种HoSrMnNi共掺三方铁酸铋超晶格薄膜,所述HoSrMnNi共掺三方铁酸铋超晶格薄膜由若干层相互间隔排列的晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜和晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜依次叠加构成。
所述晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜为扭曲的菱方钙钛矿结构,三方相R3m:R和R3c:H空间点群共存;晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜为扭曲的菱方钙钛矿结构,三方相R3m:R和R3c:H空间点群共存。
所述晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜和晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜的层数分别为5~10层,每层晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜和晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜的厚度为30~40nm。
HoSrMnNi共掺三方铁酸铋超晶格薄膜的总厚度为440~550nm。
所述的HoSrMnNi共掺三方铁酸铋超晶格薄膜的制备方法,包括以下步骤:
步骤1:按摩尔比为0.94:0.08:0.03:0.94:0.03:0.03将硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和乙酸镍溶于乙二醇甲醚和醋酸酐的混合溶液中,得到前驱液A;
按摩尔比为0.94:0.08:0.03:0.93:0.03:0.04将硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和乙酸镍溶于乙二醇甲醚和醋酸酐的混合溶液中,得到前驱液B;
步骤2:将前驱液A旋涂在FTO/glass基片上,得到Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3湿膜,湿膜经匀胶后在190~220℃下烘烤得干膜,再于540~560℃下在空气中退火,得到晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜;
步骤3:将晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜冷却至室温,在其表面旋涂前驱液B,得到Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3湿膜,湿膜经匀胶后在190~220℃下烘烤得干膜,再于540~560℃下在空气中退火,即在晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜;
步骤4:重复步骤2和步骤3,即在晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜,再在晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜,如此循环直到达到所需厚度,即得到HoSrMnNi共掺三方铁酸铋超晶格薄膜。
所述步骤1中前驱液A和前驱液B中金属离子的总浓度为0.1~0.5mol/L。
所述前驱液A和前驱液B中乙二醇甲醚和醋酸酐的体积比为(1~5):1。
所述步骤2进行前先将FTO/glass基片清洗干净,再在紫外光下照射,直至FTO/glass基片表面达到原子清洁度。
所述步骤2和步骤3中匀胶时的匀胶转速为3800~4200r/min,匀胶时间为12~18s。
所述步骤2和步骤3中匀胶后的烘烤时间为7~10min。
所述步骤2和步骤3中的退火时间为8~10min。
相对于现有技术,本发明具有以下有益效果:
本发明提供的HoSrMnNi共掺三方铁酸铋超晶格薄膜的制备方法,以硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和乙酸镍为原料,按一定的摩尔比分别溶于乙二醇甲醚和醋酸酐的混合溶液中,得到两种不同Ni掺杂浓度的稳定的前驱液A和前驱液B;先用前驱液A在基板上进行旋涂,退火制备出一层晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜,在此薄膜的基础上再用前驱液B进行旋涂,退火制备出第二层晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜,如此类推,重复旋涂前驱液A和前驱液B并层层退火,交替制备出晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜和晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜,即得到HoSrMnNi共掺三方铁酸铋超晶格薄膜。本发明采用溶胶-凝胶工艺,通过碱土元素Sr,稀土元素Ho和过渡金属元素Mn和Ni四元素共掺杂制备HoSrMnNi共掺三方铁酸铋超晶格薄膜。相比于其他制备薄膜的方法,本发明设备要求简单,实验条件容易达到,成本低廉,反应容易进行,工艺过程温度低,制备过程及掺杂量容易控制,适宜在大的表面和形状不规则的表面上制备薄膜,很容易均匀定量地掺入一些微量元素,可以在短时间内获得原子或分子水平的均匀性,该方法制得的HoSrMnNi共掺三方铁酸铋超晶格薄膜均匀性较好,且化学组分精确可控。
本发明通过溶胶-凝胶法制备出一种逐层交替生长的HoSrMnNi共掺三方铁酸铋超晶格薄膜,铁电超晶格是在控制材料的结构、成份、层厚(nm尺度下)、叠层周期等条件的基础上,由两种或两种以上性能不同的薄膜材料交替生长得到的外延铁电多层膜,由于组成超晶格的薄膜材料晶格参数的不同,整个结构会产生一定的外延应变,从而影响各层以及整个超晶格体系的性能。利用这种现象可以改善原有薄膜的性能或得到单一薄膜不具有的新功能,因此铁电超晶格材料具有重要的应用前景。超晶格薄膜可以将相关功能材料各自优异的性质通过界面有机的耦合,通过利用超晶格薄膜的应力或应变、层间耦合等物理效应,可得到高性能或单一结构材料不具有的多铁性能;通过改变界面化学环境来控制界面结构,可以显著提高界面的电学性质;铁电超晶格薄膜相比于原有的铁电薄膜,能够获得大的介电常数、增强的铁电特性等;另外,超晶格薄膜内部的界面效应能够阻碍电子或者空穴在电场作用下的传递,进一步提高超晶格薄膜的绝缘性,并进一步减小漏电流密度,改善薄膜的多铁性能。
本发明制备的HoSrMnNi共掺三方铁酸铋超晶格薄膜是由两种不同Ni掺杂浓度的晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜和晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜相互交替制备从而形成的超晶格结构,比单一结构的BiFeO3薄膜具有更加优越的多铁性能,可改善BiFeO3基薄膜的多铁性能。
进一步的,本发明采用晶体结构类似的菱方钙钛矿结构的不同组分铁酸铋薄膜组建超晶格薄膜,即用三方相R3m:R和R3c:H空间点群共存的Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜和三方相R3m:R和R3c:H空间点群共存的Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜交替组合构建出HoSrMnNi共掺三方铁酸铋超晶格薄膜,即Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3/Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3超晶格薄膜,可以提高BiFeO3基薄膜的多铁性能。
附图说明
图1是本发明制备的HoSrMnNi共掺三方铁酸铋超晶格薄膜的XRD图;
图2是本发明制备的HoSrMnNi共掺三方铁酸铋超晶格薄膜的拉曼图。
具体实施方式
下面结合附图和本发明优选的具体实施例对本发明做进一步描述,原料均为分析纯。
实施例1
步骤1:以硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和乙酸镍为原料(硝酸铋过量5%),按摩尔比为0.94:0.08:0.03:0.94:0.03:0.03溶于体积比为3:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.3mol/L的稳定的前驱液A;
以硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和乙酸镍为原料(硝酸铋过量5%),按摩尔比为0.94:0.08:0.03:0.93:0.03:0.04溶于体积比为3:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.3mol/L的稳定的前驱液B;
步骤2:将FTO/glass基片清洗干净,再在紫外光下照射,直至FTO/glass基片表面达到原子清洁度,然后将前驱液A旋涂在FTO/glass基片上,其匀胶转速为4000r/min,匀胶时间为15s,得到Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3湿膜,湿膜在210℃下烘烤8min得干膜,再在550℃下在空气中退火9min,即得晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜;
步骤3:将晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜冷却至室温,在其表面旋涂前驱液B,其匀胶转速为4000r/min,匀胶时间为15s,得到Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3湿膜,湿膜在210℃下烘烤8min得干膜,再在550℃下在空气中退火9min,即在晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜;
步骤4:重复步骤2和3,即在晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜,再在晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜,直到制备出各7层每层30~40nm厚的相互间隔的晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜和晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜,即得到HoSrMnNi共掺三方铁酸铋超晶格薄膜。
采用X-射线衍射仪测定HoSrMnNi共掺三方铁酸铋超晶格薄膜的物相组成结构;用FE-SEM测定HoSrMnNi共掺三方铁酸铋超晶格薄膜的微观形貌;用Radiant Multiferroic仪器测试HoSrMnNi共掺三方铁酸铋超晶格薄膜的铁电性能,用Agilent B2901A测试HoSrMnNi共掺三方铁酸铋超晶格薄膜的漏电流密度。
图1是本发明实施例1制备的HoSrMnNi共掺三方铁酸铋超晶格薄膜的XRD图,图1a在2θ=22.42°,32.09°,39.50°,45.77°处的衍射峰对应的是三方相BiFeO3(JCPDS 74-2016)的(1-10)、(100)、(1-11)、(200)晶面。说明超晶格薄膜的中Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜结构为扭曲的菱方钙钛矿结构,三方相R3m:R和R3c:H空间点群共存,图1b也在2θ=22.42°,32.09°,39.50°,45.77°处出现了三方相BiFeO3(JCPDS 74-2016)的(1-10)、(100)、(1-11)、(200)晶面的衍射峰对应的,但所有衍射峰向左偏移,说明超晶格薄膜的中Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜结构也为扭曲的菱方钙钛矿结构,三方相R3m:R和R3c:H空间点群共存,两种薄膜结构没有发生变化,但他们之间有应力作用,导致衍射峰对应角度有偏差。
图2是本发明实施例1制备的HoSrMnNi共掺三方铁酸铋超晶格薄膜的拉曼图,由图2a可以看出Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜在138.9cm-1、168.1cm-1、214.3cm-1、259.9cm-1、347.3cm-1、481.9cm-1、537.2cm-1、625.5cm-1振动模分别对应为A1-1、A1-2、A1-3、E-3、E-6、E-7、E-8和E-9振动模,而由图2b可以看出Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜A1-1、A1-2、A1-3、E-3、E-6、E-7、E-8和E-9振动模对应136.6cm-1、164.1cm-1、212.9cm-1、253.3cm-1、350.5cm-1、481.0cm-1、534.2cm-1、624.3cm-1处振动模,可以看出Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜A1-1、A1-2和A1-3模强度增强,同时振动峰变窄,A1-1和A1-2模明显分离。在高频624cm-1左右的E-9振动模的强度明显增强,产生Jahn-Teller扭曲效应,进一步说明组成的超晶格薄膜之间会增加结构的扭曲。
实施例2
步骤1:以硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和乙酸镍为原料(硝酸铋过量5%),按摩尔比为0.94:0.08:0.03:0.94:0.03:0.03溶于体积比为1:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.1mol/L的稳定的前驱液A;
以硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和乙酸镍为原料(硝酸铋过量5%),按摩尔比为0.94:0.08:0.03:0.93:0.03:0.04溶于体积比为1:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.1mol/L的稳定的前驱液B;
步骤2:将FTO/glass基片清洗干净,再在紫外光下照射,直至FTO/glass基片表面达到原子清洁度,然后将前驱液A旋涂在FTO/glass基片上,其匀胶转速为3800r/min,匀胶时间为18s,得到Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3湿膜,湿膜在190℃下烘烤10min得干膜,再在540℃下在空气中退火10min,即得晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜;
步骤3:将晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜冷却至室温,在其表面旋涂前驱液B,其匀胶转速为3800r/min,匀胶时间为18s,得到Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3湿膜,湿膜在190℃下烘烤10min得干膜,再在540℃下在空气中退火10min,即在晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜;
步骤4:重复步骤2和3,即在晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜,再在晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜,直到制备出各5层每层30~40nm厚的相互间隔的晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜和晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜,即得到HoSrMnNi共掺三方铁酸铋超晶格薄膜。
实施例3
步骤1:以硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和乙酸镍为原料(硝酸铋过量5%),按摩尔比为0.94:0.08:0.03:0.94:0.03:0.03溶于体积比为2:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.2mol/L的稳定的前驱液A;
以硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和乙酸镍为原料(硝酸铋过量5%),按摩尔比为0.94:0.08:0.03:0.93:0.03:0.04溶于体积比为2:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.2mol/L的稳定的前驱液B;
步骤2:将FTO/glass基片清洗干净,再在紫外光下照射,直至FTO/glass基片表面达到原子清洁度,然后将前驱液A旋涂在FTO/glass基片上,其匀胶转速为3900r/min,匀胶时间为16s,得到Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3湿膜,湿膜在200℃下烘烤9min得干膜,再在560℃下在空气中退火8min,即得晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜;
步骤3:将晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜冷却至室温,在其表面旋涂前驱液B,其匀胶转速为3900r/min,匀胶时间为16s,得到Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3湿膜,湿膜在200℃下烘烤9min得干膜,再在560℃下在空气中退火8min,即在晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜;
步骤4:重复步骤2和3,即在晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜,再在晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜,直到制备出各6层每层30~40nm厚的相互间隔的晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜和晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜,即得到HoSrMnNi共掺三方铁酸铋超晶格薄膜。
实施例4
步骤1:以硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和乙酸镍为原料(硝酸铋过量5%),按摩尔比为0.94:0.08:0.03:0.94:0.03:0.03溶于体积比为4:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.4mol/L的稳定的前驱液A;
以硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和乙酸镍为原料(硝酸铋过量5%),按摩尔比为0.94:0.08:0.03:0.93:0.03:0.04溶于体积比为4:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.4mol/L的稳定的前驱液B;
步骤2:将FTO/glass基片清洗干净,再在紫外光下照射,直至FTO/glass基片表面达到原子清洁度,然后将前驱液A旋涂在FTO/glass基片上,其匀胶转速为4100r/min,匀胶时间为14s,得到Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3湿膜,湿膜在220℃下烘烤7min得干膜,再在545℃下在空气中退火9.5min,即得晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜;
步骤3:将晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜冷却至室温,在其表面旋涂前驱液B,其匀胶转速为4100r/min,匀胶时间为14s,得到Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3湿膜,湿膜在220℃下烘烤7min得干膜,再在545℃下在空气中退火9.5min,即在晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜;
步骤4:重复步骤2和3,即在晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜,再在晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜,直到制备出各8层每层30~40nm厚的相互间隔的晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜和晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜,即得到HoSrMnNi共掺三方铁酸铋超晶格薄膜。
实施例5
步骤1:以硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和乙酸镍为原料(硝酸铋过量5%),按摩尔比为0.94:0.08:0.03:0.94:0.03:0.03溶于体积比为5:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.5mol/L的稳定的前驱液A;
以硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和乙酸镍为原料(硝酸铋过量5%),按摩尔比为0.94:0.08:0.03:0.93:0.03:0.04溶于体积比为5:1的乙二醇甲醚和醋酸酐的混合溶液中,得到金属离子总浓度为0.5mol/L的稳定的前驱液B;
步骤2:将FTO/glass基片清洗干净,再在紫外光下照射,直至FTO/glass基片表面达到原子清洁度,然后将前驱液A旋涂在FTO/glass基片上,其匀胶转速为4200r/min,匀胶时间为12s,得到Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3湿膜,湿膜在205℃下烘烤8.5min得干膜,再在555℃下在空气中退火8.59min,即得晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜;
步骤3:将晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜冷却至室温,在其表面旋涂前驱液B,其匀胶转速为4200r/min,匀胶时间为12s,得到Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3湿膜,湿膜在205℃下烘烤8.5min得干膜,再在555℃下在空气中退火8.5min,即在晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜;
步骤4:重复步骤2和3,即在晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜,再在晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜,直到制备出各10层每层30~40nm厚的相互间隔的晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜和晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜,即得到HoSrMnNi共掺三方铁酸铋超晶格薄膜。
以上所述内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不是全部或唯一的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

Claims (10)

1.一种HoSrMnNi共掺三方铁酸铋超晶格薄膜,其特征在于,所述HoSrMnNi共掺三方铁酸铋超晶格薄膜由若干层相互间隔排列的晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜和晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜依次叠加构成。
2.根据权利要求1所述的HoSrMnNi共掺三方铁酸铋超晶格薄膜,其特征在于,所述晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜为扭曲的菱方钙钛矿结构,三方相R3m:R和R3c:H空间点群共存;晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜为扭曲的菱方钙钛矿结构,三方相R3m:R和R3c:H空间点群共存。
3.根据权利要求1所述的HoSrMnNi共掺三方铁酸铋超晶格薄膜,其特征在于,所述晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜和晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜的层数分别为5~10层,每层晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜和晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜的厚度为30~40nm。
4.权利要求1-3中任意一项所述的HoSrMnNi共掺三方铁酸铋超晶格薄膜的制备方法,其特征在于,包括以下步骤:
步骤1:按摩尔比为0.94:0.08:0.03:0.94:0.03:0.03将硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和乙酸镍溶于乙二醇甲醚和醋酸酐的混合溶液中,得到前驱液A;
按摩尔比为0.94:0.08:0.03:0.93:0.03:0.04将硝酸铋、硝酸钬、硝酸锶、硝酸铁、醋酸锰和乙酸镍溶于乙二醇甲醚和醋酸酐的混合溶液中,得到前驱液B;
步骤2:将前驱液A旋涂在FTO/glass基片上,得到Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3湿膜,湿膜经匀胶后在190~220℃下烘烤得干膜,再于540~560℃下在空气中退火,得到晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜;
步骤3:将晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜冷却至室温,在其表面旋涂前驱液B,得到Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3湿膜,湿膜经匀胶后在190~220℃下烘烤得干膜,再于540~560℃下在空气中退火,即在晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜;
步骤4:重复步骤2和步骤3,即在晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜,再在晶态Bi0.89Ho0.08Sr0.03Fe0.94Mn0.03Ni0.03O3薄膜上制备出晶态Bi0.89Ho0.08Sr0.03Fe0.93Mn0.03Ni0.04O3薄膜,如此循环直到达到所需厚度,即得到HoSrMnNi共掺三方铁酸铋超晶格薄膜。
5.根据权利要求4所述的HoSrMnNi共掺三方铁酸铋超晶格薄膜的制备方法,其特征在于,所述步骤1中前驱液A和前驱液B中金属离子的总浓度为0.1~0.5mol/L。
6.根据权利要求4所述的HoSrMnNi共掺三方铁酸铋超晶格薄膜的制备方法,其特征在于,所述前驱液A和前驱液B中乙二醇甲醚和醋酸酐的体积比为(1~5):1。
7.根据权利要求4所述的HoSrMnNi共掺三方铁酸铋超晶格薄膜的制备方法,其特征在于,所述步骤2进行前先将FTO/glass基片清洗干净,再在紫外光下照射,直至FTO/glass基片表面达到原子清洁度。
8.根据权利要求4所述的HoSrMnNi共掺三方铁酸铋超晶格薄膜的制备方法,其特征在于,所述步骤2和步骤3中匀胶时的匀胶转速为3800~4200r/min,匀胶时间为12~18s。
9.根据权利要求4所述的HoSrMnNi共掺三方铁酸铋超晶格薄膜的制备方法,其特征在于,所述步骤2和步骤3中匀胶后的烘烤时间为7~10min。
10.根据权利要求4所述的HoSrMnNi共掺三方铁酸铋超晶格薄膜的制备方法,其特征在于,所述步骤2和步骤3中的退火时间为8~10min。
CN201710254326.0A 2017-04-18 2017-04-18 一种HoSrMnNi共掺三方铁酸铋超晶格薄膜及其制备方法 Active CN107082578B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710254326.0A CN107082578B (zh) 2017-04-18 2017-04-18 一种HoSrMnNi共掺三方铁酸铋超晶格薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710254326.0A CN107082578B (zh) 2017-04-18 2017-04-18 一种HoSrMnNi共掺三方铁酸铋超晶格薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN107082578A true CN107082578A (zh) 2017-08-22
CN107082578B CN107082578B (zh) 2019-10-11

Family

ID=59612134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710254326.0A Active CN107082578B (zh) 2017-04-18 2017-04-18 一种HoSrMnNi共掺三方铁酸铋超晶格薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN107082578B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133666A (zh) * 2018-09-18 2019-01-04 陕西科技大学 一种具有电阻开关效应的bfo基超晶格/lsmo复合薄膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538140A (zh) * 2014-12-11 2015-04-22 陕西科技大学 一种多铁性Bi1-xRExFe0.97-yMn0.03TMyO3/CoFe2O4复合膜及其制备方法
CN105837196A (zh) * 2016-03-29 2016-08-10 陕西科技大学 一种Bi0.92-xHo0.08AExFe0.97Mn0.03O3-Zn1-yNiyFe2O4铁磁性复合薄膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538140A (zh) * 2014-12-11 2015-04-22 陕西科技大学 一种多铁性Bi1-xRExFe0.97-yMn0.03TMyO3/CoFe2O4复合膜及其制备方法
CN105837196A (zh) * 2016-03-29 2016-08-10 陕西科技大学 一种Bi0.92-xHo0.08AExFe0.97Mn0.03O3-Zn1-yNiyFe2O4铁磁性复合薄膜及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133666A (zh) * 2018-09-18 2019-01-04 陕西科技大学 一种具有电阻开关效应的bfo基超晶格/lsmo复合薄膜及其制备方法
CN109133666B (zh) * 2018-09-18 2021-07-27 陕西科技大学 一种具有电阻开关效应的bfo基超晶格/lsmo复合薄膜及其制备方法

Also Published As

Publication number Publication date
CN107082578B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
CN104445996B (zh) 一种多铁性Bi0.96‑xSr0.04RExFe0.94Mn0.04Cr0.02O3‑NiFe2O4 复合膜及其制备方法
CN104478234B (zh) 一种Bi0.90Er0.10Fe0.96Co0.02Mn0.02O3/Mn1-xCoxFe2O4 复合膜及其制备方法
CN105837196A (zh) 一种Bi0.92-xHo0.08AExFe0.97Mn0.03O3-Zn1-yNiyFe2O4铁磁性复合薄膜及其制备方法
CN105271798A (zh) 一种高铁磁性能和铁电性能的Bi0.9Er0.1Fe1-xCoxO3薄膜及其制备方法
CN103044018A (zh) 一种溶胶-凝胶法制备Bi0.85Sm0.15Fe1‐xCrxO3 铁电薄膜的方法
CN104478235A (zh) 一种多铁性Bi0.98-xSr0.02RExFe0.97Mn0.03O3-CuFe2O4 复合膜及其制备方法
CN105632756B (zh) 一种尖晶石型四方相CuFe2O4铁磁性薄膜及其制备方法
CN103723770B (zh) 一种高介电常数的Bi0.92Ho0.08Fe1-XMnXO3 铁电薄膜及其制备方法
CN107117830A (zh) 一种LaSrMnCo共掺铁酸铋多铁薄膜及其制备方法
CN107082578B (zh) 一种HoSrMnNi共掺三方铁酸铋超晶格薄膜及其制备方法
CN107098395B (zh) 一种HoSrMnZn共掺三方铁酸铋超晶格薄膜及其制备方法
CN107032632B (zh) 一种HoSrMnNi共掺铁酸铋超晶格薄膜及其制备方法
CN103771527B (zh) 一种低矫顽场的Bi0.92Dy0.08Fe1-xMnxO3铁电薄膜及其制备方法
CN107162437B (zh) 一种HoSrMnZn共掺铁酸铋超晶格薄膜及其制备方法
CN109133666B (zh) 一种具有电阻开关效应的bfo基超晶格/lsmo复合薄膜及其制备方法
CN107245704B (zh) 一种HoSrMnNi/HoSrMnZn共掺铁酸铋超晶格薄膜及其制备方法
CN104478228B (zh) 一种Bi0.85‑xPr0.15AExFe0.97Mn0.03O3 铁电薄膜及其制备方法
CN104478229B (zh) 一种Bi1-xRExFe0.96Co0.02Mn0.02O3 铁电薄膜及其制备方法
CN107140849B (zh) 一种LaSrMnCo/GdSrMnCo共掺铁酸铋超晶格薄膜及其制备方法
CN107140848B (zh) 一种GdSrMnCo共掺铁酸铋超晶格薄膜及其制备方法
CN105859152B (zh) 一种高磁性Bi0.96Sr0.04FeO3基/CoFe2O4复合薄膜及其制备方法
CN107021649B (zh) 一种LaSrMnCo共掺铁酸铋超晶格薄膜及其制备方法
CN107082576B (zh) 一种HoSrMnNi共掺铁酸铋多铁薄膜及其制备方法
CN105837199B (zh) 一种Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3多铁薄膜及其制备方法
CN104478230A (zh) 一种多铁性Bi0.92-xHo0.08AExFe0.97Mn0.03O3 薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant