CN107081171A - 两性离子化树状大分子包裹金的纳米粒子的制备方法 - Google Patents

两性离子化树状大分子包裹金的纳米粒子的制备方法 Download PDF

Info

Publication number
CN107081171A
CN107081171A CN201710296631.6A CN201710296631A CN107081171A CN 107081171 A CN107081171 A CN 107081171A CN 201710296631 A CN201710296631 A CN 201710296631A CN 107081171 A CN107081171 A CN 107081171A
Authority
CN
China
Prior art keywords
g5mc
nano
particle
water
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710296631.6A
Other languages
English (en)
Other versions
CN107081171B (zh
Inventor
王龙刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201710296631.6A priority Critical patent/CN107081171B/zh
Publication of CN107081171A publication Critical patent/CN107081171A/zh
Application granted granted Critical
Publication of CN107081171B publication Critical patent/CN107081171B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/063Polymers comprising a characteristic microstructure
    • B01J31/064Dendrimers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Materials For Medical Uses (AREA)
  • Polyamides (AREA)
  • External Artificial Organs (AREA)

Abstract

一种两性离子化树状大分子包裹金的纳米粒子的制备方法,其主要是将二甲基亚砜加入五代聚酰胺‑胺树状大分子(G5 PAMAM),再加入马来酸酐,得到五代聚酰胺‑胺树状大分子‑马来酸酐(G5M);接着向G5M水溶液中加入巯基乙胺,得到五代聚酰胺‑胺树状大分子‑马来酸酐‑巯基乙胺(G5MC);再向G5MC水溶液中加入氯金酸水溶液,搅拌10~70分钟后,再加入硼氢化钠,用1M盐酸调节混合液的pH到中性,得到两性离子化树状大分子包裹金(Au‑G5MC)的纳米粒子。本发明制备条件温和、操作简单、反应过程易于控制、有效地保护纳米粒子稳定性。

Description

两性离子化树状大分子包裹金的纳米粒子的制备方法
技术领域
本发明属于纳米材料技术领域,特别涉及一种催化剂的制备方法。
背景技术
1-10nm的金纳米粒子具有独特的光学和电学性能。这些独特的性能使其在催化和纳米医学上存在广泛的应用。然而,具有高比表面积的金纳米粒子容易团聚。因此,研究人员提出了各种制备高度稳定性和分散性的金纳米粒子的方法。Crooks和同事首先采用具有独特三维结构的聚酰胺-胺树状大分子(PAMAM)模板,成功制备了单分散的铜纳米粒子。此外,树状大分子包裹的金纳米粒子的溶解度和功能依赖于其表面的官能团。PAMAM包裹的金纳米粒子的细胞毒性与其浓度呈正相关。PAMAM也能够诱导纤维蛋白原聚集。这会限制其在生物相关领域中的应用。
很多改性PAMAM的方法可以提高其生物相容性。聚乙二醇(PEG)、乙酸酐、月桂酰氯、衣康酸二甲酯、2-丙烯酰氧基乙基磷酸胆碱或者羧基甜菜碱丙烯酰胺(CBAA)等各种各样的分子都用于改性PAMAM,从而增强其生物相容性,这些改性可能屏蔽了PAMAM表面的正电荷。其中,PEG改性是最常用的方法。然而,PEG改性可以显著增加纳米粒子的水动力学粒径。这层PEG会给修饰产物带来明显的传质阻力,从而降低树状大分子内部金纳米粒子的催化效率。此外,PEG长期在氧化环境中会被氧化,这会降低其所稳定的纳米粒子的长期稳定性。然而,单层两性离子材料修饰纳米粒子,则仅略增大纳米粒子的粒径,提高纳米粒子的生物相容性和长期稳定性。例如:经自组装形成的单层两性离子层保护的金纳米粒子比巯基聚乙二醇保护的金纳米粒子具有更好的长期稳定性。王龙刚等采用两性离子材料CBAA修饰树状大分子后,其水动力学粒径仅增加3.1nm。
发明内容
本发明的目的在于提供一种制备条件温和、操作简单、反应过程易于控制、有效地保护纳米粒子稳定性的两性离子化树状大分子包裹金(Au-G5MC)的纳米粒子的制备方法。
本发明的技术方案如下:
(1)按每1mL二甲基亚砜加入1.6~160mg五代聚酰胺-胺树状大分子(G5PAMAM)的比例,将五代聚酰胺-胺树状大分子(G5PAMAM)溶解在二甲基亚砜中,再向二甲基亚砜中加入马来酸酐,使马来酸酐与G5PAMAM的摩尔比为140~1280:1,反应8~72小时;选用截留分子量(MWCO)=14000的纤维素透析袋透析反应混合物,除去杂质,得到五代聚酰胺-胺树状大分子-马来酸酐(G5M);
(2)按每1mL水中加入0.52~5.74mg G5M的比例将步骤(1)制得的G5M溶于水中,再向水中加入巯基乙胺,使巯基乙胺与G5M的摩尔比为140~6400:1,反应8~72小时后,混合物用纤维素透析膜(MWCO=14000)对水透析以除去杂质,得到的五代聚酰胺-胺树状大分子-马来酸酐-巯基乙胺(G5MC);
(3)按每1mL水中加入0.154~3.845mg G5MC的比例将步骤(2)制得的G5MC溶于水中,再按氯金酸与G5MC的摩尔比为20~500:1的比例,将G5MC水溶液与浓度为1~21mM的氯金酸水溶液混合,搅拌10~70分钟后,再按硼氢化钠与氯金酸的摩尔比为2~42:1的比例,加入硼氢化钠,所述硼氢化钠是按每1mL浓度为0.1~0.5M的氢氧化钠溶液中加入1mg硼氢化钠的混合溶液,用1M盐酸调节混合液的pH到中性,得到的粒径为1.85±0.61nm的两性离子化树状大分子包裹金(Au-G5MC)的纳米粒子。
本发明与现有技术相比具有如下优点:
1、制备工艺简单,反应条件温和,且重现性好。
2、制备的Au-G5MC纳米粒子在pH(4~9)的缓冲液和纤维蛋白原溶液中具有优良的稳定性、生物相容性和高催化速率。
3、制备的Au-G5MC纳米粒子无细胞毒性,可以做为环境友好的催化剂,也可用于生物医学领域。
附图说明
图1为本发明实施例1获得的Au-G5MC与G5PAMAM、G5M、G5MC的核磁共振氢谱(1HNMR)图。
图2为本发明实施例1获得的Au-G5MC在水溶液中的紫外-可见(UV-Vis)吸收光谱图。
图3为本发明实施例1获得的Au-G5MC的透射电镜图。
图4为本发明实施例1获得的Au-G5MC的粒径(透射电镜)分布直方图。
图5为本发明实施例1获得的在pH 4~9下Au-G5MC的粒径图。
图6为本发明实施例1获得的在pH 4~9下Au-G5MC的电动电位(ζ电位)图。
图7为本发明实施例1获得的Au-G5MC和Au-G5的蛋白质稳定性的比较图。(a)Au-G5MC(1mg/mL),(b)纤维蛋白原(1mg/mL),(c)Au-G5(1mg/mL)和纤维蛋白原(1mg/mL)的混合物,(d)Au-G5MC(1mg/mL)和纤维蛋白原(1mg/mL)的混合物。每一个样品均溶解于磷酸盐缓冲液(PBS)中。
图8为本发明实施例1获得的不同浓度的Au-G5和Au-G5MC与HeLa细胞共孵育24小时后的细胞活性的图片。
图9为本发明实施例1获得的100μg/mL Au-G5与HeLa细胞共孵育24小时后的细胞形态图片。
图10为本发明实施例1获得的100μg/mL Au-G5MC与HeLa细胞共孵育24小时后的细胞形态图片。
图11为本发明实施例1获得的Au-G5MC纳米粒子催化对硝基苯酚(4-NP)的ln(Ct/C0)与反应时间(t)之间的关系曲线图片。λ=400nm,Ct:4-NP在t时刻的浓度值;C0:4-NP在初始时刻的浓度值:4-NP(1当量),NaBH4(3333当量)和Au-G5MC纳米粒子(1.67×10-5,3.33×10-5,6.67×10-5当量)。
图12为Au-G5MC催化4-NP反应中的Kapp和催化剂用量间的关系。
具体实施方式
实施例1
(1)将16mg五代聚酰胺-胺树状大分子(G5PAMAM)溶解在4mL二甲基亚砜中,再向二甲基亚砜中加入13.8mg马来酸酐,反应24小时,选用截留分子量(MWCO)=14000的纤维素透析袋透析反应混合物,以除去杂质,得到G5M;
(2)将2.87mg G5M溶于1mL水中,再向水中加入13.5mg巯基乙胺,反应24小时后,混合物用纤维素透析膜(MWCO=14000)对水透析以除去杂质,得到G5MC;
(3)将0.533mg的G5MC溶于1mL水中,再向水中加入286mg浓度为2mM的氯金酸水溶液,搅拌20分钟后,将126.5mg的硼氢化钠溶液加入上述溶液,所述硼氢化钠溶液是按每1mL浓度为0.3M的氢氧化钠溶液中加入1mg硼氢化钠的混合溶液,用1M盐酸调节混合液的pH到中性,得到的粒径为1.85nm的两性离子化树状大分子包裹金(Au-G5MC)的纳米粒子。
如图1所示,G5PAMAM表面伯氨基的理论值为128,G5PAMAM的1H NMR谱图显示了5个宽峰。图中a说明G5PAMAM的氢原子与相应的信号峰对应。图b中显示在5.8ppm和6.2ppm处出现两个新峰,它来源于马来酸酐的质子–CH=CH–。计算结果表明,约127个马来酸酐分子与一个G5PAMAM反应,略小于128。巯基乙胺的巯基在水中能与G5M上的双键高效地反应,生成G5MC。G5MC的1H NMR谱图在3.2ppm处出现新的峰,它源自SHCH 2CH2NH2的质子。与此同时,5.8ppm和6.2ppm处的峰也完全消失,这表明巯基乙胺与G5M表面的双键完全反应(如c所示)。因此,G5MC中含有等量的源自马来酸酐的羧基和源自巯基乙胺的氨基。这些羧基和伯胺基团在G5MC表面形成单层两性离子层。以G5MC为模板,制备Au-G5MC纳米粒子的合成采用两步法:AuCl4 -进入G5MC的内部,过量的NaBH4将其还原为纳米金。Au-G5MC的1H NMR谱图与G5MC的1H NMR谱图相似(如d所示)。
如图2所示,UV-Vis谱图用于检测树状大分子包裹的Au纳米粒子的粒径,粒径大于2nm的Au纳米粒子通常在500-550nm处有特征吸收峰。粒径小于2nm的Au纳米粒子则无特征吸收峰。在500-550nm处有非常弱的吸收峰,这表明Au纳米粒子的粒径约为2nm。在制备过程中,当加入NaBH4后,反应混合物溶液的颜色从黄色变为棕色,这也表明Au纳米粒子成功包裹于G5MC中。
如图3所示,Au-G5MC纳米粒子呈现小粒径和单分散状态。
如图4所示,图3中Au-G5MC纳米粒子的平均粒径为1.85nm,这表明在以G5MC为模板包裹的Au纳米粒子具有小粒径和窄粒径分布。此时,制备的Au纳米粒子具有大的比表面积,这有利于其具有高催化能力。
如图5所示,在pH从4到9的缓冲液中,Au-G5MC的粒径约10nm,并在两天内保持稳定。这主要归因于Au-G5MC表面的单层两性离子层具有强烈的水合能力。
如图6所示,随着缓冲液pH的增加,Au-G5MC的ζ电位逐渐降低。在pH 4时,ζ最大电位为2.5mV;在pH 9时,ζ最小电位为-13.8mV。Au-G5MC的等电点约为pH 5.8。这是因为胺基在酸性pH下质子化和羧基在碱性pH下去质子化。
如图7所示,动态光散射仪(DLS)检测的Au-G5和Au-G5MC的水动力学平均粒径约为10nm(图7a)。DLS检测的纤维蛋白原的粒径约22.7±3.0nm(图7b)。当Au-G5纳米粒子与纤维蛋白原一起孵育时,生成大的聚集体,这是由于Au-G5诱导纤维蛋白原构象发生变化(图7c)。然而,当Au-G5MC与纤维蛋白原孵育时,二者以溶液形式共存,无聚集体生成(图7d)。这些结果表明,纤维蛋白原和Au-G5MC之间的相互作用非常弱。Au-G5MC纳米粒子具有优异的蛋白质相容性。
如图8所示,通过MTT法表征纳米粒子的细胞毒性。图7a表明Au-G5纳米粒子的细胞毒性与它们的浓度有关。当Au-G5纳米粒子的浓度为100μg/mL时,HeLa细胞的细胞活性约为60%。然而,对于相同浓度的Au-G5MC纳米粒子,HeLa细胞的细胞活性约为97%。这些结果表明,由氨基和羧基构成的单层两性离子层可以有效地降低纳米粒子的细胞毒性。
如图9所示,与Au-G5纳米粒子(100μg/mL)共培养的HeLa细胞呈现收缩的状态,这表明Au-G5纳米粒子具有较高的细胞毒性。
如图10所示,与Au-G5MC共培养的HeLa细胞的形态与对照组HeLa细胞的形态相似。这些结果证明Au-G5MC具有非常好的体外生物相容性。
如图11所示,Au-G5MC纳米粒子的ln(Ct/C0)和反应时间(t)之间的关系是线性的。Au-G5MC纳米粒子在有NaBH4条件下,能有效地将4-NP还原为4-氨基苯酚(4-AP)。NaBH4的浓度远远大于4-NP的浓度。因此,在催化反应期间,NaBH4的浓度几乎不变。4-NP的还原反应仅与4-NP的浓度相关,它是假一级反应。周转频率(TOF)常用于比较纳米粒子的催化能力,它定义为当还原物质的转化率达到90%时,每摩尔催化活性中心每小时还原物质的总摩尔数。Au-G5MC纳米粒子(50nM)的TOF为1.2×105
如图12所示,Au-G5MC纳米粒子催化4-NP的Kapp与其用量之间的关系是线性的。
实施例2
(1)将1.6mg五代聚酰胺-胺树状大分子(G5PAMAM)溶解在1mL二甲基亚砜中,再向二甲基亚砜中加入0.754mg马来酸酐,反应8小时,选用截留分子量(MWCO)=14000的纤维素透析袋透析反应混合物,以除去杂质,得到G5M;
(2)将0.52mg G5M溶于1mL水中,再向水中加入0.136mg巯基乙胺,反应8小时后,混合物用纤维素透析膜(MWCO=14000)对水透析以除去杂质,得到G5MC;
(3)将0.154mg的G5MC溶于1mL水中,再向水中加入61mg浓度为1mM的氯金酸水溶液,搅拌10分钟后,将4.5mg的硼氢化钠加入上述溶液,所述硼氢化钠是按每1mL浓度为0.1M的氢氧化钠溶液中加入1mg硼氢化钠的混合溶液,用1M盐酸调节混合液的pH到中性,得到的粒径为1.67nm的两性离子化树状大分子包裹金(Au-G5MC)的纳米粒子。
实施例3
(1)将41.2mg五代聚酰胺-胺树状大分子(G5PAMAM)溶解在1mL二甲基亚砜中,再向二甲基亚砜中加入58.937mg马来酸酐,反应24小时,选用截留分子量(MWCO)=14000的纤维素透析袋透析反应混合物,以除去杂质,得到G5M;
(2)将1.83mg G5M溶于1mL水中,再向水中加入5.802mg巯基乙胺,反应24小时后,混合物用纤维素透析膜(MWCO=14000)对水透析以除去杂质,得到G5MC;
(3)将1.077mg的G5MC溶于1mL水中,再向水中加入495mg浓度为6mM的氯金酸水溶液,搅拌25分钟后,将1335.2mg的硼氢化钠加入上述溶液,所述硼氢化钠是按每1mL浓度为0.2M的氢氧化钠溶液中加入1mg硼氢化钠的混合溶液,用1M盐酸调节混合液的pH到中性,得到的粒径为1.95nm的两性离子化树状大分子包裹金(Au-G5MC)的纳米粒子。
实施例4
(1)将80.8mg五代聚酰胺-胺树状大分子(G5PAMAM)溶解在1mL二甲基亚砜中,再向二甲基亚砜中加入193.096mg马来酸酐,反应40小时,选用截留分子量(MWCO)=14000的纤维素透析袋透析反应混合物,以除去杂质,得到G5M;
(2)将3.13mg G5M溶于1mL水中,再向水中加入19.084mg巯基乙胺,反应40小时后,混合物用纤维素透析膜(MWCO=14000)对水透析以除去杂质,得到G5MC;
(3)将2.000mg的G5MC溶于1mL水中,再向水中加入931mg浓度为11mM的氯金酸水溶液,搅拌40分钟后,将8441.8mg的硼氢化钠加入上述溶液,所述硼氢化钠是按每1mL浓度为0.3M的氢氧化钠溶液中加入1mg硼氢化钠的混合溶液,用1M盐酸调节混合液的pH到中性,得到的粒径为2.15nm的两性离子化树状大分子包裹金(Au-G5MC)的纳米粒子。
实施例5
(1)将120.4mg五代聚酰胺-胺树状大分子(G5PAMAM)溶解在1mL二甲基亚砜中,再向二甲基亚砜中加入403.229mg马来酸酐,反应56小时,选用截留分子量(MWCO)=14000的纤维素透析袋透析反应混合物,以除去杂质,得到G5M;
(2)将4.44mg G5M溶于1mL水中,再向水中加入39.982mg巯基乙胺,反应56小时后,混合物用纤维素透析膜(MWCO=14000)对水透析以除去杂质,得到G5MC;
(3)将2.922mg的G5MC溶于1mL水中,再向水中加入1368mg浓度为16mM的氯金酸水溶液,搅拌55分钟后,将26228.2mg的硼氢化钠加入上述溶液,所述硼氢化钠是按每1mL浓度为0.4M的氢氧化钠溶液中加入1mg硼氢化钠的混合溶液,用1M盐酸调节混合液的pH到中性,得到的粒径为2.26nm的两性离子化树状大分子包裹金(Au-G5MC)的纳米粒子。
实施例6
(1)将160mg五代聚酰胺-胺树状大分子(G5PAMAM)溶解在1mL二甲基亚砜中,再向二甲基亚砜中加入689.338mg马来酸酐,反应72小时,选用截留分子量(MWCO)=14000的纤维素透析袋透析反应混合物,以除去杂质,得到G5M;
(2)将5.74mg G5M溶于1mL水中,再向水中加入68.495mg巯基乙胺,反应72小时后,混合物用纤维素透析膜(MWCO=14000)对水透析以除去杂质,得到G5MC;
(3)将3.845mg的G5MC溶于1mL水中,再向水中加入1804mg浓度为21mM的氯金酸水溶液,搅拌70分钟后,将59598.3mg的硼氢化钠加入上述溶液,所述硼氢化钠是按每1mL浓度为0.5M的氢氧化钠溶液中加入1mg硼氢化钠的混合溶液,用1M盐酸调节混合液的pH到中性,得到的粒径为2.37nm的两性离子化树状大分子包裹金(Au-G5MC)的纳米粒子。

Claims (2)

1.一种两性离子化树状大分子包裹金的纳米粒子的制备方法,其特征在于:
(1)按每1mL二甲基亚砜加入1.6~160mg五代聚酰胺-胺树状大分子(G5PAMAM)的比例,将五代聚酰胺-胺树状大分子(G5PAMAM)溶解在二甲基亚砜中,再向二甲基亚砜中加入马来酸酐,使马来酸酐与G5PAMAM的摩尔比为140~1280:1,反应8~72小时;选用截留分子量(MWCO)=14000的纤维素透析袋透析反应混合物,除去杂质,得到五代聚酰胺-胺树状大分子-马来酸酐(G5M);
(2)按每1mL水中加入0.52~5.74mg G5M的比例将步骤(1)制得的G5M溶于水中,再向水中加入巯基乙胺,使巯基乙胺与G5M的摩尔比为140~6400:1,反应8~72小时后,混合物用纤维素透析膜(MWCO=14000)对水透析以除去杂质,得到的五代聚酰胺-胺树状大分子-马来酸酐-巯基乙胺(G5MC);
(3)按每1mL水中加入0.154~3.845mg G5MC的比例将步骤(2)制得的G5MC溶于水中,再按氯金酸与G5MC的摩尔比为20~500:1的比例,将G5MC水溶液与浓度为1~21mM的氯金酸水溶液混合,搅拌10~70分钟后,再按硼氢化钠与氯金酸的摩尔比为2~42:1的比例加入硼氢化钠,用1M盐酸调节混合液的pH到中性,得到的粒径为1.85±0.61nm的两性离子化树状大分子包裹金(Au-G5MC)的纳米粒子。
2.根据权利要求1所述的两性离子化树状大分子包裹金的纳米粒子的制备方法,其特征在于:所述硼氢化钠是按每1mL浓度为0.1~0.5M的氢氧化钠溶液中加入1mg硼氢化钠的混合溶液。
CN201710296631.6A 2017-04-28 2017-04-28 两性离子化树状大分子包裹金的纳米粒子的制备方法 Active CN107081171B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710296631.6A CN107081171B (zh) 2017-04-28 2017-04-28 两性离子化树状大分子包裹金的纳米粒子的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710296631.6A CN107081171B (zh) 2017-04-28 2017-04-28 两性离子化树状大分子包裹金的纳米粒子的制备方法

Publications (2)

Publication Number Publication Date
CN107081171A true CN107081171A (zh) 2017-08-22
CN107081171B CN107081171B (zh) 2019-11-01

Family

ID=59612260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710296631.6A Active CN107081171B (zh) 2017-04-28 2017-04-28 两性离子化树状大分子包裹金的纳米粒子的制备方法

Country Status (1)

Country Link
CN (1) CN107081171B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776606A (zh) * 2019-10-31 2020-02-11 西南石油大学 一种改性壳聚糖/氮氧支化单体功能化聚合物及其制备方法和应用
CN113024747A (zh) * 2021-03-30 2021-06-25 西南石油大学 一种基于碳纳米管的超支化聚合物及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101721716A (zh) * 2009-11-13 2010-06-09 东华大学 负载纳米金颗粒的树状大分子ct靶向造影剂及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101721716A (zh) * 2009-11-13 2010-06-09 东华大学 负载纳米金颗粒的树状大分子ct靶向造影剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王龙刚: "树状大分子的表面改性及其生物相容性研究", 《2015中国化工学会第4分会场——生物化工技术创新与产业发展研讨会》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776606A (zh) * 2019-10-31 2020-02-11 西南石油大学 一种改性壳聚糖/氮氧支化单体功能化聚合物及其制备方法和应用
CN110776606B (zh) * 2019-10-31 2022-01-07 四川瑞冬科技有限公司 一种改性壳聚糖/氮氧支化单体功能化聚合物及其制备方法和应用
CN113024747A (zh) * 2021-03-30 2021-06-25 西南石油大学 一种基于碳纳米管的超支化聚合物及其制备方法
CN113024747B (zh) * 2021-03-30 2022-04-19 西南石油大学 一种基于碳纳米管的超支化聚合物及其制备方法

Also Published As

Publication number Publication date
CN107081171B (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
EP2658896B1 (en) Biocompatible agent for dispersing nanoparticles into an aqueous medium using mussel adhesive protein-mimetic polymer
TWI400088B (zh) 藥物載體原料及其製備方法和使用方法
CN100417417C (zh) 表面修饰疏水改性壳寡糖聚合物载药胶团及其制备方法
Wang et al. Highly stable and biocompatible dendrimer-encapsulated gold nanoparticle catalysts for the reduction of 4-nitrophenol
CN108403641B (zh) 一种载药纳米材料及其制备方法
Khine et al. Photo‐Induced Modification of Nanocellulose: The Design of Self‐Fluorescent Drug Carriers
CN110882216A (zh) 一种肿瘤靶向复合纳米酶材料及其制备方法和应用
Liu et al. Cell membrane-inspired polymeric micelles as carriers for drug delivery
CN107081171A (zh) 两性离子化树状大分子包裹金的纳米粒子的制备方法
Poon et al. Fluorescent Labeling and Biodistribution of Latex Nanoparticles Formed by Surfactant‐Free RAFT Emulsion Polymerization
CN108672694B (zh) 一种增强金纳米团簇荧光强度和稳定性的方法
EP1835888A1 (en) Cholanic acid-chitosan complex forming self-aggregates and preparation method thereof
Yin-Ku et al. Photo and redox dual-stimuli-responsive β-cyclodextrin-ferrocene supramolecules for drug delivery
CN117503945B (zh) 一种基于席夫碱键的超分子自组装纳米颗粒的制备方法及应用
CN108311709B (zh) 一种金纳米刺及其制备方法和应用
CN112089838B (zh) 肿瘤微环境响应的黑磷纳米凝胶药物及其制备方法和应用
Zeng et al. General and facile synthesis of robust composite nanocrystals with natural peach gum polysaccharide
CN108524942A (zh) 一种基于灵芝多糖-组氨酸结合物的pH敏感型载药纳米粒子及其制备方法
CN108672697A (zh) 一种靶向聚酰胺-胺树状大分子包裹纳米金的制备方法
Sarkar et al. Hemin-based cell therapy via nanoparticle-assisted uptake, intracellular reactive oxygen species generation and autophagy induction
Wang et al. A strategy for prompt phase transfer of upconverting nanoparticles through surface oleate-mediated supramolecular assembly of amino-β-cyclodextrin
CN109718382A (zh) 一种纳米药物的制备方法、由此得到的纳米药物及其应用
Hu et al. Synthesis of pH-responsive polyzwitterions for activated cellular uptake and tumor accumulation of gold nanoparticles at tumorous acidity
Khodadi et al. A Nanocarrier based on protein and reduced graphene oxide for sustained release and improvement of carboplatin efficacy in cancer treatment
CN103877585A (zh) 壳聚糖衍生物纳米粒子和载药纳米粒子及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant