CN107076834A - 具有增大的多普勒能力的雷达操作 - Google Patents

具有增大的多普勒能力的雷达操作 Download PDF

Info

Publication number
CN107076834A
CN107076834A CN201580040707.8A CN201580040707A CN107076834A CN 107076834 A CN107076834 A CN 107076834A CN 201580040707 A CN201580040707 A CN 201580040707A CN 107076834 A CN107076834 A CN 107076834A
Authority
CN
China
Prior art keywords
spectrum
pulse
phase
constant
apart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580040707.8A
Other languages
English (en)
Other versions
CN107076834B (zh
Inventor
罗伯特·W·李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN107076834A publication Critical patent/CN107076834A/zh
Application granted granted Critical
Publication of CN107076834B publication Critical patent/CN107076834B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/581Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • G01S7/2886Coherent receivers using I/Q processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • G01S7/2923Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods
    • G01S7/2926Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods by integration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

一种方法可以包括:生成以T秒的脉冲间间隔的、宽度为t秒的N个恒定频率脉冲的重复序列以用于传输,其中该序列中的每个脉冲具有根据二次相位序列的特定恒定相位,该相位在第一调制意义中被应用于每个脉冲。该方法还可以包括利用与第一调制意义相反的第二调制意义来调制从反射所述N个恒定频率脉冲的传输的重复序列的一个或多个对象接收到的回波能量的相位。该方法还可以包括根据经调制的接收到的回波能量产生所接收到的回波能量的作为反射对象的距离r的函数的、大小等于1/NT Hz的倍数的N个唯一且离散的频率转换,该频率转换可以保留接收到的回波能量的谱,从而结合复合信号形成频率谱。

Description

具有增大的多普勒能力的雷达操作
技术领域
本公开涉及雷达系统。
背景技术
众所周知的是,脉冲式多普勒雷达系统对不模糊距离与速度有限制,在该限制下,不模糊速度能力的增大引起不模糊距离能力的减小,并且反之亦然。实际上,这意味着天气雷达不能够表征存在于恶劣天气事件(诸如,龙卷风)中的速度。扩大天气雷达的不模糊速度距离的方法包括使用多个脉冲重复频率,但是这种方法不能够表征在龙卷风中遭遇到的复杂谱。
发明内容
在一个实施例中,一种方法,用于使用来自一个或多个反射对象的波能量反射、通过来自该反射对象的反射谱特性来表征这些对象的某些性质,该方法可以包括:生成以T秒的脉冲间间隔的、宽度为t秒的N个恒定频率脉冲的重复序列以用于传输。该序列中的每个脉冲可以具有根据二次相位序列的特定恒定相位,该相位可以在第一调制意义中被应用于每个脉冲。该方法可以包括:在每个接收子间隔期间通过用于N个恒定频率脉冲的传输的重复序列的相同二次相位序列、利用与该第一调制意义相反的第二调制意义来调制从反射N个恒定频率脉冲的传输的重复序列的一个或多个对象接收到的回波能量的相位,使得以往返行程回波时间(round-trip echo time)T的离散单元来测量的、应用于从特定距离r处的特定反射对象反射的回波能量的净相位调制可以是传输的脉冲在它们的传输时间处的相位与应用于从距离r接收到的回波能量的相位之间的差别,其处于该差别任一意义。该方法可以包括:根据经调制的接收到的回波能量产生接收到的回波能量的作为反射对象的距离r的函数的、大小等于1/NT Hz的倍数的N个唯一且离散的频率转换,该频率转换可以保留接收到的回波能量的谱,从而结合复合信号形成频率谱。
在另一实施例中,一种系统可以包括序列发生器、调制器和信号处理器。该序列发生器可以被配置成生成以T秒的脉冲间间隔的、宽度为t秒的N个恒定频率脉冲的重复序列以用于传输,其中该序列中的每个脉冲具有根据二次相位序列的特定恒定相位,该相位在第一调制意义中被应用于每个脉冲。该调制器可以被配置成在每个接收子间隔期间通过用于生成以用于传输的信号的相同二次相位序列、利用与该第一调制意义相反的第二调制意义来调制从反射该N个恒定频率脉冲的传输的重复序列的一个或多个对象接收的回波能量的相位,使得以往返行程回波时间T的离散单元来测量的、应用于从特定距离间隔r处的特定反射对象反射的回波能量的净相位调制可以是传输的脉冲在它们的传输时间处的相位与应用于从距离r的接收到的回波能量的相位之间的差别,其处于该差别的任一意义。该信号处理器可以被配置成根据经调制的接收到的回波能量产生接收到的回波能量的作为反射对象的距离r的函数的、大小等于1/NT Hz的倍数的N个唯一且离散的频率转换,该频率转换可以保留接收到的回波能量的谱,从而结合复合信号形成频率谱。
在另一实施例中,一种计算机程序产品可以包括至少一个计算机可读存储介质,该介质具有以其体现的计算机可读程序指令。当该计算机可读程序指令被回波测距系统的信号处理系统的处理器读取时,该指令可以被配置成生成以T秒的脉冲间间隔的、宽度为t秒的N个恒定频率脉冲的重复序列以用于传输,其中该序列中的每个脉冲具有根据二次相位序列的特定恒定相位,该相位在第一调制意义中被应用于每个脉冲。当该计算机可读程序指令被处理器读取时,该指令可以进一步被配置成在每个接收子间隔期间通过用于N个恒定频率脉冲的传输的重复序列的相同二次相位序列、利用与第一调制意义相反的第二调制意义来调制从反射该N个恒定频率脉冲的传输的重复序列的一个或多个对象接收的回波能量的相位,使得以往返行程回波时间T的离散单元来测量的、应用于从特定距离r处的特定反射对象反射的回波能量的净相位调制可以是传输的脉冲在它们的传输时间处的相位与应用于从距离r接收到的回波能量的相位之间的差别,其处于该差别的任一意义。当该计算机可读程序指令被处理器读取时,该指令可以进一步被配置成根据经调制的接收到的回波能量产生接收到的回波能量的作为反射对象的距离r的函数的、大小等于1/NT Hz的倍数的N个唯一且离散的频率转换,该频率转换可以保留接收到的回波能量的谱,从而结合复合信号形成频率谱。
附图说明
图1是一般化回波定位系统的框图,该一般化回波定位系统用于生成具有相位序列的一个或多个相干脉冲通道、接收并且处理这种序列的反射。
图2是针对单门雷达的传输时间、接收时间和距离门覆盖的示例的图,该图示出占空比和距离覆盖范围。
图3是针对三门雷达的传输时间、接收时间、以及距离门覆盖的示例的图,该图示出占空比和距离覆盖范围。
图4是针对连续波(CW)雷达的传输时间、接收时间、以及距离门覆盖的示例的图,该图示出占空比和距离覆盖范围。
图5是微波多普勒雷达系统的示例的框图,该微波多普勒雷达系统用于生成具有规定相位序列的一个或多个相干微波脉冲通道,接收该相位序列,并且处理接收到的序列中的一个或多个通道。
图6是中频(IF)波形合成器的示例的框图,该IF波形合成器用于在IF频率处生成具有规定相位序列的脉冲序列。
图7是微波接收器的IF部分的示例的框图,该IF部分用于在一个或多个通道中进行IF滤波、A/D转换、数字IF滤波、复杂解调,并且独立地控制每个输出通道的相位。
图8是描绘使用图1或图5的系统中的任一个的方法的示例的流程图。
图9是可以由图8的方法产生的图表,该图表图示了以谱形式呈现的、针对具有不模糊速度的目标的距离响应的示例,其示出谱特征和目标参数之间的直接关系。
图10是描绘使用图1或图5的系统中的任一个的方法的另一示例的流程图。
图11是可由图10的方法产生的图表,该图表图示了以谱形式呈现的、针对具有适度模糊速度但是没有谱重叠的目标的距离响应的示例,其示出使用两个相位序列,两个相位序列中的一个相位序列反转多普勒频移的意义,为清楚起见,以反向取向来绘制上曲线,其图示适度多普勒模糊的分辨率。
图12是描绘使用图1或图5的系统中的任一个的方法的另一示例的流程图。
图13是可由图12的方法产生的图表,该图表图示了以谱形式呈现的、针对具有严重模糊速度的目标的距离响应的示例,其示出由于相对宽的谱宽度引起的若干个门上完全模糊的情形。
图14是可以由图12的方法产生的另一图表,该图表图示了针对图13中的情形的距离响应的示例,其中通过修改相位序列参数M而实现置换的距离顺序,从而允许进行在图13中完全叠加(overlie)的四个目标的反射的参数估计。
图15是可以由图12的方法产生的另一图表,该图表图示了针对图14中图示的情形的距离响应的示例,其中具有能够根据图13的所移除(图中以虚线示出移除)的谱来参数化的谱峰,其中四个剩余的谱峰(距离17至20)准备用于参数化。
图16是描绘使用图1或图5的系统中的任一个的方法的另一示例的流程图。
图17是可以由图16的方法产生的图表,该图表图示了针对来自图13的数据的距离响应的示例,其中针对参数M的若干个值的谱叠加,每个谱被偏移使得针对距离门18的谱值在M=1的门18的定位处对齐。
图18是可以由图16的方法产生的另一图表,该图表图示了通过在每个谱频率处选取最小的响应而从针对图17的数据取得的针对距离18的距离响应的示例,从而使针对在距离18处的信号的估计未被其它距离门污染。
图19是可以由图16的方法产生的另一图表,该图表图示了如根据来自图13的数据所创建的距离响应的示例,其中每个距离门通过用于创建图18的处理来估计,其中所有距离响应被完全消除模糊性。
图20是描绘使用图1或图5的系统中的任一个的方法的另一示例的流程图。
图21是可以由图20的方法产生的图表,该图表图示了如根据图13的数据所创建的距离响应的示例,其中所有距离响应被完全消除模糊性。
图22是可以由图16的方法产生的另一图表,该图表图示了图17的距离响应的示例,但是该距离响应具有在门18处显著增大的信号的多普勒频移,用于展示利用相对大的多普勒频移恢复参数信号的示例,该多普勒频移针对M的各种值在主要谱中与来自其它距离门的信号高度重叠。
图23是可以由图16的方法产生的另一图表,该图表图示了图17的距离响应,但是该距离响应具有在门18处显著增大的信号的谱宽度,用于展示恢复相对宽的信号的参数的示例,该相对宽的信号针对M的各种值在主要谱中与来自其它距离门的信号高度重叠。
图24是其中可以实现说明性实施例的说明性数据处理系统的示意图。
具体实施方式
本文中公开了用于对简单对象或复杂对象进行回波测距的系统与方法,由此可以在谱域中分析回波的特性以提供关于对象的位置、回波强度、径向速度、相对运动、和/或其它性质的信息。
图1是用于具有单静态操作、双静态操作和/或多静态操作的这种回波测距的示例性一般化系统的框图,该系统大体地被示出为100。回波测距系统100可以包括传输器101和接收器102。传输器101可以包括中频(IF)序列发生器103、混合器105、载波发生器(或载波频率振荡器)106、分离器107、滤波器108、放大器109以及信号换能器110。接收器102可以包括换能器113、放大器114、滤波器115、混合器116、IF滤波器117、调制器(例如,正交解调器)118以及信号处理器119。在这个示例中,该传输器和接收器共享序列发生器103、载波发生器106、分离器107以及信号处理器119。序列发生器103、调制器118以及信号处理器119可以被包括在信号处理系统120中。
传输器101也可以被称为第一电子装置。传输器可以生成具有共同第一频率的多个传输脉冲。例如,传输器101可以创建和/或传输具有共同第一频率的脉冲的多相位编码序列(或脉冲的相位编码序列)。这种相位编码的序列可以由相位序列发生器103在适当的和/或合适的IF频率处生成。IF相位序列信号可以被发送至调制器118以及混合器105(例如,被发送至混合器105的输入端口)。
混合器105的另一输入端口可以由载波频率发生器106经由分离器107来馈送。混合器105可以将IF相位信号与载波信号进行混合以产生和信号或差信号中的任一个,并且实际上利用IF传输相位信号中不同的传输相位来调制载波信号。然而,要被传输的信号的调制可以通过调制(例如,来自信号处理器119、在信号处理器119处、和/或由信号处理器119来实施的)基带信号、(例如,来自序列发生器103、在序列发生器103处、和/或由序列发生器103来实施的)IF信号和/或(例如,来自载波发生器106、在载波发生器106处、和/或由载波发生器106来实施的)RF信号而被产生。
处于系统传输频率的混合器105的输出可以由滤波器108滤波,以选择通过混合器105将IF频率与载波发生器频率进行混合的结果的和信号或差信号中的任一个,这可以产生经滤波的传输信号。然后经滤波的传输信号可以被放大器109放大,以产生输出传输信号。
输出传输信号可以经由信号换能器110被传输至传输介质121中。该传输介质可以是传导由信号换能器110换能的所传输的信号的任何介质。例如,该传输介质可以是固体材料(诸如,陆地)、液体(诸如,水)、或气体(诸如,空气)。可以从反射所传输的信号的一个或多个对象122反射从换能器110传输的信号,该对象可以包括传输介质的折射率的变化。
然后,在该示例中看到,传输器101传输具有共同载波频率的多个传输脉冲。利用不同的传输相位来调制该传输脉冲以用于在传输介质121中进行传输,用于确定反射从换能器110传输的至少一个脉冲的一个或多个对象122的至少一个参数。在一些实施例中,系统100可以被配置成生成具有光频、射频或音频的多个传输脉冲。在一些实施例中,该系统可以被配置成传输多个传输脉冲,作为电磁波或作为机械波。
接收器102也可以被称为第二电子装置。该接收器可以接收通过传输介质121中的一个或多个反射对象122中的每个对多个传输脉冲进行反射所产生的反射脉冲。例如,接收器102可以接收和/或分析从反射对象反射的传输的信号的回波。具体地,回波可以被换能器113接收,以产生接收信号。然后该接收信号被放大器114放大并且被滤波器115滤波。该接收信号可以被描述为与回波相关联的信号。
与回波相关联的信号(例如,经滤波的放大接收信号)可以被发送至混合器116。来自载波发生器106的信号(例如,第三信号)的一部分(或片段)可以经由分离器107被发送至混合器116。混合器116可以经由分离器107将与回波相关联的信号和来自载波发生器106的载波信号的一部分进行混合,用于产生表示应用于传输脉冲的传输相位的IF信号。
例如,IF传输相位信号可以由IF滤波器117滤波并且被发送至调制器118。调制器118可以利用当前正在由IF相位序列发生器103产生的当前相位信号来处理该IF传输相位信号,以产生相位改变信号。解调的符号可以使得被应用于传输器101中的信号的相位偏移和应用于接收器102中的信号的相位偏移的和表示由IF相位序列发生器103在下面两个时间点处所生成的相位序列的差:一个时间点为信号被传输器101传输的时间,并且另一时间点为来自反射对象的回波返回至接收器102的时间。调制器118的输出信号可以是基于经解调的信号并且可以被数字化以用于谱分析的复杂时间序列。
在一些实施例中,系统100可以被配置成在产生第一复合信号频率谱之前对多个经调制的接收脉冲进行相干集成。在一些实施例中,该系统可以被配置成通过利用具有传输相位的相干调制信号对非相干的载波中的每个脉冲进行调制来生成多个传输脉冲。
系统100可以根据第一复合信号频率谱确定反射所传输的脉冲中的至少一个的一个或多个对象122中的第一反射对象的至少一个参数。例如,调制器118的输出信号可以例如以下面进一步描述的方式包含下述数据:该数据可以指示对象122的强度、对象122的径向速度和/或复杂时间序列谱(例如,第一复合信号频率谱)中的内部运动的参数。调制器118的输出信号可以被发送至信号处理器119。信号处理器119可以根据第一复合信号频率谱确定至少第一反射对象的至少一个参数。
回波测距系统100的性能参数可以通过所传输的信号的时序特性和相位特性来确定。所传输的信号也可以被称为波或波形。
系统100可以被配置成从在第一位置中的换能器110传输传输脉冲。系统100可以被配置成在该第一位置处(诸如,在单静态操作模式中)或者在与第一位置分隔的一个或多个第二位置处(诸如,在双静态操作或多静态操作模式中)接收接收脉冲。例如,换能器113可以被集成在第一位置中的换能器110中,或者,可以位于与换能器110的位置分隔开的第二位置处。
图2示出可适合于回波测距系统100的单静态操作的一种类型的传输波形。在图2中,可以假设最大的占空比。图2中的顶部绘图示出具有均匀脉冲宽度t和脉冲重复时间T的传输脉冲的序列150。序列150可以限定传输时段并且可以对应于从图1的传输器101的换能器110传输的信号。每个脉冲可以在相应的脉冲上具有恒定的相位Ф(n),但是,该相位可以根据规定序列而逐个脉冲不同。例如,由系统100(见图1)所生成的多个传输脉冲可以包括(或者可以是)传输脉冲序列,其中脉冲序列中的每个脉冲具有带有特定相位的第一频率。
图2中的中间绘图示出当接收器102(参见图1)能够在没有来自传输器101的干扰的情况下操作时的间隔152。换言之,图2示出对应于当序列150的脉冲没有被传输时的时间的间隔152。间隔152可以是接收时段和/或可以限定接收时段。
图2中的下绘图示出与间隔152相关联的接收时段和与序列150相关联的传输时段的(和/或之间的)结果卷积(convolution)154。卷积154可以图示图1的系统100的距离灵敏性。
图3示出使用三个示例性距离门(被标识为距离门G1、G2、G3)的减小的占空比传输器的脉冲序列,该距离门可以适合于并入图1的系统100中。每个距离门可以使用相同的相位序列并且可以被独立处理。
图3中的顶部绘图示出具有均匀脉冲宽度t和脉冲重复时间T的传输脉冲的序列160。序列160可以对应于从图1的传输器101(例如,从换能器110)传输的信号。在其期间传输序列160中的每个脉冲的时间段可以被视为传输时段。每个脉冲可以在相应的脉冲上具有恒定的相位Ф(n),但是该相位可以根据规定序列而逐个脉冲不同。
图3中的中间绘图示出当接收器102(参见图1)能够在没有来自传输器101的干扰的情况下操作时的间隔162。例如,图2示出对应于当序列160的脉冲没有被传输时的时间的间隔162,并且表示接收时段。间隔162中的每个间隔可以对应于距离门G1、G2或G3的接收。例如,每个距离门可以对应于对象与换能器110和113(见图1)的组合的距离的范围。第一距离相比于第二距离和第三距离可以更靠近换能器,并且第二距离相比于第三距离可以更靠近换能器113。
图3中的下绘图示出与间隔162相关联的接收时段和与序列160相关联的传输时段之间的结果卷积164。卷积164可以图示图1的系统100的距离灵敏性。
因此,看到的是,系统100(和/或系统500—见图5)可以被配置成以分隔的间隔生成传输脉冲,该间隔在传输脉冲之间的持续时间是每个传输脉冲的持续时间的多倍。系统100和/或500中的任一个可以被配置成在针对多个门的连续传输脉冲之间接收接收脉冲,每个门的持续时间对应于传输脉冲的持续时间。
图4示出针对可以适合于并入于图1的系统100中的双静态或多静态配置的脉冲序列。图4中的顶部绘图示出具有均匀脉冲宽度t和脉冲重复时间T的传输脉冲的序列170。序列170可以出现在传输时段内并且对应于从图1的传输器101(例如,从换能器110)传输的信号。每个脉冲可以在相应的脉冲上具有恒定的相位Ф(n),但是,该相位可以根据规定序列而逐个脉冲不同。序列170的传输的(或传输器)脉冲可以是连续的,在每个间隔t内具有分离的、恒定的相位。在图4中图示的示例中,间隔t等于脉冲重复时间T。
图4中的中间绘图示出可以在对应于序列170的传输时段的预定义接收时段内被接收的间隔172。图4中的下绘图示出与间隔172相关联的接收时段和与序列170相关联的脉冲传输时段的结果卷积174。卷积174可以图示图1的系统100的距离灵敏性。
在一些实施例中,预期的反射对象与传输传输脉冲的传输器(例如,换能器110)的近似距离可以是已知的。系统可以被配置成在第一时间段内连续生成多个传输脉冲,该第一时间段小于传输脉冲行进至预期反射对象以及被反射的传输脉冲从该预期反射对象行进至电子接收器装置的时间段;并且在第一时间段之后,在第二时间段内接收接收脉冲,该第二时间段至少与第一时间段一样长。在一些实施例中,该系统可以被配置成忽略在第一时间段期间所接收到的任何接收脉冲。
在图2至图4中,传输器脉冲被示出为矩形。然而,在其它实施例中,传输器脉冲可以不是矩形。例如,传输器脉冲可以具有可以减小所需的信号带宽的其它形状。
在系统100(见图1)中生成多个传输脉冲可以包括系统100根据二次方程式来设定连续传输器脉冲的相位。例如,相位序列(例如,由传输器101产生的经相位编码的脉冲序列)可以包括一般二次序列,诸如,方程式(1)的二次序列,其中,n为所传输的脉冲的顺序指数(sequential index):
方程式(1):Ф(n)=M(an2+bn+c)。
该一般二次序列可以被应用于所传输的和接收到的信号(或波形)两者,其中,n可以为所传输的脉冲的顺序指数(或顺序号),M可以为与N没有余因子的整数,其中针对基本情况M=1,并且系数a、b、c可以以相位的单位(诸如,弧度、度或其它角度单位)为单位,处于间隔[0,2π]中,当考虑以一个相位循环为模时,超出该间隔的序列Ф(n)会“折回”。Ф可以为以弧度为单位的相位,并且n可以表示持续时间为t的对应脉冲的序列号且可以为位于1与N之间的整数,其中,N可以为等于重复脉冲序列中的脉冲数目的整数。
如果接收系统混合器(例如,混合器116)被配置成使得以给定时间间隔n的复杂时间序列的相位为IF相位序列发生器103的相位减去来自IF滤波器117的接收到的(或接收)信号输出的相位,则可以利用方程式(2)来确定仅由于重复应用相位序列而引起的在距离延迟r并且以T为单位来表达的时间n+r处被应用于回波的净相位调制。
方程式(2):Фif(n)=Ф(n+r)-Ф(n)。
方程式(2)右边的第一项(即,Ф(n+r))可以表示在回波被接收时的时间n+r处的本地振荡器相位(例如,在该示例中的IF相位序列发生器103的本地振荡器相位)。方程式(2)右边的第二项(即,Ф(n))可以表示当脉冲在时间n处被传输(例如,从信号换能器110传输)时的传输器相位。假如N为质数并且a=π/N个弧度,则针对在[1,N]内的不同值M,该相位序列将是不同的且唯一的。可以使用方程式(1)来扩展该差,从而导致方程式(3)。将领会到的是,该序列中的其它相位可以用于确定相位差,该一个或多个相位将与传输相位和接收相位中的一个或两者偏移。
方程式(3):Фif(n)=2Manr+不随着n改变的项。
不随着n改变的项可以产生不随时间改变的相位偏移,并且可以被忽略。来自距离r的回波信号可以呈现相位偏移,该相位偏移每个时间间隔T增加量2Mar,当n从n增加至n+1时,该相位偏移可以等价于由方程式(4)描述的在距离r处的频率偏移F。
方程式(4):F(r)=2Mar/T Hz。
频率偏移F(r)可以被解释为以1/T Hz为模。因此,来自时间宽度T的每个距离间隔的回波可以被线性并且离散地转变成从正交调制器118输出的复杂时间序列的谱中的相应频率间隔。
因为复杂时间序列的取样间隔为T秒,所以谱的不模糊频率范围可以被限制为1/THz,并且谱偏移F可以被解释为以1/T Hz为模。因为对于M=1、频率偏移可以随着门数目r线性增加,所以r的最大值可以通过求解产生每间隔T为2π弧度的相位偏移的r值来确定。对于其中M=1的情况,求解可以产生等于1/T Hz的频率偏移(其等价于每取样时间T 2π弧度)的值r,如方程式(5)中对于其中传输器和接收器离反射对象或目标相同距离的情况示出的:
方程式(5):2armax=2π弧度
方程式(6):rmax=π/a
使用N作为重复脉冲序列的长度,
方程式(7):rmax=N且a=π/N。
然后,对应于最大距离的往返行程时间延迟为NT,超出NT回波可以折回至该谱中的下范围,并且距离门的数目可以为N。整数M的较高值可以不改变最大的不模糊距离,而是简单地可以在频率谱中对距离进行重新排序。
对象回波可以不仅具有由于相位序列引起的频率偏移(由方程式(4)表达),而且该对象回波可以具有由于对象相对于换能器(例如,换能器110、113)或天线(例如,天线508—参见图5)的运动引起的多普勒频率偏移,以及由于对象的内部运动引起的频率扩展。在系数a的值设定为π/N个弧度的情况下,如果来自每个距离间隔r的回传的多普勒频率偏移落在被解释为以1/T Hz为模,中心位于频率F处,宽度等于dF的谱窗口内,则来自每个距离间隔r的回传可以是不模糊的,其中,dF由方程式(8)确定。
方程式(8):dF=2a/T Hz且F=2Mar/T Hz。
以该方式,a的值可以被选择为设定期望的最大距离间隔并且可以因此建立不模糊速度的限定距离。
如下面讨论的以及如附图中图示的,违背该严格的不模糊速度间隔可以被调解。对象距离、多普勒频移和谱宽度的转变是线性转变,因此对象谱的全部特征可以被忠实地表现在经转变的频率谱中。在其中对象回波非常宽广或者远离该对象回波的严格不模糊定位,但是该对象回波没有叠加来自其它距离的回波的谱情况下,可以直接根据谱推断对象参数。但是如果该对象回波部分或完全被其它对象谱叠加,则其仍然可能恢复对象回波的参数。由于参数M更改谱顺序的能力,这是可能的。
方程式(1)中与相位偏移相乘的整数参数M可以被应用于每个所传输和接收到的脉冲。例如,如果M=-1,则应用于所传输和接收到的脉冲的相位偏移可以为负,并且谱中的距离的顺序可以相反(例如,以1/T Hz为模的谱可被视为在零与+1/T Hz之间,其中距离以相反的频率顺序延续)。例如,如果存在具有对象回波谱的许多连续距离门,则这些距离门中的每个具有大于以上方程式(8)中暗示的极限的多普勒频移,但是该谱没有严重或显著重叠;可能不可能或难以根据单个数据集(例如,由调制器118产生的单个复杂时间序列)准确地求解对应于谱峰的真实距离。然而,通过在M=-1的情况下获取另一数据集,多普勒频移以及由于相位序列引起的频率偏移之间的关系的符号可以是相反的,这可以提供额外的自由度来求解针对每个谱特征的真实距离。
另外,与N没有共同因子的较高整数值M可以完全对频率对距离关系重新排序。例如,这种较高整数值M能够通过将这些特征彼此分开移动至谱的其它区域来分离连续分隔的、宽的并且重叠的谱特征。如果没有分离,则这些特征可能以其它方式彼此重叠并且不可能或难以准确求解。例如,在M=7的情况下,谱中的每个距离门可以被放置在与相应的距离门的相邻回波间隔的额定距离的七倍的频率处,以最大频率1/T Hz为模。因此,一组拥挤的(crowed)、宽的特征可以被分离每个距离门额定允许的谱窗口的值的七倍。因为频率对距离关系可以通过与N没有共同因子的整数值M来完全重新排序,所以N为质数可能是有利的。
由于频率对距离关系的这种重新排序,可以有可能恢复真实的距离值、多普勒频移、谱宽度,和/或其它谱特征,甚至对于密集聚集的、非常宽的、和/或高度多普勒频移的谱特征的情况。在一些实施例中,如果仅有少数的距离门受到密集聚集的谱特征、相对宽的谱特征、和/或高度多普勒频移的谱特征的影响,则可以有可能恢复真实的距离值、多普勒频移、谱宽度,和/或其它谱特征。
将领会到的是,方程式(1)中的类型的二次相位序列经常被使用在匹配滤波器脉冲压缩雷达(matched-filter pulse compression radar)中,在该雷达中脉冲序列总是以N个脉冲的组被处理,以利用序列的正交特性。然而,除了置换数据的距离顺序之外,本公开的系统与方法可以不使用脉冲序列的正交特性,而是可以利用由任意长度(其不限于的N的倍数)的扩展数据集所产生的谱处理数据。数据、产生的谱、和/或数据集可以被窗口化以改进谱分辨率和谱的动态范围。
针对该技术的示例,参见优选微波实现方式的以下描述。
图5是回波测距微波多普勒雷达系统或收发器(大体以500进行指示)的实施例的框图。在天气雷达中,如延续自雷达的旧式使用地那样将反射对象称为目标是常见的。因此,在以下描述中,术语目标被视为与反射对象同义。
雷达系统500的传输器部分可以包括IF波形发生器501、RF本地振荡器502、混合器503、RF滤波器504、射频(RF)放大器505、循环器506、定向耦合器507以及以天线508形式的换能器。雷达系统500的接收器路径可以包括天线508、耦合器507、循环器506、低噪声放大器(LNA)509、混合器510、一个或多个IF数字接收器511以及数字信号处理器512。雷达系统500的传输器取样通道可以包括定向耦合器507、混合器513以及IF数字接收器514。
在双极化雷达系统的实施例中,雷达系统500的全部或一部分可被复制以提供第二极化通道。
雷达系统500可以是收发器,该收发器使用用于传输与接收的单个天线。雷达系统500可以包括共享由RF本地振荡器502产生的RF信号的传输器和接收器。在一些示例中,可以使用分离的传输天线和接收天线。在一些示例中,可以使用分离的传输器和接收器。分离的传输器和接收器可以被定位于相同位置处或者被定位于分离或遥远的位置处。
系统500的传输部分(也称为第一电子装置)可以被配置成生成利用不同的传输相位来调制用于在传输介质518中进行传输的、具有共同第一频率的多个传输脉冲516,以确定一个或多个反射目标520的至少一个参数。目标520可以在传输介质518中,在天气雷达的情况下该传输介质518是周围空气。目标520可以反射至少一个传输的脉冲序列516。例如,该系统的传输部分可以包括IF波形发生器501。IF波形发生器501可以在一个或多个IF频率产生具有恒定脉冲重复频率(PRF)和脉冲宽度的脉冲波形。波形发生器501(下面被进一步描述)可以调制波形的相位。例如,波形发生器501可以根据方程式(1)中所限定的二次相位序列和/或利用不同载波上使用的整数常数M的分离值、独立地在每个IF频率处在逐个脉冲的基础上调制由RF本地振荡器502输出的RF波形的相位。这种调制可以允许系统500确定一个或多个目标的额定不模糊距离和额定不模糊多普勒频移。
发生器501所产生的脉冲式波形(或IF脉冲)可以被馈送至混合器503。IF脉冲可以在混合器503中与由RF本地振荡器502产生的射频(RF)信号组合,以创建微波频率传输信号或驱动信号。微波频率驱动信号在被馈送至雷达放大器505之前可以通过滤波器504被滤波。放大器505可以放大该驱动信号,并且将该驱动信号馈送至循环器506。然后,循环器506可以将该驱动信号馈送至耦合器507。耦合器507可以将该驱动信号馈送至雷达天线508。然后,雷达天线508传输对应于该驱动信号的传输脉冲序列。
定向耦合器507上的取样端口可以允许外出脉冲(例如,对应于驱动信号的传输脉冲516)的取样连同由本地振荡器502所产生的RF信号一起被馈送至混合器513。混合器513可以根据来自耦合器507的驱动信号和来自振荡器502的RF信号产生混合IF取样信号。该混合IF取样信号可以从混合器513输出。该混合IF取样信号可以被输入至IF数字接收器514中,以允许可选择地实现预失真校正。该预失真校正可以从IF数字接收器514被馈送至波形发生器501,以生成改进RF放大器505的线性度的IF波形。
当雷达系统500生成多个RF载波时,可能产生由于RF放大器505中的互调失真引起的不想要的载波。这可以通过下述而避免:使用多(并行)组波形发生器501、混合器503、滤波器504以及放大器505(统称为图5中示出的RF波形发生器524)并且在高线性度无源组合器526(以虚线示出)中将该多个放大器单元的输出相加。然后,组合器526的输出可以进入循环器506。这种方案可以允许使用高效率饱和放大器505,否则,如果在图5的框架中使用该高效率饱和放大器505则可能导致严重或过度的互调失真,从而在多载波输出上产生不想要的额外边带,并且因而产生在接收到的信号谱中的潜在伪信号。
系统500的接收器部分(也称为第二电子装置)可以被配置成接收通过一个或多个目标520中的每个反射多个传输脉冲516而产生的反射脉冲522。雷达天线508可以接收通过一个或多个目标520中的每个反射传输脉冲516而产生的一个或多个接收脉冲522。系统500的接收器部分还可以包括耦合器507、循环器506、LNA 509、混合器510、本地振荡器502、和/或IF数字接收器511。被天线508接收的接收脉冲522(或信号)可以传递通过定向耦合器507并且可以被馈送至循环器506,该接收脉冲可以在循环器506处传递至LNA 509。LNA 509可以将经放大的接收脉冲馈送至混合器510。由本地振荡器502产生的RF信号也可以被馈送至混合器510,混合器510可以将接收脉冲与RF载波信号进行混合,以形成表示接收到的脉冲的相位的IF信号。该IF信号可以被输入至IF数字接收器511。
下面进一步描述的,IF数字接收器511可以接收反射信号的一个或多个IF通道并且使该IF通道数字化。IF数字接收器511可以对每个通道进行滤波,以建立信号带宽。IF数字接收器511可以根据方程式(1)中所限定的二次序列独立地调制每个通道中的每个IF脉冲的相位。IF数字接收器511还可以将IF信号解调为复杂基带水平(或时间序列)。IF数字接收器511可以将该复杂基带时间序列输出至数字信号处理器512。
数字信号处理器512可以被配置成根据经调制的接收脉冲序列产生第一复合信号频率谱,该第一复合信号频率谱表示每个接收脉冲522的传输相位与接收相位的关系。例如,该数字信号处理器可以被配置成根据第一复合信号频率谱确定反射所传输的脉冲的目标的至少一个参数。例如,信号处理器512可以实现诸如下面描述的一个或多个数学运算,以根据该复杂基带时间序列获得该目标的一个或多个性质,诸如,距离、强度、速度、和/或其它谱特性。然后,这些雷达产物可以被输出至诸如用于供操作者使用的图形用户界面和或数据库。数字信号处理器512可以以现场可编程门阵列(FPGA)、软件、或其它适当的形式来实现。
图6示出IF波形发生器501的示例性实施例。IF波形发生器501可以包括波形合成器601、预失真计算单元602、正交数字至模拟(D/A)转换器603、单边带(SSB)正交向上转换器混合器604、正交IF本地振荡器605、以及IF滤波器606。
波形合成器601可以由从IF数字接收器514(见图5)接收的时序和控制信号进行控制。从IF数字接收器514接收的控制信号可以建立一个或多个脉冲参数,诸如,PRF、脉冲宽度、和/或载波频率。波形合成器601可以从可选择的预失真计算单元602接收控制信号。预失真计算单元602可以响应于从IF数字接收器514接收的传输取样和同相位且正交(I/Q)的数据以用于产生表示由波形合成器601所产生的合成I/Q波形改变的控制信号。然后,波形合成器可以响应于这些控制信号而实现预失真校正,以改进RF放大器505(见图5)的线性度。该波形合成器可以产生处于选择的频率的载波信号(通常通过对已存储或已创建的数字波形进行直接数字转换),并且可以以正交形式将该载波信号发送至D/A转换器603。
然后,来自D/A转换器603的模拟输出可以被输入至SSB混合器604中,用于将模拟信号向上转换至IF频率。SSB混合器604的另一输入可以由正交本地IF振荡器605来提供,使得可以从向上转换SSB混合器604产生单边带输出。然后,来自SSB混合器604的SSB输出可以由IF滤波器606滤波,以用于由混合器503(见图5)向上转换至RF。
如果要使用数字预失真来使雷达功率放大器505线性化,则已被IF数字接收器514转换成复杂基带时间序列的放大器505的输出的取样可以被传递至预失真计算单元602。单元602的输出可以以针对波形合成器601所创建的波形的调整形式传递至波形合成器601。
图7示出IF数字接收器(大体以700进行指示)的示例性实施例。IF数字接收器700可以是IF数字接收器509或511中的任一个的示例。IF数字接收器700可以包括IF滤波器701、高速A/D转换器702、一个或多个数字IF滤波器703、复杂采样(decimation)元件704以及每通道相位控制模块705。
来自混合器510或513(参见图5)的模拟IF信号可以由IF滤波器701滤波并且由高速A/D转换器702转换成数字格式。来自转换器702的转换器数字输出可以被并行传递至一个或多个数字IF滤波器703,诸如,滤波器703-1、703-2和703-k,以针对每个RF通道(诸如,示出的通道1、2和k,其中,k可以为对应于所使用的通道数目的整数)建立雷达系统500(参见图5)的最终RF带宽。可以以硬件、固件和/或软件来实现数字滤波器703。
每个IF通道可以从IF波形发生器501(见图5)接收输入相位控制信号。该相位控制信号可以至少部分地基于由相位控制模块或其它系统控制器所生成的数据。
每个数字IF滤波器703的输出可以连接至复杂采样元件704。可以以硬件、固件和/或软件来实现复杂采样元件704。每个通道中的接收到的信号的相位可以根据下面描述的二次相位序列、使用提供至相位控制模块705的数据而被独立地调节。可以由相应的数字IF滤波器、相应的复杂采样元件、或分离的相位调节单元来执行该功能。
在复杂采样元件(或级)704中,每个通道中的数字序列可以被采样以产生复杂基带输出,用于传输至数字信号处理器512(见图5)。
数字信号处理器512可以被实现在任何适当的数字处理系统(诸如,包括FPGA或标准高速计算硬件的数字处理系统)中,该系统具有以数学项限定的并且以固件或软件实现的算法。
微波信号的生成和/或那些信号的接收可以通过实现期望的信号质量而被促进,诸如,建立于高标准的雷达系统典型的低相位噪声、宽动态范围以及低互调失真。
在操作中,系统100或500可以生成一个或多个恒定PRF RF脉冲的通道,该RF脉冲的相位利用方程式(1)形式的二次序列被调制,其中系数M和a特定于操作参数,从而根据方程式(6)-(8)来产生额定不模糊距离和速度间隔。多个数据通道可以在时间上顺序地、在多个RF载波上和/或在正交极化上获得。
来自雷达目标的回波可以在(多个)相同(或分离的)天线上被接收。该回波可以基本上通过与用于调制每个对应传输器通道的二次相位序列相同(尽管可能在时间上移位)的二次相位序列来调制,以针对每个通道产生复杂取样的时间序列,该时间序列可以通过傅立叶变换(或另外合适的方法)被转换以产生针对每个通道的复合信号频率谱。在接收时的相位调制的意义可以使得给定接收器取样所经历的总相位偏移等于在接收时间处被应用于表示接收到的脉冲相位的信号的相位调制与在传输时间处被应用于传输器脉冲的相位调制之间的差,如方程式(2)中所示。
由于所涉及的特定二次相位序列的性质,针对每个通道如此产生的频率谱可以复制所有目标的真实RF谱。每个目标信号谱可以通过其相应的幅度进行加权。每个目标谱可以偏移其相应的多普勒频移并且可以进一步在频率上偏移每距离门的特定(或预定)频率,如方程式(4)中所示。以这种方式,如果以频率轴为横坐标并且以强度为纵坐标来绘制,则水平轴表示距离,其中在每个距离门处绘制单独的谱,并且该谱从其额定地方偏移出现在该距离处的任何多普勒频移。
虽然下文继续使用分布式目标的天气雷达情况来例示本文中描述的设备、系统以及方法以其优选实现方式来使用,但是将领会到的是,本文中描述设备、系统以及方法也可应用于其它类型的雷达或目标;应用于其它类型的电磁或非电磁回波测距,无论是使用相干波还是具有相干调制的非相干波;以及应用于双静态配置和多静态配置的各种组合。
下文描述用于检测针对各种情况通过多普勒频率偏移和/或多普勒谱表征的对象回波和/或确定该对象回波的参数的各种方法。这些方法中的一个或多个可以是(或者被包括在)用于距离折叠雷达数据的一个或多个频域处理替换方案。这些方法可以由上面描述的设备(例如,系统100和/或500)和/或过程(例如,产生第一复合信号频率谱)中的一个或多个来实现。图8、10、12、16和20是描绘这些方法的示例的流程图并且可以对应于软件设计和/或固件设计。图9、11、13-15、17-19以及21-23是图示这些方法的各个步骤的表示性示例的图表。
在以下描述中,形成谱的操作能够通过本领域技术人员已知的任何合适方法来完成,包括:通过取基带I/Q数据序列的傅立叶变换的平方绝对值来形成功率谱,该谱被合适地窗口化以增加谱的分辨率和动态范围,其中数据序列长度被选择为适合于度量,而与常数N的值无关。
在以下描述中,确定谱参数的操作可以指代关于以下各项表征谱峰:回波距离、回波强度、回波多普勒频移、回波谱宽度、和/或可能有用的任何其它回波谱参数。除其它之外,该谱估计程序可以使用以下示例性数据集(A)-(D)中的一个或多个来表征针对每个距离门的谱:
(A)整个谱的窗口化部分,其受限于一个距离门周围的区域。这样的一段谱可以包含一个峰、具有叠加杂波峰的峰、两个混杂峰、和/或更复杂特征。从功率谱峰提取参数能够通过下述方式来完成:直接动差估计、通过最小平方和非线性最小平方来将谱特征拟合至高斯曲线或抛物线曲线、以及许多其它方法。
(B)这样的功率谱窗口化部分的逆傅立叶变换,其等于该部分谱的自斜方差函数。许多方法能够用于根据谱的自斜方差函数来确定该谱的参数,包括脉冲对算法和各种类型的多极谱估计。
(C)针对每个距离门,完整时间序列的复杂傅立叶变换的窗口化部分的逆傅立叶变换。合适的窗口可以限定包括一个特定门的时间序列的复杂谱的区域,该区域的逆傅立叶变换在时间分辨率T下等于时间序列,其可以允许使用不同的方法根据这种时间序列来确定在讨论中的门处的谱特征的参数。
(D)最小值谱的窗口化部分,诸如图18中例示的部分。这可以以与隔离的峰将被处理的方式相同的方式进行处理,从而将由最小化函数导致的信号强度减小考虑在内。
图8中描绘了概括地以800指示的示例性方法(或算法)。方法800可以用在第一示例性情况中,在该情况中对象回波谱宽度可以小于方程式(8)中的dF,并且回波多普勒频移的绝对值可以小于dF/2。在该第一示例性情况中,真实距离可以不是模糊的(例如,可以是不模糊的)。然而,在一些实施例中,方法800可以用在其它情况中。
方法800可以包括设定一个或多个获取参数的步骤802。例如,步骤802可以包括:设定要被传输的脉冲序列的PRF;设定该脉冲的最大距离(例如,设定N与T中的一个或两者);设定在脉冲中的一个或多个中可以包括的一个或多个门的门宽度;和/或将M设定为第一整数值。例如,在步骤802处,系统500可以(或者可以用于)将M设定为等于+1。
方法800可以包括获取数据集并且形成谱的步骤804。例如,在步骤804处,系统500的第一电子装置可以生成利用不同传输相位来调制的、具有共同第一频率的多个传输脉冲。系统500的第二电子装置可以接收通过一个或多个目标520反射多个传输波所产生的反射脉冲。第二电子装置可以利用对应于当前生成的传输脉冲的相位的接收相位来相位调制表示接收到的反射脉冲相位的接收信号。该接收器可以根据经调制的接收信号产生第一复合信号频率谱,在图9中概括地以900指示第一复合信号频率谱的示例。谱900可以表示每个接收脉冲序列的传输相位与接收相位的关系。谱900可被描述为以谱形式呈现的目标520的距离响应。
方法800可以包括根据形成的谱确定第一目标520的至少一个参数的步骤806。例如,谱900可以是针对23个距离门的示例性配置(M=1,N=23)的距离响应,其中目标在所有23个这些距离门处并且其中这些目标的多普勒频移根据方程式(8)。沿着图9的水平轴的刻度标记(tick mark)示出针对每个距离门在零多普勒频移处的回波的额定位置。真实目标距离、多普勒频移、回波强度、回波谱宽度、以及其它谱细节可以根据该谱被不模糊地测量,如图9中的注释所示。例如,系统500可以利用至少第一频率局部最大值M1和第一谱宽度W1来识别至少第一距离谱区段,诸如,区段902。区段902的第一频率局部最大值可以对应于(或表示)区段902的回波强度。该系统(然后)可以根据区段902确定距离R1、相对于该系统的接收器装置(例如,天线508)的速度、以及目标在距离间隔上的谱宽度。例如,在步骤806处,该系统可以确定接收到的回波频率近似表示该目标离接收器装置的距离(或间距)。例如,该系统可以确定在区段902中具有最大回波强度M1的回波在对应于距离门3的距离R1处。该系统可以根据区段902的多普勒频移D1来确定在距离R1处的目标的速度(相对于传输器装置和接收器装置)。
在一些实施例中,在步骤806处,该系统可以确定在多个距离门处(诸如,在每个距离门处)的一个或多个谱参数。例如,该系统可以识别针对距离门1-23中的每个在谱900中的距离谱区段。该系统可以识别针对这些区段中的每个的局部最大值和谱宽度。根据每个区段,该系统可以确定目标(例如,如果该区段中存在相关联的回波)的距离、目标回波的强度、目标相对于该系统的接收器装置的速度、以及来自目标的对应于该区段的距离间隔的回波的谱宽度。
方法800可以包括确定是否已经满足回波条件的步骤808。例如,在步骤808处,该系统可以确定在步骤806处被识别(和/或被参数化)的目标回波是否具有小于方程式(8)中的dF的相应谱宽度以及小于dF/2的相应的回波多普勒频移的绝对值。如果该系统确定已满足该回波条件,则方法800可以返回至步骤804并且方法800可以随后重复进行,以便追踪目标。然而,如果该系统在步骤808处确定并未满足回波条件,则谱900中的目标回波的频率便可以不表示真实距离(例如,区段中的一个或多个可以折回至该谱中并且显得与下述距离门相关联:该距离门实际上不与该区段相关联)。因此,如果在步骤808处确定并未满足回波条件,则方法800可以返回至步骤802并且该系统可以(或者可以用于)重置或修改获取参数,并且方法800可以随后重复进行。
根据以上描述,参照图8和图9以及本公开的其它部分,将认识到:系统和/或计算机程序产品可以提供一种用于以下的方法:使用来自一个或多个反射对象的波能量的反射以通过来自这些对象(例如,该一个或多个反射对象)的反射的谱特性来表征这些对象(例如,该一个或多个反射对象)的特定性质。该方法可以包括生成以T秒的脉冲间间隔的、宽度为t秒的N个恒定频率脉冲的重复序列以用于传输,其中该序列中的每个脉冲具有根据二次相位序列的特定恒定相位,该相位以第一调制意义被应用于每个脉冲。
该方法还可以包括在每个接收子间隔期间通过用于N个恒定频率脉冲的所传输的重复序列的相同二次相位序列,利用与第一调制意义相反的第二调制意义来调制从反射N个恒定频率脉冲的所传输的重复序列的一个或多个对象接收的回波能量的相位,使得以往返行程回波时间T的离散单元来测量的、被应用于从在特定距离r处的特定反射对象反射的回波能量的净相位调制可以是所传输的脉冲在它们传输时间处的相位与应用于从距离r接收到的回波能量的相位之间的差别,其处于该差别的任一意义。
该方法还可以包括根据经调制的接收到的回波能量产生接收到的回波能量的作为反射对象的距离r的函数的、大小等于1/NT Hz的倍数的N个唯一且离散的频率转换,该频率转换可以保留接收到的回波能量的谱,从而结合复合信号形成频率谱。
可以由Ф(n)=M(an^2+bn+c)来表示二次相位序列,其中Ф(n)可以是应用于具有脉冲指数n的脉冲的相位。M可以为与N没有共同因子的整数常数。脉冲指数n可以为在范围1至N中的重复序列中的脉冲的指数。系数a可以为限定相位序列的重复间隔的常数,当考虑以一个相位旋转为模时,该系数a被设定为π/N个弧度的相位单位。系数b与c可以为任何值的常数。
在一些实施例中,产生N个频率转换可以包括产生作为距离r的函数的、Ma(r-i)/NT Hz(以1/T Hz为模)形式的、接收到的回波能量的频率转换,其中指数i可以表示在将Ф(n)应用于生成的脉冲与将Ф(n)应用于该接收到的回波能量之间的n中的任何指数偏移。
在一些实施例中,该方法还可以包括确定:针对具有使用常数M的单个值所生成的相位的传输脉冲序列的接收到的回波能量的一个或多个谱特征落在针对每个相应的距离r的1/NT Hz的谱间隔内,而没有谱重叠。
在一些实施例中,该方法还可以包括不模糊地表征来自每个距离r的对应的接收到的回波能量的谱特征并且将所表征的谱特征分配到特定距离。
在一些实施例中,最大多普勒频移上的限制可以通过以下而放宽:在时间上顺序地或并行地使用两个不同载波频率、或通过使用两个正交极化(其可能涉及图5中示出的类型的两个传输器-接收器系统)在两个模式下操作雷达(系统100或500中任一雷达)。例如,系统100或500中的任一个可以被配置成根据方程式(1)的二次函数(其中,M被设定为等于第一整数值)来生成第一传输脉冲序列,并且根据方程式(1)的二次函数(其中,M被设定为作为第一整数值的负值的第二整数值)来生成第二传输脉冲序列。此外,系统100或500中的任一个(例如,处理器119或512中的任一个)还可以被配置成根据针对目标的第一传输脉冲序列和第二传输脉冲序列的相应的复合信号频率谱中的差别来确定该目标的多普勒频移(例如,其中第一序列是利用设定为等于第一整数值的M而生成的,并且第二序列是利用设定为等于第二整数值的M而生成的)。例如,利用设定为+1的方程式(1)中的整数常数M可以取得一组数据,并且利用设定为-1的M可以取得另一组数据。M的该改变可以使多普勒频移的符号与由相位序列产生的频率偏移的符号之间的关系反转,因为针对M=+1的正多普勒频移将对应于针对M=-1的正多普勒频移,但是,该相位序列引起的频率偏移的符号将改变。
例如,如果一个或多个目标不满足方法800的回波条件,则可以实现在图10中以1000概括地指示的方法。例如,在第二示例性情况中,目标可以不满足上面描述的第一示例性情况的强的不模糊多普勒准则(例如,目标回波谱宽度可以不小于方程式(8)中的dF,并且回波多普勒频移的绝对值可以不小于dF/2)。相反,该目标可以具有小于该准则的约两倍或三倍的多普勒频移。此外和/或可替换地,该目标可以具有距离上的一些连续性,使得它们在该谱中不重叠。方法1000也可以用在其它合适的情况,诸如其中期望验证利用方法800确定的目标参数的情况。
方法1000可以包括设定该系统的获取参数的步骤1002。例如,步骤1002可以涉及:设定要传输的第一脉冲序列和第二脉冲序列的PRF;设定这些脉冲的最大距离(例如,设定N和T中的一个或两者);设定可以包括在该第一序列和第二序列中的一个或多个门的门宽度;将M设定为针对该第一脉冲序列的第一整数值;和/或将M设定为针对该第二脉冲序列的第二整数值。第二整数值可以为第一整数值的负值。例如,在步骤1002处,该系统可以(或者可以用于)针对第一脉冲序列将M设定为等于+1,并且针对第二脉冲序列将M设定为等于-1。这种设定可以被表示为M=[+1,-1]。
方法1000可以包括获取两个数据集并且形成两个谱的步骤1004。例如,在步骤1004处,系统的第一电子装置可以生成利用不同的传输相位来调制的、具有共同第一频率的多个传输脉冲。该多个传输脉冲可以包括至少部分地根据第一因子(例如,M)的第一值(例如,+1)确定的第一传输脉冲序列以及至少部分根据该第一因子的第一值的负值(例如,-1)确定的第二传输脉冲序列。系统500的接收器可以接收通过一个或多个目标反射多个传输脉冲所产生的反射脉冲。该接收器可以以对应于当前生成的传输脉冲的相位的接收相位对接收到的反射脉冲进行相位调制。接收器可以根据经调制的接收脉冲产生第一复合信号频率谱和第二复合信号频率谱,第一复合信号频率谱和第二复合信号频率谱的示例在图11中分别以1100、1102概括地指示。第一谱1100可以表示对应于第一序列(其中M=+1)的每个接收脉冲的传输相位与接收相位的关系。第二谱1102可以表示对应于第二序列(其中M=-1)的每个接收脉冲的传输相位与接收相位的关系。谱1100、1102可被描述为以谱形式呈现的目标的距离响应。
由利用设定为等于第一整数值的M并且利用设定为等于第二整数值的M(例如,M=+1以及M=-1)所获得的数据提供的额外自由度可能使系统100或500的处理器中的任一个可以求解由许多或所有距离门上的多普勒频移信号谱的适度重叠或者少数距离门中这种谱的更显著重叠导致的模糊。以这种方式,不模糊多普勒频移或目标径向速度上的限制相比于先存的多普勒雷达限制可以显著放宽。
谱1100、1102是使用M的这两个值(例如,+1,-1)的示例。在图11中,在幅度和频率两者(其中,M=-1序列产生的频率偏移基本上为M=+1序列的频率偏移的负值)上绘制了两个谱,为了比较,一个谱与另一个谱倒置。在该情况中,多普勒频移中的一些完全超出方程式(8)提供的限制,但是其仍可能识别针对每个回波谱的真实距离和多普勒频移(以及其它参数),因为该回波谱成对地出现,其中落在由方程式4限定的距离标记处的对之间的平均频率指示真实距离,并且两个峰的频率差别的一半指示真实的多普勒频移。在图11中,虚线连接对应的谱峰对。例如,清楚的是,前两个峰(分别对应于距离门1和2)具有邻近对,因为与这些峰相关联的多普勒频移小。此外,通过虚线连接的对应于距离门4的峰1104、1106也是一对,尽管这些峰的多普勒频移却大幅违背方程式(8)。如图11所示,对应于距离门4的两个峰从它们的真实距离(第四刻度标记(例如,对应于距离门4))对称移位。
方法1000(见图10)可以包括使用在步骤1004处所形成的两个谱来确定一个或多个目标参数的步骤1006。例如,在步骤1006处,该系统可以根据针对目标(例如,目标520中的一个或多个)的相应的第一传输脉冲序列与第二传输脉冲序列的谱1100、1102中的差别确定与该目标相关联的多普勒频移。例如,在步骤1006处,该系统可以以类似于方法800(参见图8)的步骤806处所执行一个或多个确定的方式对谱1100、1102执行一个或多个确定(和/或参数化)。例如,该系统可以识别谱1100中的回波峰1104的频率(或位置),和谱1102中的回波峰1106的频率(或位置)。该系统可以确定回波峰1104、1106在相应的谱1100、1102中占据相关的定位(或位置)。例如,该系统可以确定峰1104、1106位于对应的谱区段中或两者均以相应谱中的相应峰顺序(例如,峰1104、1106两者均为第四峰)位于类似定位。该系统可以将相关的峰1104、1106的相关定位与共同目标(例如,反射对象)相关联。该系统可以对相关的峰1104、1106进行配对。该系统可以通过计算相关的峰1104、1106的相应频率的平均值并且将该平均频率与共同目标的距离相关联来确定共同目标的距离。例如,该系统可以确定与峰1104、1106相关联的(或对应的)共同目标反射了回波,该回波具有的平均频率近似等于对应于距离门4的频率。基于真实距离的该确定,该系统可以根据谱1100、1102的任一个来确定与共同目标相关联的多普勒频移。该系统可以通过对每个距离门的相关联的特征进行类似地配对来类似地确定每个距离门处的一个或多个目标参数。
如上所述,可以在方法1000中使用M的两个值来求解距离模糊性。可以找到关于每个距离门零多普勒点对称定位的谱对。两个峰之间的频率分离可以是多普勒频移的两倍。(该两个峰的)平均频率可以指示真实距离。
方法1000可以包括确定任何模糊性是否剩余在该谱中的步骤1008。剩余的模糊性可以包括模糊的谱特征,诸如谱宽度大于dF/2的回波峰。这种宽的谱宽度可以包括来自多个距离门的多个模糊的回波峰,其中该模糊的回波峰在谱中朝向彼此模糊地进行多普勒频移。在步骤1008处,如果该系统确定没有剩余模糊性,则方法1000可以返回至步骤1004并且继续获取数据以用于继续目标参数化。然而,如果在步骤1008处系统确定模糊性确实剩余,则方法1000可以返回至步骤1002并且该系统可以(或者可以用于)重置、修改、和/或调节获取参数,并且方法1000可以随后重复进行。可替换地和/或此外,如果确定模糊性剩余,则可以实现在图12中以1200概括地指示的方法。
例如,在第三示例性情况或情形中,由该系统产生的一个或多个谱具有适度至强的谱重叠,和/或大的谱宽度。图13示出这种针对距离门1至23的谱的示例。在图13中,针对距离门17至20的谱重叠至下述点:在该点中除了粗略估计一组回波的强度和距离之外,不能够提取关于信号的任何信息。这种重叠的回波可以通过获取另外的数据集来求解。另外的数据集可以利用多个频率载波、利用正交极化、和/或利用整数常数M的各种值在时间上顺序地或并行地取得。通过利用不同的M值来获取另外的数据集,距离门可以以可以分离谱峰以用于表征的预定义方式在谱中被重新排列或置换。
例如,方法1200(见图12)可以包括设定系统的一个或多个获取参数的步骤1202。在步骤1202处,系统可以设定要传输的多个脉冲序列的PRF;设定这些脉冲的最大距离(例如,设定N与T中的一个或两者);设定可以包括在多个序列中的一个或多个门的门宽度;和/或选择M的一组m个值,其中,m可以为要传输的序列的数目。例如,在步骤1202处,该系统可以被配置成根据方程式(1)的二次函数来生成多个传输脉冲序列,其中每个序列具有M的不同整数值。例如,在步骤1202处,系统可以被配置成利用M=+1来生成第一序列并且利用M=+7来生成第二序列(例如,m=2,其中M=[+1,+7])。在一些实施例中,该系统可以在传输第一序列之后、在已经形成针对第一序列的谱之后、和/或在该系统已经确定针对第一序列的谱包括模糊谱峰之后设定针对第二序列的获取参数。
方法1200可以包括获取m个数据集并且形成m个谱的步骤1204。例如,在步骤1204处,系统的传输器可以生成利用不同的传输相位来调制的、具有共同第一频率的多个传输脉冲。多个传输脉冲可以包括其中M=+1的第一传输脉冲序列以及其中M=+7的第二传输脉冲序列。系统的接收器可以接收通过由传输介质中的一个或多个反射目标反射多个传输脉冲而产生的反射脉冲。该接收器可以利用对应于当前生成的传输脉冲的相位的接收相位来对接收到的反射脉冲进行相位调制。该接收器可以基于相位改变信号、根据经调制的接收脉冲,产生针对对应于其中M=+1的第一传输脉冲序列的接收到的脉冲的第一复合信号频率谱(例如,图13中所示的谱1300)并且产生针对对应于其中M=+7的第二传输脉冲序列的接收到的脉冲的第二复合信号频率谱(例如,图14中所示的谱1400)。
如图13和图14中所示,相比于距离门在由其它传输脉冲序列所产生的谱中分布的顺序,不同整数值的M可以对距离门在该谱中分布的顺序进行重新分布。
例如,假如M与N未共享共同因子(其可以暗示N为质数的优点),改变M的值可以改变距离门在频率谱中的顺序,而不改变个体谱的任何其它特性(除了由相位序列导致的谱偏移和多普勒频移的符号之间的关系以外,该关系通过M的正值和负值而反转)。在一些实施例中,系统100或500中的任一个可以被配置成选择与N没有共同因子的M的值,这可以防止这些距离门中的任何距离门在重新分布的顺序中重叠。
例如,在N=23个距离门(如图13和图14中所示)的情况下,根据下面方程式(9)中所示的关系,将M从+1改变为+7使谱距离顺序(或距离门的谱顺序)从谱中的r=1、2、3、…23改变为r=10、20、7、…23。
方程式(9):rj=M*ri以N为模
在方程式(9)中,ri为M=1的线性顺序中的原始谱指数,并且rj为针对M的其它值的相同目标的谱指数。
以此方式,图14中示出的谱1400示出针对如图13中所示的相同目标(或对象)的谱,但是其中已经使用M=7对距离序列进行重新分布(或重新排序)。图14中的峰与根据真实距离的距离门1至23相关联,其示出以重新排列的距离顺序的置换。现在对应于距离门17、18、19、20的峰完全分离,并且它们的性质能够被表征(例如,被估计和/或确定)。
例如,方法1200可以包括根据形成的谱中的一个或多个确定一个或多个目标参数的步骤1206。在步骤1206处,系统可以针对m个谱中的每个表征谱峰,该谱峰在没有针对M的该值的模糊性的情况下被求解。针对M的一个值不能够被求解和参数化的谱峰可以针对M的另一个值被求解并表征。以此方式,通过处理m个谱,该系统可以识别针对每个已求解的谱峰的真实距离。一旦谱峰已被表征(例如,利用其真实距离)(或在此之后),该谱峰(或特征)就可以通过减去或其它方式从针对M的所有值的形成的谱中移除。
在一些实施例中,在步骤1206处,系统可以识别谱1300、1400的每个中的与针对其它距离门的谱(或谱区段)充分隔离以使得能够直接确定幅度、多普勒频移和谱宽度的对应参数的谱(或谱区段)。在步骤1206处,该系统(然后)可以针对谱1300、1400中的一个或多个确定针对距离门1至23中的一个或多个的参数。例如,在图13的谱1300中,该系统可以识别对应于距离门1至16、21、22的谱区段的峰彼此充分隔离;但是针对距离门17至20的谱区段没有彼此充分隔离(而是,重叠)。然而,该系统可以识别:在图14的谱1400中,针对距离门17至20的谱区段彼此充分隔离(并且与其它谱区段充分隔离)。然后,该系统可以根据谱1300确定来自针对距离门1至16、21、22的峰的一个或多个目标参数,并且根据谱1400确定来自针对距离门17至20的峰的一个或多个目标参数。以此方式,可以求解对应于距离门17至20的模糊峰。该处理的成功度可能取决于具有有意义的回波能量的距离门的百分比。
根据以上描述,参照图12至14以及本公开的其它部分,系统和/或计算机程序产品可以提供一种方法,该方法包括确定从至少一个或多个反射对象中的一个或多个接收到的回波能量的谱特征落在针对相应距离中的一个或多个的1/NT Hz的谱间隔之外,或者根据不同的距离重叠确定接收到的回波能量的谱特征。
在一些实施例中,该方法可以包括:在将距离分配给该回波能量谱中的谱特征中存在模糊性的情况下,使用常数M的多个值来生成N个恒定频率脉冲的重复序列。
该方法还可以包括:通过针对每个距离r找到常数M的至少一个值来确定对应的接收到的回波能量的谱特征的参数,以消除偏移的或重叠的频特征的模糊性,针对常数M任何这种偏移或重叠可以通过置换由M的不同值所产生的谱距离顺序来求解。在一些实施例中,该方法可以包括表征从具有重叠的或偏移的谱特征的每个距离r接收到的回波能量的谱特征。在一些实施例中,该方法可以包括将表征的谱特征分配给特定距离。
返回参照图12,在步骤1206处,该系统可以从多个复合信号频率谱(例如,谱1300、1400)中移除针对对于其确定参数的那些距离门的谱。例如,根据谱1300,该系统可以根据针对距离门1至16、21、22的相应谱区段来确定针对目标回波的参数,并且然后可以从谱1400中的对应距离门中减去针对这些回波的谱区段。这可以在由M的其它值进行重新排列时防止峰17至20与其它峰模糊混合。
例如,谱1300、1400中的任一个中的模糊性可以通过使用(或识别)已经在M=1的情况下求解的峰的位置和性质来求解。在图13中,峰1至16、21、22能够被求解,并且使用方程式(9)该系统能够确定这些峰在M=7情况中位于何处。这已经在图15中完成,其中,已经利用虚线将基于包含已求解的峰1至16、21、22但是不包含未求解的峰17至20的谱1300的修改谱绘制在谱中它们的M=7的位置处。在图15中以实线示出对应于图14中呈现的谱1400的仅针对峰17至20的第二修改谱。
除了由于非相干的两个数据集引起的统计差别之外(因为两个数据集可能在不同的载波频率处、或在不同的时间、或在不同的极化取得),基于来自图13的重建数据的修改谱(以虚线示出)与图15中针对来自谱1400的峰17至20(以实线示出)的数据完全重叠。
在图15中,存在来自图14的四个峰(以实线示出),该四个峰没有叠加峰,因为已经从数据中移除来自谱1300的已求解的峰。以实线示出的四个峰17、18、19、20出现在来自图13的修改谱的重建示出基本上没有能量的地方。
现在能够根据峰17、18、19、20的相应隔离谱确定(通过该系统)峰17、18、19、20的参数。确定峰17、18、19、20的参数可能涉及减去从谱1300求解的略微干扰的峰。然而,出于统计理由,这种减去可能不完整。例如,由于相继获取或者在不同的载波频率或极化获取,该谱可能不相干。
因此,看到在步骤1206处,该系统可以确定是否可以确定针对任何剩余的未确定距离门的参数。例如,针对距离门的谱的幅度可能具有谱局部最大值,并且步骤1206可以包括:针对其一个或多个参数尚未被确定的每个谱局部最大值,根据两个或更多个距离门选择多个复合信号频率谱中的一个,该两个或更多个距离门重叠并且已经确定针对该两个或更多个距离门的每个谱局部最大值。如以上讨论的,该系统可以识别针对距离门17至20的谱局部最大值根据谱1300未被确定(或者不可确定)。响应该识别,系统可以选择谱1400,在谱1400中距离门17至20已被重新排列成使得这些距离门没有彼此直接相邻,而是在它们之间有多个其它距离门。
在步骤1206处,该系统可以使用选择的计算模块来执行多个最大值确定,该选择的计算模块使用具有重叠谱的距离门的已知参数作为初始条件。例如,执行多个最大值确定可以包括使用非线性最小平方模型、高斯模型、对数高斯模型、或抛物线模型。
然而,如果仍然存在具有仍未确定的参数的距离门并且在执行多个最大值确定之后确定一个或多个参数,则步骤1206可以包括从针对其参数被确定的复合信号频率谱中移除针对一个或多个距离门的距离谱区段,以及使用选择的计算模块来对从其距离谱区段已经被移除的复合信号频率谱执行多个最大值确定,该选择的计算模块使用具有重叠距离谱区段的距离门的已知参数作为初始条件。例如,在步骤1206处,该系统可以从谱1400中移除图15中以虚线示出的谱区段。例如,可能已经根据谱1300确定针对这些虚线谱区段的谱参数,并且通过从谱1400中将它们(或相关联的谱区段)减去,针对距离门17至20的目标参数可以更容易根据谱1400在移除了已求解的峰的情况下被确定。
在一些实施例中,针对M的给定值的每个复合信号频率谱中的距离门可以被布置在谱序列中,并且方法1200可以包括选择在该谱序列中提供距离门混合的M的值,以及产生针对M的每个值的相应复合信号频率谱。例如,如上所述,该系统可以被配置成产生针对M=+1的谱1300并且产生针对M=+7的谱1400。
在一些实施例中,M的值可以被选择为对被确定为相比于其它距离的距离谱区段被较少地占据的距离的距离谱区段提供增大的混合。例如,如果针对距离门5至10的距离谱区段不包括如针对距离门11至14的距离谱区段那么多的回波,则M的值可以被选择(例如,由该系统来选择)以对针对距离门5至10的距离谱区段提供较大的混合并且为针对距离门11至14的距离谱区段提供更小的混合。
方法1200可以包括确定谱中是否剩余任何模糊性的步骤1208。如果在步骤1208处确定谱中没有剩余模糊性(例如,针对所有距离门的所有谱区段已被求解和/或表征),则方法1200可以返回至步骤1204,用于随后获取数据集并且形成谱,以继续目标参数化。然而,如果在步骤1208处确定一个或多个模糊性确实剩余,则方法1200可以返回至步骤1202且可以改变获取参数,并且可以重复方法1200的步骤。
根据以上描述,参照图12至15以及本公开的其它部分,将认识到的是,系统和/或计算机程序产品可以提供一种方法,其中,表征具有重叠或偏移的谱特征的接收到的回波能量的谱特征可以包括获取针对常数M的m个值的谱。表征这些谱特征还可以包括针对任何距离r表征能够从m个谱中的任何一个而不模糊地被分配给距离的那些谱特征。表征这些谱特征还可以包括在针对M的每个值的特征的相应谱定位处、从m个谱中的每个谱中减去针对每个对应的距离r如此表征的谱特征。表征这些谱特征还可以包括针对剩余的谱特征利用修改谱来重复前面两个步骤(例如,针对任何距离来表征的步骤以及减去谱特征的步骤)。
返回参照图12,在方法1200中,通过M的改变来改变(或变更)谱的距离顺序能够在许多情况中求解结果模糊性。例如,该结果模糊性可以通过找到针对其的给定谱免于重叠谱的M的一个或多个值来求解。然而,如果方法1200没有求解所有模糊性(或大部分的模糊性),则图16中描绘的方法1600可能会更适合。
例如,在第四示例性情况或情形中,谱可能具有适度至非常强的谱重叠,和/或非常大的谱宽度。在该第四示例性情形中,使用适度至大数量的M值并且通过叠加仅针对该距离门而对齐排列的所有谱来处理每个距离门可以允许使用谱整体(或谱叠加)的最小值来显露来自该距离门的回波的真实距离、多普勒频移、和/或一个或多个其它谱性质。消除真实距离、多普勒频移、和/或该一个或多个其它谱性质的模糊性的成功程度可以取决于使用的M的值的数目以及具有有意义的回波强度的距离门的分数。
消除重叠谱的模糊性的方式(或过程),尤其是针对非常宽的谱或具有大的多普勒频移的谱以及当可以获得M的许多值的谱时,可以以下方式来操作。可以计算针对M的所有值或多个值的谱(可以获得其数据)。然后,对于每个距离门,各种谱可以在频率中单独偏移2a/T Hz的适合倍数,使得来自正在被处理的距离门的谱峰可以全部对齐排列,例如,排列在当M=1时它们的相应位置处。每个谱偏移的量可以根据方程式(8)和针对该谱的M的值获得。当谱估计值移动超出[0,1/T]不模糊距离的一端时,它们实际上为循环偏移并且进入该不模糊距离的相对端。针对谱中的每个频率,该循环偏移的谱整体的最小值然后可以被视为真实谱的近似。该谱的准确性可以随着可获得的M的值数目而提高。
图16中描绘的方法1600是这种方法的示例。在步骤1602处,该系统的获取参数可以以类似于方法1200的步骤1202的方式来设定。例如,在步骤1602处,该系统可以设定PRF、最大值、门宽度、和/或选择M的m个值。在方法1600中,m可以为大于或等于2的整数,并且优选地远大于2。
在步骤1604处,该系统可以例如以类似于方法1200的步骤1204的方式的方式获取m个数据集并且形成m个谱。然而,在步骤1604处相比于在步骤1204处可以形成的数据集和谱的数目较大。
在步骤1606处,该系统可以使谱偏移并且形成偏移谱的叠加。例如,对于每个距离门,该系统可以使m个谱偏移(或者转换该m个谱的频率),使得该m个谱在针对该距离门的零多普勒点(或偏移)处对齐。对于每个距离门,该系统可以针对相应的距离门形成该偏移的谱的叠加谱或最小值谱。
图17示出针对距离门18的概括地以1700指示的一个这种叠加的示例,其中m个谱偏移使得该m个谱中的每个中的距离门18在针对M=1的情况的距离门18处对齐。在图17中,叠加1700包括谱1300、1400以及具有M的其它值的附加的谱,其中该谱按照需要偏移,使得它们的针对距离门18的相应的谱区段全部在共同定位处对齐,诸如,在针对对应于M=1的情况的谱的距离门18的定位处。换言之,图17示出用于消除如上所述的应用于图13至15中所使用的示例情形的叠加谱的模糊性的这种方法,其中分离重建针对M的若干个值的叠加的、但是偏移以在距离门18处匹配的谱。由于二次相位序列的正交本质,来自除18以外的距离门的谱可以在针对M的每个值的绘图中的不同定位。因此,如以下将描述的,叠加1700可以用于消除与距离门18相关联的参数的模糊性。如上所述,在步骤1606处可以形成针对距离门中每个的叠加(例如,针对r的每个值)。
在步骤1608处,该系统可以根据在步骤1606处所形成的叠加中的一个或多个确定一个或多个目标参数。例如,该系统可以被配置成形成叠加中的每个的最小值(或最小值整体),并且将在预定义多普勒频移窗口内的结果峰识别为目标回波,并且根据该结果峰确定该目标的相关联的多普勒频移和谱性质。
例如,图17中绘制的谱的最小值整体(或最小值)被示出在图18中,并且概括地以1800来指示。结果是门18处的信号的真实谱的近似,通过找到该谱的若干个实现的和的最小值的操作,强度略微偏低。
在一些实施例中,该处理可以包括根据其它距离门找到(或确定)参数(或估计值),并且绘制针对所有门的结果谱(或峰),如图19中所示。在图19中,已经使用与上述方法相同的方法形成(例如,使谱偏移成针对相应的距离门对齐、形成叠加、以及取得该叠加的最小值)结果峰,该结果峰包括在图13中重叠的其它三个距离门(即,距离门17、19、以及20)的峰。现在能够成功地确定(例如,由该系统来确定)所有23个门的参数。该处理能够成功的程度可以取决于针对其可以获得数据的M的值的数目、多普勒频移搜索窗口的宽度、以及存在有意义的回波的距离门的百分比。
方法1600(见图16)可以包括确定是否剩余任何模糊性的步骤1610。例如,在步骤1610处,该系统可以确定在形成的谱、形成的叠加、和/或这些叠加的形成的最小值中的任何一个中是否剩余任何模糊性。如果在步骤1610处确定没有剩余模糊性,则方法1600可以返回至步骤1604,用于随后获取数据集并且形成谱,以继续传输介质中的反射性目标的参数化。
然而,如果在步骤1610处确定模糊性确实剩余,则方法1600可以前往步骤1612。在步骤1612处,该系统可以被配置成从m个谱中移除一个或多个已表征的峰(例如,针对其目标参数能够例如如图9中那样被直接确定的峰),并且重复叠加中的一个或多个。例如,如果在步骤1610处确定出在距离门17和19处剩余模糊性,则在步骤1610处,该系统可以从m个谱中移除已表征的峰。然后,该系统可以重复针对这些距离门(即,17与19)的叠加,但是在一些实施例中,可以不重复针对已经确定没有剩余模糊性的其它距离门的叠加。
根据以上描述,参照图16至18以及本公开的其它部分,将认识到的是,系统和/或计算机程序产品可以提供一种方法,其中,表征从不同的距离间隔r接收到的具有重叠或偏移的谱特征的回波能量的谱特征可以包括获取针对常数M的m个值的谱以及针对每个距离r来执行以下步骤(a)至(c)中的一个或多个。步骤(a)可以包括循环偏移获取的m个谱,使得它们(例如,获取的m个谱)在每个谱中的、在零多普勒速度从该距离r接收到的回波能量将位于的点处对齐。步骤(b)可以包括通过针对对齐的谱中的每个频率、从对齐的谱整体中取出该频率处的最小值而创建最小值谱。步骤(c)可以包括将最小值谱中超出预设阈值并且位于预定频率窗口内的任何谱特征表征为表示在距离r处的一个或多个对象的谱特征。
返回参照图16,在方法1600中,可以以任何期望的距离顺序求解个体谱特征。然而,在一些情况中,可能更适合以它们的谱能量的顺序求解谱特征,并且图20中描绘的方法2000可能更为适合。
例如,在第五示例性情况或情形中,谱可以被确定为具有适度至非常强的谱重叠、多普勒频移、和/或非常大的谱宽度。在该第五示例性情形中,以某一谱能量测量的顺序来处理谱特征包括针对每个距离r、使用适度数目至大数量的M的值来执行方法1600以及针对该距离r形成谱特征的谱能量的测量结果。表征针对该距离r的具有最强谱能量测量结果的谱特征并且然后从针对M的所有值的谱中减去该特征。然后,使用修改谱重复该过程,直到该谱中剩余的能量在预设的有意义的阈值以下为止。消除真实距离、多普勒频移、和/或一个或多个其它谱性质的模糊性的成功程度可以取决于所使用的M的值的数目以及具有有意义的回波强度的距离门的分数。
图20中描绘的方法2000是这种方法的示例。在步骤2002处,可以以类似于方法1200的步骤1202的方式来设定该系统的获取参数。例如,在步骤2002处,该系统可以设定PRF、最大值、门宽度、和/或选择M的m个值。在方法2000中,m可以为大于或等于2的整数,并且优选地远大于2。
在步骤2004处,系统可以例如以类似于方法1200的步骤1204的方式的方式获取m个数据集并且形成m个谱。然而,在步骤2004处相比于在步骤1204处可以形成的数据集和谱的数目大得多。
在步骤2006处,该系统可以将距离参数r设定为第一距离门。
在步骤2008处,该系统可以使谱偏移并且形成针对距离r的偏移的谱的叠加。例如,对于每个距离门,该系统可以使m个谱偏移(或者转换该m个谱的频率),使得该m个谱在针对该距离门的零多普勒点(或偏移)处对齐。
在步骤2010处,该系统可以根据通过步骤2008创建的叠加确定指示谱特征参数中的能量的参数。例如,该系统可以被配置成形成该叠加中的每个的最小值(或最小值整体),并且将在限定的多普勒频移窗口内的结果峰识别为目标回波以及确定该峰中的相关联的谱能量。
在步骤2012处,该系统可以将距离r增加一个单位。
在步骤2014处,该系统可以如果r的值没有超出感兴趣的最大范围,则返回至步骤2008;或者如果超出,则继续至步骤2016。
在步骤2016处,该系统可以比较针对r的每个值所表征的谱能量的测量结果,并且选择具有最强谱能量测量结果的r的值。
在步骤2018处,该系统可以比较在步骤2016处所选择的谱能量测量结果与有意义的预定阈值或测量结果,并且可以如果该测量结果在该有意义的预定义测量结果以下则退出该程序。
如果该谱能量的测量结果在该阈值以上,则在步骤2020处该系统可以表征在步骤2016中所选择的r值的谱特征并且将其分配给距离r。
在步骤2022处,该系统可以在适合于M的每个值的谱位置处从该m个谱中的每个谱减去在步骤2020中已表征的谱特征。
在完成步骤2022之后,该系统可以返回至步骤2006以增加r并且继续进行该过程。
图21示出可以由图20的方法产生的图表,如上所述,该图表图示如根据图13的数据所创建的距离响应的示例,其中全部的距离响应被完全消除模糊性。
根据以上描述,参照图12至21以及本公开的其它部分,系统和/或计算机程序产品可以提供一种方法,其中,表征来自不同的距离间隔r的接收到的具有重叠或偏移的谱特征的回波能量的谱特征可以包括获取针对常数M的m个值的谱以及执行以下步骤(a)至(e)中的一个或多个,直到在其中接收到的回波能量超出预设阈值的每个距离r处的一个或多个谱特征被表征为止。
步骤(a)可以包括针对每个距离r执行以下步骤(1)至(3)中的一个或多个。步骤(1)可以包括以循环的方式使m个谱偏移,使得它们(例如,该m个谱)在每个谱中的、在零多普勒速度来自该距离r的反射将位于的点处重合。步骤(2)可以包括通过针对该谱中的每个频率从偏移的谱的整体取出该频率处的谱能量的最小值而针对每个距离r来创建最小值谱。步骤(3)可以包括针对每个距离r来确定表示最小值谱的谱峰中的能量的值。
步骤(b)可以包括选择产生最大的这种峰能量值的距离r。步骤(c)可以包括根据针对距离r计算的最小值谱来表征针对该选择的距离r的一个或多个谱特征。步骤(d)可以包括在对应的一个或多个谱位置处、通过减去从所有m个谱中移除针对该距离r如此表征的一个或多个谱特征。步骤(e)可以包括重复步骤(a)至(d),使用该m个修改谱来表征次高的谱分量。
公开的方法可以有效地用于表征以相对高速度行进的反射对象的性质。例如,图22示出与图17相同的数据,但是具有给予门18处的信号大的多普勒频移。注意的是,尽管有大的多普勒频移,重建仍可以成功。因此,除了本文中所公开的其它方法之外,方法1600(见图16)可以有效地用于消除具有相对大的多普勒频移的目标回波的参数的模糊性。
对于上述操作以及在不同的RF频率取得针对M的不同值的谱的情况中,将认识到的是,虽然距离门的中心频率和以Hz为单位的多普勒频移大小随着载波频率的改变保持恒定,但是目标速度和谱多普勒频率之间的关系随着载波频率的改变不保持恒定。例如,针对给定目标速度的谱多普勒频率偏移可能随着信号频率而线性缩放。出于这个原因,当期望匹配利用M的不同值所获取的谱时,可以可取地根据针对其获得谱的RF频率来略微拉伸或压缩针对M的每个值的谱。例如,可以通过对该谱进行重新取样并且适当地将零多普勒频移点维持在适合的距离门(正在针对其计算叠加)的中心处来拉伸或压缩谱。
图23也示出与图17相同的数据,但是其中信号的谱宽度在门18处大大地增加。图23中所示的复合谱毫无困难地清楚地再生叠加许多距离门的信号的大的谱宽度。
在一些实施例中,假警报可能由于来自全部m个谱的峰在多普勒频移窗口内的偶然重合而产生,尤其是在具有有意义的回波能量的总距离门的分数非常大并且多普勒频移搜索窗口是大的情况下。然而,如果回波频率和回波谱宽度的统计值是已知的,则能够确定由于来自其它距离的回波的偶然重叠而在假回波的解答中出现的假警报率。对于其中这种假警报会有问题的情况,谱特征可以在其被求解和参数化(例如,在步骤1608处)时从谱中移除,这可以减小具有有意义的回波的距离门的百分比并且可以大大地减小假警报率。
根据上文将认识到的是,回波测距的设备或方法可以包括传输脉冲宽度为t秒的并且具有固定脉冲形状的PRF=1/T Hz的恒定频率脉冲,其中在传输的时间处实质上应用二次相位调制,这种二次相位调制在每个脉冲的持续时间期间是恒定的,但是逐个脉冲的二次相位调制则根据用于限定针对N个脉冲的重复序列的每个脉冲n的相位的关系Ф(n)而不同。这种二次序列的一个示例是长度N的一般二次关系Ф(n)=M(an2+bn+c),其中,参数b和c为任意固定相位偏移,参数a=b=π/N(以弧度为单位),并且M为绝对值介于1与N-1之间的整数。相位调制也可以在接收的时间、在近似为t的时间间隔内实质上被应用于反射能量,使用与应用于传输的能量的相位调制序列相同的相位调制序列,以相反的意义并且以适当的时序来应用,诸如例如,使用将应用于下一传输的脉冲的相位,使得由于在传输和接收的时间单独进行相位调制,所以来自在[1,N]中的特定距离间隔r的回波能量的净总相位偏移将等于在接收的时间由接收器应用于从距离间隔n接收到的能量的相位减去在接收的时间之前的rT秒处、应用于产生来自该目标的反射的传输器脉冲的相位,这种相位差等于Ф(n+r)- Ф(n)= 每时间间隔T 2πMr/N弧度加上不随着n改变的数量,该数量等于(以PRF 为模的Mr/(NT))Hz的频率转换,其中,r为在[1,N]中的距离间隔,其中,将认识到的是,该相位差的符号能够反向,而不会实质影响该设备或方法。
当考虑以PRF=1/T Hz为模时,这种离散的频率转换Mr/(NT) Hz会产生作为M与r函数的、由在[0,PRF] Hz中的频率1/(NT) Hz的N个离散整数倍数所组成的频率转换序列,每个倍数对应于N个不模糊距离间隔或“门”中的一个,针对M=1,这些倍数的分布在距离间隔r中为线性,并且在[1,N-1]中的针对M的值的距离顺序的N-1个置换中,其中来自距离的、超出NT秒的往返行程距离延迟的能量会被折回至[0,PRF]内的频率中并且因而关于距离是模糊的。这种离散频率转换可以作用于从在由针对该转移的M和r所限定的距离间隔内的任何目标和所有目标反射的所有可感测的能量,其根据传输的脉冲形状和接收时间窗口对该回波进行加权,并且当没有来自模糊距离间隔以外的其它距离间隔的能量超出时间延迟NT秒时,在该能量的谱表示中保留来自这种目标的回波的谱的所有特性。
这种设备或方法可以被设计成用于产生复杂数字数据的基带时间序列,该基带时间序列表示在每个时间间隔T内接收到的数据的总幅度和相位,该数据包括来自所有距离间隔[1,N]和[0,PRF]内的所有频率、以及在该不模糊距离的极限外的任何距离的贡献,不管N的值为何,该时间序列能够具有任意的时间长度和取样长度,以适应关于谱分辨率的需求,该时间序列数据被发送至信号处理器,用于处理成在等于NT秒的不模糊距离间隔内由系统接收到的回波的谱表示。
因为很有可能在距离间隔[1,N]和频率间隔[0,PRF]内的目标回波的分布的这种谱表示可以包括下述实例:宽的或多普勒移位的回波与其它回波谱叠加并且造成关于要分配给这些回波的距离和多普勒频移的模糊性,该方法及设备可以利用该方法的能力以通过获取针对M的不同值的另外的谱组(在时间上顺序地获取、通过使用多个传输频率与M的不同值来同时获取、和/或通过使用在正交传输器极化处的传输来获取,其中N、a和b的值保持恒定)来在高达N-1个置换中在频率间隔[0,PRF]内对[1,N]个距离门进行重新排序。
如此产生的每个复杂数据序列能够通过各种方法来处理,以提取关于目标回波的距离分布和这种回波的谱性质的所需信息,示例性处理开始于产生表示在一组目标上的一个停留时间的一个或多个复杂数据集中的每个的高分辨率复杂谱,通过延伸的复杂时间序列的傅立叶变换方便地产生这种高分辨率谱,其中时间序列通过适合于期望的分析所需的动态范围和谱分辨率的窗口化函数(诸如,切比雪夫窗口)来加权。
这种复杂谱可以表示所有类型的目标(点型和延伸型两者),并且在给定回波的谱性质下将这种目标相干集成至可能程度,因为针对给定谱的传输能量由恒定频率脉冲组成。由此,(根据或利用)下述另外的数据集可以获得复杂谱:功率谱,其等于该复杂谱的大小的平方;自斜方差函数,其等于含有针对一个距离门的谱特征的功率谱的窗口化区段的傅立叶变换;针对来自该复杂谱的窗口化区段的逆傅立叶变换的单个距离间隔的时间序列;可以以各种方式来使用该数据集以表征每个距离间隔处的回波的谱。
在每个距离间隔r处的回波谱受限于宽度为1/NT Hz、中心位于针对它们相应的距离门r的额定中心频率处、等于Mr/NT(以PRF Hz为模)的频率间隔内的特征时的情况中,则不存在距离模糊性,并且可以通过使用来自M的单个值的数据的方法(诸如,对每个单个门的恢复的时间序列进行脉冲对处理)由回波强度、中心频率、谱宽度或其它特性来表征所有谱。当回波谱超出这种极限中等数量时,需要M的两个值(诸如,+1与-1)来求解距离模糊性,因为该两个值处理关于在两种情况中由具有不同符号的相位序列所产生的频率转换的多普勒频移,从而允许进行模糊性求解。如果由于宽的谱宽度或大的多普勒频移,针对不同距离的回波谱在该谱中的一个或多个点处彼此叠加,则使用M的各种值能够通过对距离门的谱顺序重新排序来求解这种叠加,在一定程度上取决于具有有意义的回波能量的距离间隔的数目,因为仅需要一个没有重叠的谱表示来表征回波;也能够使用其它技术,诸如,将多个高斯曲线或抛物线曲线最小平方拟合至该谱的区段。
在具有非常大的多普勒频移或非常宽的谱的情况下,针对M的各种值的谱在特定距离间隔r内能够叠加,每个都被调节以在针对该距离间隔的零多普勒速度下进行匹配,并且该谱的整体的最小值将识别出从该距离间隔所贡献的能量,其以由于最小值函数而在能量上略微偏低了可计算的数量的谱的形式;在这种情况中,由于来自除了r以外的距离的回波谱的偶然重叠,存在发现假警报峰的可能性,该可能性通过使用M的较大数目的值而减小,或者由于具有有意义的回波的距离间隔的高百分比和/或针对峰的多普勒频移中的宽的搜索窗口而增大;已知的无回波距离的区域能够被用来设计M的组合,以改进(或确保)不存在假警报。
时间间隔T的这种长度可以与脉冲宽度t相关,使得存在仅有一个近似t秒的接收间隔的可能性,在该间隔中,时间t为总间隔T的有意义的部分,诸如,30%,使得回波定位系统传输器的占空比非常高。时间间隔T可以足够长以允许在每个脉冲被传输之后有多个近似t秒的接收间隔,以与上述相同的方式分离地处理每个这种子间隔的接收到的时间序列,这种操作对于占空比不能达到≈30%的传输器是方便的。
(一个或多个)传输器和(一个或多个)接收器可以诸如通过使用双静态配置或多静态配置分离或以其它方式隔离,使得(一个或多个)传输器能够连续性运行,其中经相位调制的传输的脉冲序列包括长度为t秒的连续脉冲或者在成形的脉冲的情况中包括略微重叠的脉冲,并且接收器接收周期包括长度为近似t秒的连续周期,其中这种操作产生100%的传输器占空比。
该模式可以针对在非常长的距离处的目标(诸如,卫星)略微修改,在该非常长的距离中,不感兴趣的本地回波后面跟随没有回波的长距离间隔,直到来自目标的第一回波到达为止,该传输器可以利用连续脉冲操作在刚才所述的模式中,在来自目标的回波到达之前、在高达足以清除本地回波的时间的间隔内连续操作,后跟随等于传输间隔长度的接收间隔。
被传输的波能量可以包括电磁波,不论波长为何,使用相干波或利用相干波调制的非相干波。
根据上述描述,应当认识到的是,由系统和/或计算机产品所提供的方法可以包括以下述方式针对常数M的两个或更多个值、生成N个恒定频率脉冲的重复序列:(a)在时间上顺序地生成,(b)使用正交波极化同时生成,(c)通过使用分离相位调制的多个频率载波同时生成,或(d)通过前述的任何组合来生成。
在一些实施例中,每个传输的脉冲可以仅有一个接收子间隔距离门,其中,接收回波能量包括接收来自所有距离的所有回波能量,并且该方法还可以包括仅产生一个时间序列和谱。
在一些实施例中,每个传输的脉冲可以有两个或更多个接收子间隔距离门,接收到的回波能量的相位调制可以被分离地应用于在所述两个或更多个距离门中的能量,并且该方法还可以包括产生两个或更多个时间序列和谱。
在一些实施例中,t可以等于T,其可以是具有100%占空比的连续脉冲的情况,并且该方法还可以包括传输生成的N个恒定频率脉冲的重复序列。在传输步骤期间,该方法可以包括由接收器从反射传输的能量的对象接收回波能量,该接收器通过物理分离和电磁隔离中一个或两者与传输器信号隔离。
在一些实施例中,可以由传输器执行生成N个恒定频率脉冲的重复序列,并且该方法还可以包括由接收器从反射所述传输的能量的对象接收回波能量,该接收器与所述传输器共置(co-located)用于进行单静态操作。
在一些实施例中,通过一个或多个传输器连续地传输N个恒定频率脉冲的重复序列可以执行生成所述N个恒定频率脉冲的重复序列,并且该方法还包括由用于进行双静态或多静态操作的一个或多个远程接收器从反射所述传输的能量的对象接收回波能量。
在一些实施例中,该方法还可以包括传输生成的N个恒定频率脉冲的重复序列作为处于音频波长、无线电波长、光波长、或其它波长的电磁波,或者作为声波,或者作为振动波。
在一些实施例中,该方法还可以包括传输生成的N个恒定频率脉冲的重复序列作为经相位调制的相干波或作为由经相位调制的相干波调制的非相干波载波。
图24示出回波测距系统的信号处理系统的数据处理系统2400,在该信号处理系统中可以实施信号处理器119和/或信号处理器512的说明性实施例。数据处理系统2400可以包括通信框架2402。通信框架2402可以在回波测距系统的信号处理系统的处理器单元2404、存储器2406、永久性存储装置2408、通信单元2410、输入/输出(I/O)单元2412和显示器2414之间提供通信。存储器2406、永久性存储装置2408、通信单元2410、输入/输出(I/O)单元2412和显示器2414是处理器单元2404经由通信框架2402可访问的资源的示例。
处理器单元2404可以运行针对软件的指令,该指令可以从存储装置(诸如,永久性存储装置2408)被加载至存储器2406中。处理器单元2404可以是许多处理器、多处理器核心或某一其它类型的处理器,这取决于特定实现方式。另外,处理器单元2404可以使用许多异构处理器系统来实现,在该系统中,主处理器可以与次处理器存在于单个芯片上。作为另一说明性示例,处理器单元2404可以是包含相同类型的多个处理器的对称多处理器系统。
存储器2406和永久性存储装置2408是存储装置2416的示例。存储装置是能够存储信息(诸如,例如而不限于数据、以函数形式的程序代码以及基于暂时性或基于永续性的其它合适信息)的任何块的硬件。
在这些示例中,存储装置2416也可被称为计算机可读存储装置。在这些示例中,存储器2406可以是例如随机存取存储器或任何其它合适的易失性或非易失性存储装置。永久性存储装置208可以取决于特定实现方式而采取各种形式。
例如,永久性存储装置2408可以包含一个或多个部件或装置。例如,永久性存储装置2408可以是硬盘驱动器、闪存、可重写光盘、可重写磁带或上面的某一组合。永久性存储装置2408所使用的介质或包含有存储介质的装置也可以是可移动的。例如,可移动光盘或可移动闪速驱动器可以用于计算机可读存储介质,或者可移动硬盘可以用于永久性存储装置2408。
在这些示例中,通信单元2410可以提供与其它数据处理系统或装置的通信。在这些示例中,通信单元2410可以是网络接口卡。通信单元2410可以通过使用物理通信链路和无线通信链路中的任一个或两者来提供通信。
输入/输出(I/O)单元2412可以允许利用可以连接至数据处理系统2400的其它装置来输入和输出数据。例如,输入/输出(I/O)单元2412可以通过键盘、鼠标、和/或某一其它合适的输入装置来提供用于用户输入的连接。另外,输入/输出(I/O)单元2412可以将输出发送至打印机。显示器2414可以提供向用户显示信息的机制。
用于操作系统、应用和/或程序的指令可以位于存储装置2416中,该存储装置2416可以通过通信框架2402与处理器单元2404通信。在这些说明性示例中,该指令可以以函数形式处于永久性存储装置2408上。这些指令可以被加载至存储器2406中用于由处理器单元2404来执行。不同实施例的处理可以由处理器单元2404使用计算机实现的指令来执行,该指令可以位于存储器(诸如,存储器2406)中,或者从永久性存储装置传递至存储器。
这些指令可以被称为可以由处理器单元2404中的处理器来读取和执行的程序指令、程序代码、计算机可用程序代码或计算机可读程序代码。不同实施例中的程序代码可以被体现在诸如存储器2406或永久性存储装置2408的介质的不同的物理存储介质或计算机可读存储介质上。
程序代码2418可以函数的形式位于计算机可读介质2420上,该介质2420是选择性可移动的并且可以被加载至或传递至数据处理系统2400,以用于由处理器单元2404来执行。程序代码2418和计算机可读介质2420可以在这些示例中形成计算机程序产品2422。在一个示例中,计算机可读介质2420可以是计算机可读存储介质2424或计算机可读信号介质2426。
计算机可读存储介质2424可以包括例如光盘或磁盘,该光盘或磁盘被插入或放置到作为永久性存储装置2408的一部分的驱动器或其它装置中以便传递至作为永久性存储装置2408的一部分的存储装置(诸如,硬盘)上。计算机可读存储介质2424也可以采取连接至数据处理系统2400的、包含存储介质(诸如,硬盘、拇指驱动器或闪存)的永久性存储装置的形式。在一些实例中,计算机可读存储介质2424可以是从数据处理系统2400不可移动的。
在这些示例中,计算机可读存储介质2424可以是用于存储程序代码2418的物理存储装置或有形存储装置,而非传播或传输程序代码2418的介质。计算机可读存储介质2424也可以被称为计算机可读有形存储装置或计算机可读物理存储装置。换言之,计算机可读存储介质2424可以是能够由人触摸的介质。
可替换地,可以使用计算机可读信号介质2426将程序代码2418传递至数据处理系统2400。计算机可读信号介质2426可以是例如包含程序代码2418的传播数据信号。例如,计算机可读信号介质2426可以是电磁信号、光信号、电压信号、和/或任何其它合适类型的信号。这些信号可以在通信链路(诸如,无线通信链路、光纤线缆、同轴线缆、电线、和/或任何其它合适类型的通信链路)上传输。换言之,在说明性示例中,通信链路和/或连接可以是物理结构或无线的。
在一些说明性实施例中,程序代码2418可以在网络上通过计算机可读信号介质2426从另一装置或数据处理系统被下载至永久性存储装置2408,以供在数据处理系统2400内使用。例如,存储在服务器数据处理系统中的计算机可读存储介质中的程序代码可以在网络上从该服务器被下载至数据处理系统2400。提供程序代码2418的数据处理系统可以是服务器计算机、客户端计算机、或能够存储并传输程序代码2418的某一其它装置。
针对数据处理系统2400所说明的不同部件并不表示对其中可以实现不同实施例的方式提供结构性限制。不同的说明性实施例可以在数据处理系统中实现,除了针对数据处理系统2400所说明的部件之外和/或作为针对数据处理系统2400所说明的部件的替换,该数据处理系统包括其他部件。图24中所示的其它部件可能不同于所示的说明性示例。可以使用能够运行程序代码的任何硬件装置或系统来实现不同的实施例。作为一个示例,数据处理系统2400可以包括集成有无机部件的有机部件和/或可以完全由除人体以外的有机部件构成。例如,存储装置可以由有机半导体构成。
在另一说明性示例中,处理器单元2404可以采取具有被制造或被配置成用于特定使用的电路的硬件单元(诸如,固件)的形式。该类型的硬件可以执行操作,而不需要将程序代码从被配置成执行操作的存储装置加载至存储器中。
例如,当处理器单元2404采取硬件单元的形式时,处理器单元2404可以是电路系统、专用集成电路(ASIC)、可编程逻辑装置、或被配置成执行许多操作的某一其它合适类型的硬件。利用可编程逻辑装置,该装置可以被配置成执行许多操作。该装置可以在稍后时间被重新配置或者可以被永久地配置成执行许多操作。例如,可编程逻辑装置的示例包括可编程逻辑阵列、现场可编程逻辑阵列、现场可编程门阵列以及其它合适的硬件装置。利用该类型的实现方式可以省略程序代码2418,因为可在硬件单元中实现针对不同实施例的过程。
在又一说明性示例中,可以使用在计算机中发现的处理器和硬件单元的组合来实现处理器单元2404。处理器单元2404可以具有被配置成运行程序代码2418的许多硬件单元和许多处理器。利用该描绘的示例,一些过程可以被实现在该许多硬件单元中,而可以在该许多处理器中实现其它过程。
在另一示例中,总线系统可以用于实现通信框架2402并且可以由一个或多个总线(诸如,系统总线和/或输入/输出总线)构成。当然,该总线系统可以使用在附接至该总线系统的不同部件或装置之间提供数据传递的任何合适类型的架构来实现。
此外,通信单元2410可以包括进行传输数据、接收数据、或传输和接收数据两者的许多装置。通信单元2410可以是例如调制解调器或网络适配器、两个网络适配器、或它们的某一组合。另外,存储器可以例如是存储器2406或高速缓冲存储器,诸如,可以在存在于通信框架2402中的接口和存储器控制器中心发现的高速缓冲存储器。

Claims (35)

1.一种用于使用来自一个或多个反射对象的波能量反射、通过来自所述反射对象的反射的谱特性来表征这些对象的某些性质的方法,所述方法包括:
生成以T秒的脉冲间间隔的、宽度为t秒的N个恒定频率脉冲的重复序列以用于传输,其中所述序列中的每个脉冲具有根据二次相位序列的特定恒定相位,所述相位在第一调制意义中被应用于每个脉冲;
在每个接收子间隔期间、通过用于N个恒定频率脉冲的传输的重复序列的相同二次相位序列,利用与所述第一调制意义相反的第二调制意义来调制从反射N个恒定频率脉冲的传输的重复序列的一个或多个对象接收到的回波能量的相位,使得以往返行程回波时间的离散单位T来测量的、应用于从在特定距离r处的特定反射对象反射的回波能量的净相位调制是传输的脉冲在它们的传输时间处的相位与应用于从距离r接收到的回波能量的相位之间的差别,其处于所述差别的任一意义;以及
根据经调制的接收到的回波能量产生所述接收到的回波能量的作为所述反射对象的距离r的函数的、大小等于1/NT Hz的倍数的N个唯一且离散的频率转换,所述频率转换保留所述接收到的回波能量的谱,从而结合复合信号形成频率谱。
2.根据权利要求1所述的方法,其中,所述二次相位序列由Ф(n)=M(an^2+bn+c)来表示,其中,Ф(n)为应用于具有脉冲指数n的脉冲的相位,M为与N没有共同因子的整数常数;n为所述重复序列中的脉冲的指数,在1至N的范围中;a为限定所述相位序列的重复间隔的常数,当考虑以一个相位旋转为模时,a被设为π/N个弧度的相位单位;b和c为任何值的常数;其中,产生N个频率转换包括产生所述接收到的回波能量的作为距离r的函数的、具有以1/THz为模的Ma(r-i)/NT Hz形式的频率转换,其中,指数i表示在将Ф(n)应用于生成的脉冲与将Ф(n)应用于所述接收到的回波能量之间的n中的任何指数偏移。
3.根据权利要求2的方法,还包括:
确定针对具有使用常数M的单个值生成的相位的传输脉冲序列的、接收到的回波能量的一个或多个谱特征落在针对每个相应的距离r的1/NT Hz的谱间隔内,而没有谱重叠;
不模糊地表征对应的从每个距离r接收到的回波能量的谱特征;以及
将表征的谱特征分配给特定距离。
4.根据权利要求2所述的方法,还包括:确定从至少一个或多个反射对象中的一个或多个接收到的回波能量的谱特征落在针对所述相应的距离中的一个或多个的1/NT Hz的谱间隔之外,或者从不同的距离接收到的回波能量的谱特征重叠,从而在将距离分配给回波能量谱中的谱特征时产生模糊性,其中,生成N个恒定频率脉冲的重复序列包括使用常数M的多个值来生成N个恒定频率脉冲的重复序列,所述方法还包括通过针对每个距离r找到所述常数M的至少一个值来确定对应的接收到的回波能量的谱特征的参数以消除偏移的或重叠的谱特征的模糊性,针对该至少一个值任何这种偏移或重叠通过置换由M的不同值所产生的谱距离顺序而求解;表征从每个距离r接收到的、具有重叠的或偏移的谱特征的回波能量的谱特征;以及将所表征的谱特征分配给特定距离。
5.根据权利要求4所述的方法,其中,表征具有重叠的或偏移的谱特征的接收到的回波能量的谱特征包括:
获取针对所述常数M的m个值的谱;
针对任何距离r,表征能够从m个谱中的任何一个而不模糊地被分配给距离的那些谱特征;
在针对M的每个值的特征的相应的谱位置处,从所述m个谱中的每个中减去针对每个对应的距离r如此表征的谱特征;以及
针对剩余的谱特征、利用修改谱来重复前述两个步骤。
6.根据权利要求4所述的方法,其中,表征从不同的距离间隔r接收到的具有重叠的或偏移的谱特征的回波能量的谱特征包括:
获取针对所述常数M的m个值的谱,以及针对每个距离r执行以下步骤:
(a)使获取的m个谱循环地偏移,使得它们在每个谱中的、在零多普勒速度下从所述距离r接收到的回波能量将位于的点处对齐;
(b)通过针对对齐的谱中的每个频率从对齐的谱整体中取出所述频率处的最小值而创建最小值谱;以及
(c)将所述最小值谱中超出预设阈值并且位于预定频率窗口内的任何谱特征表征为表示针对距离r处的一个或多个对象的谱特征。
7.根据权利要求4所述的方法,其中,表征从不同的距离间隔r接收到的具有重叠的或偏移的谱特征的回波能量的谱特征包括:获取针对所述常数M的m个值的谱,以及执行以下步骤,直到其中接收到的回波能量超出预设阈值的每个距离r处的一个或多个谱特征被表征为止:
(a)针对每个距离r执行以下步骤1至3;
(1)以循环的方式使m个谱偏移,使得它们在每个谱中的、在零多普勒速度下来自所述距离r的反射将位于的点处重合;以及
(2)通过针对所述谱中的每个频率从偏移的谱的整体取出所述频率处的谱能量的最小值而针对每个距离r来创建最小值谱;以及
(3)针对每个距离r确定表示所述最小值谱的谱峰中的能量的值;
(b)选择产生最大的这种峰能量值的距离r;
(c)根据针对距离r计算的所述最小值谱来表征针对该选择的距离r的一个或多个谱特征;
(d)在一个或多个对应的谱位置处,通过减去从所有m个谱中移除针对所述距离r如此表征的一个或多个谱特征;以及
(e)重复步骤(a)至(d),使用m个修改谱来表征次高的谱分量。
8.根据权利要求2所述的方法,其中,生成N个恒定频率脉冲的重复序列包括通过以下述方式针对所述常数M的两个或更多个值、生成N个恒定频率脉冲的重复序列:(a)在时间上顺序地生成,(b)使用正交波极化同时生成,(c)通过使用分离相位调制的多个频率载波同时生成,或(d)通过前述的任何组合来生成。
9.根据权利要求1所述的方法,其中,每个传输的脉冲仅有一个接收子间隔距离门,其中,接收回波能量包括接收来自所有距离的所有回波能量,所述方法还包括仅产生一个时间序列和谱。
10.根据权利要求1所述的方法,其中,每个传输的脉冲有两个或更多个接收子间隔距离门,并且其中,所述接收到的回波能量的相位调制被分离地应用于在所述两个或更多个距离门中的能量,所述方法还包括产生两个或更多个时间序列和谱。
11.根据权利要求1所述的方法,其中,t等于T,其为具有100%占空比的连续脉冲的情况,并且所述方法还包括传输生成的N个恒定频率脉冲的重复序列且在传输步骤期间,由接收器从反射传输的能量的对象接收回波能量,所述接收器通过物理分离和电磁隔离中一个或两者与传输器信号隔离。
12.根据权利要求1所述的方法,其中,通过传输器执行生成N个恒定频率脉冲的重复序列,并且所述方法还包括由接收器从反射所述传输的能量的对象接收回波能量,所述接收器与所述传输器共置用于进行单静态操作。
13.根据权利要求1所述的方法,其中,通过一个或多个传输器连续地传输N个恒定频率脉冲的重复序列执行生成N个恒定频率脉冲的重复序列,并且所述方法还包括由用于进行双静态或多静态操作的一个或多个远程接收器从反射所述传输的能量的对象接收回波能量。
14.根据权利要求所述1的方法,还包括:传输所生成的N个恒定频率脉冲的重复序列作为处于音频波长、无线电波长、光波长、或其它波长的电磁波,或者作为声波,或者作为振动波。
15.根据权利要求1所述的方法,还包括:传输所生成的N个恒定频率脉冲的重复序列作为经相位调制的相干波或作为由经相位调制的相干波调制的非相干波载波。
16.一种系统,所述系统包括:
序列发生器,被配置成生成以T秒的脉冲间间隔的、宽度为t秒的N个恒定频率脉冲的重复序列以用于传输,其中所述序列中的每个脉冲具有根据二次相位序列的特定恒定相位,所述相位在第一调制意义中被应用于每个脉冲;以及
调制器,被配置成在每个接收子间隔期间、通过用于生成以用于传输的信号的相同二次相位序列,利用与所述第一调制意义相反的第二调制意义来调制从反射所述N个恒定频率脉冲的传输的重复序列的一个或多个对象接收的回波能量的相位,使得以往返行程回波时间T的离散单位来测量的、应用于从在特定距离间隔r处的特定反射对象反射的回波能量的净相位调制是传输的脉冲在它们的传输时间处的相位与应用于从距离r接收到的回波能量的相位之间的差别,其处于所述差别的任一意义;以及
信号处理器,被配置成根据经调制的接收到的回波能量产生所接收到的回波能量的作为所述反射对象的距离r的函数的、大小等于1/NT Hz的倍数的N个唯一且离散的频率转换,所述频率转换可以保留所接收到的回波能量的谱,从而结合复合信号形成频率谱。
17.根据权利要求16所述的系统,其中,所述序列发生器进一步被配置成生成由Ф(n)=M(an^2+bn+c)来表示的二次相位序列,其中,Ф(n)为应用于具有脉冲指数n的脉冲的相位,M为与N没有任何共同因子的整数常数;n为所述重复序列中的脉冲的指数,在1至N的范围中;a为限定所述相位序列的重复间隔的常数,当考虑以一个相位旋转为模时,a被设为π/N个弧度的相位单位;b和c为任何值的常数;以及所述信号处理器产生经调制的接收到的回波能量的作为距离r的函数的、具有以1/T Hz为模的Ma(r-i)/NT Hz形式的频率转换,其中,指数i表示在通过所述调制器将Ф(n)应用于生成以用于传输的序列与将Ф(n)应用于所接收到的回波能量之间的n中的任何指数偏移。
18.根据权利要求17所述的系统,其中,所述信号处理器进一步被配置成:
确定针对具有使用常数M的单个值生成的相位的传输的脉冲序列的、接收到的回波能量的一个或多个谱特征落在针对每个相应的距离r的1/NT Hz的谱间隔内,而没有谱重叠;
不模糊地表征对应的从每个距离r接收到的回波能量的谱特征;以及
将表征的谱特征分配给特定距离。
19.根据权利要求17所述的系统,其中,所述信号处理器进一步被配置成确定从至少一个或多个反射对象中的一个或多个接收到的回波能量的一个或多个谱特征落在针对相应的距离的1/NT Hz的谱间隔之外,或者从不同的距离接收到的回波能量的谱特征重叠,在将距离分配给回波能量谱中的谱特征时产生模糊性;所述序列发生器进一步被配置成使用所述常数M的多个值来生成N个恒定频率脉冲的重复序列以用于传输;以及所述信号处理器被配置成通过针对每个距离r找到所述常数M的至少一个值来确定对应的接收到的回波能量的谱特征的参数以消除偏移的或重叠的谱特征的模糊性,针对该至少一个值任何这种偏移或重叠通过置换由M的不同值所产生的谱距离顺序而求解,不模糊地表征针对该距离r的回波能量的消除模糊性的谱特征,以及将所表征的谱特征分配给特定距离。
20.根据权利要求17所述的系统,其中,所述信号处理器进一步被配置成确定从至少一个或多个反射对象中的一个或多个接收到的回波能量的一个或多个谱特征落在针对相应的距离的1/NT Hz的谱间隔之外,或者从不同的距离接收到的回波能量的谱特征重叠,在将距离分配给回波能量谱中的谱特征时产生模糊性;所述序列发生器进一步被配置成使用所述常数M的多个值来生成N个恒定频率脉冲的重复序列以用于传输;以及所述信号处理器被配置成针对所述常数M的多个值确定由传输所述N个恒定频率脉冲的重复序列所产生的对应的接收到的回波能量的谱特征的参数;以及通过下述方式来消除在特定距离r处的重叠的或偏移的谱特征的模糊性并且对该谱特征进行表征:
获取针对所述常数M的m个值的谱;
(a)针对任何距离r,表征能够从m个谱中的任何一个而不模糊地被分配给距离的那些谱特征;
(b)在针对M的每个值的特征的相应的谱位置处,从所述m个谱中的每个中减去针对每个对应的距离r如此表征的谱特征;以及
(c)利用如通过减去来修改的m个谱来重复步骤(a)和(b)。
21.根据权利要求17所述的系统,其中,所述信号处理器进一步被配置成确定从至少一个或多个反射对象中的一个或多个接收到的回波能量的一个或多个谱特征落在针对相应的距离的1/NT Hz的谱间隔之外,或者从不同的距离接收到的回波能量的谱特征重叠,在将距离分配给回波能量谱中的谱特征时产生模糊性;所述序列发生器进一步被配置成使用所述常数M的多个值来生成N个恒定频率脉冲的重复序列以用于传输;以及所述信号处理器被配置成针对所述常数M的多个值确定由传输所述N个恒定频率脉冲的重复序列所产生的对应的接收到的回波能量的谱特征的参数;以及通过下述方式来消除在特定距离r处的重叠的或偏移的谱特征的模糊性且对该谱特征进行表征:获取针对所述常数M的m个值的谱,以及针对每个距离r执行以下步骤(a)至(c),
(a)使获取的m个谱循环地偏移,使得它们在每个谱中的、在零多普勒速度下从所述距离r接收到的回波能量将位于的点处对齐;
(b)通过针对对齐的谱中的每个频率从对齐的谱整体中取出所述频率处的最小值而创建最小值谱;以及
(c)将超出预设阈值并且位于预定频率窗口内的任何谱特征表征为表示针对在距离r处的一个或多个反射对象的谱特征。
22.根据权利要求17所述的系统,其中,所述信号处理器进一步被配置成确定从至少一个或多个反射对象中的一个或多个接收到的回波能量的一个或多个谱特征落在针对其相应的距离的1/NT Hz的谱间隔之外,或者从不同的距离接收到的回波能量的谱特征重叠,在将距离分配给回波能量谱中的谱特征时产生模糊性;所述序列发生器进一步被配置成使用所述常数M的多个值来生成N个恒定频率脉冲的重复序列以用于传输;以及所述信号处理器被配置成针对所述常数M的多个值确定由传输所述N个恒定频率脉冲的重复序列所产生的对应的接收到的回波能量的谱特征的参数,以及通过下述方式来消除在特定距离r处的重叠的或偏移的谱特征的模糊性且对该谱特征进行表征:获取针对所述常数M的m个值的谱,以及执行以下步骤来以回波能量的测量的下降顺序来表征谱特征:
(a)针对每个距离r来执行以下步骤1至3;
(1)以循环的方式使所述m个谱偏移,使得它们在每个谱中的、在零多普勒速度下来自所述距离r的反射将位于的点处重合;
(2)通过针对所述谱中的每个频率、从偏移的谱的整体取出所述频率处的谱能量的最小值而针对所述距离r来创建最小值谱;以及
(3)针对所述距离r确定表示所述最小值谱的谱峰中的能量的值;
(b)选择产生最大的这种峰能量值的距离r;
(c)根据针对距离r计算的所述最小值谱来表征针对该选择的距离r的一个或多个谱特征;
(d)在一个或多个对应的谱位置处,通过减去从所有m个谱中移除针对该距离r如此表征的一个或多个谱特征;以及
(e)重复步骤(a)至(d),使用m个修改谱来以谱能量的下降顺序表征一个或多个附加的谱特征。
23.根据权利要求17所述的系统,其中,所述序列发生器被配置成以下述方式针对所述常数M的两个或更多个值、生成N个恒定频率脉冲的重复序列:(a)在时间上顺序地生成,(b)使用正交波极化同时生成,(c)通过使用分离相位调制的多个频率载波同时生成,或(d)通过前述的任何组合来生成。
24.根据权利要求16所述的系统,其中,每个传输的脉冲仅有一个接收子间隔距离门,以及所述信号处理器产生一个时间序列和谱。
25.根据权利要求16所述的系统,其中,每个传输的脉冲有两个或更多个接收子间隔距离门,并且其中,所述接收到的回波能量的相位调制被分离应用于所述两个或更多个距离门中的能量,以及所述信号处理器产生两个或更多个时间序列和谱。
26.根据权利要求16所述的回波测距系统,其中,t等于T,其为具有100%占空比的连续脉冲的情况。
27.根据权利要求16所述的系统,还包括传输器,所述传输器被配置成传输所述N个恒定频率脉冲的重复序列作为处于音频波长、无线电波长、光波长、或其它波长的电磁波,或者作为声波,或者作为振动波。
28.根据权利要求16所述的系统,其中,所述序列发生器进一步被配置成生成作为经相位调制的相干波或作为由经相位调制的相干波调制的非相干波载波的N个恒定频率脉冲的重复序列。
29.一种计算机程序产品,包括:
至少一个计算机可读存储介质,具有体现在所述介质中的计算机可读程序指令,当所述计算机可读程序指令被回波测距系统的信号处理系统的处理器读取时,所述指令被配置成:
生成以T秒的脉冲间间隔的、宽度为t秒的N个恒定频率脉冲的重复序列以用于传输,其中所述序列中的每个脉冲具有根据二次相位序列的特定恒定相位,所述相位在第一调制意义中被应用于每个脉冲;
在每个接收子间隔期间、通过用于N个恒定频率脉冲的传输的重复序列的相同二次相位序列,利用与所述第一调制意义相反的第二调制意义来调制从反射所述N个恒定频率脉冲的传输的重复序列的一个或多个对象接收的回波能量的相位,使得以往返行程回波时间T的离散单位来测量的、应用于从在特定距离r处的特定反射对象反射的回波能量的净相位调制是传输的脉冲在它们的传输时间处的相位与应用于从距离r接收到的回波能量的相位之间的差别,其处于所述差别的任一意义;以及
根据经调制的接收到的回波能量产生所接收到的回波能量的作为所述反射对象的距离r的函数的、大小等于1/NT Hz的倍数的N个唯一且离散的频率转换,所述频率转换保留所接收到的回波能量的谱,从而结合复合信号形成频率谱。
30.根据权利要求29所述的计算机程序产品,其中,当所述计算机可读程序指令被所述处理器读取时,所述指令进一步被配置成生成具有根据由Ф(n)=M(an^2+bn+c)表示的二次相位序列的相位的N个恒定频率脉冲的重复序列,其中,Ф(n)为应用于具有脉冲指数n的脉冲的相位,M为与N没有任何共同因子的整数常数;n为所述重复序列中的脉冲的指数,在1至N的范围中;a为限定所述相位序列的重复间隔的常数,当考虑以一个相位旋转为模时,a被设为π/N个弧度的相位单位;b和c为任何值的常数;其中,产生N个频率转换包括产生所接收到的回波能量的作为距离r的函数的、具有以1/T Hz为模的Ma(r-i)/NT Hz形式的频率转换,其中,指数i表示在将Ф(n)应用于生成的脉冲与将Ф(n)应用于所接收到的回波能量之间的n中的任何指数偏移。
31.根据权利要求30所述的计算机程序产品,其中,当所述计算机可读程序指令被所述处理器读取时,所述指令进一步被配置成:
确定针对具有使用常数M的单个值生成的相位的传输脉冲序列的、接收到的回波能量的一个或多个谱特征落在针对每个相应的距离r的1/NT Hz的谱间隔内,而没有谱重叠;
不模糊地表征对应的从每个距离r接收到的回波能量的谱特征;以及
将表征的谱特征分配给特定距离。
32.根据权利要求30所述的计算机程序产品,其中,当所述计算机可读程序指令被所述处理器读取时,所述指令进一步被配置成:
确定从至少一个或多个反射对象中的一个或多个接收到的回波能量的谱特征落在针对所述相应的距离中的一个或多个的1/NT Hz的谱间隔之外,或者从不同的距离接收到的回波能量的谱特征重叠,从而在将距离分配给回波能量谱中的谱特征时产生模糊性;
使用所述常数M的多个值来生成N个恒定频率脉冲的重复序列;
通过针对每个距离r找到所述常数M的至少一个值来确定对应的接收到的回波能量的谱特征的参数以消除偏移的或重叠的谱特征的模糊性,针对该至少一个值任何这种偏移或重叠通过置换由M的不同值所产生的谱距离顺序而求解;
表征从每个距离r接收到的、具有重叠的或偏移的谱特征的回波能量的谱特征;以及
将所表征的谱特征分配给特定距离。
33.根据权利要求32所述的计算机程序产品,其中,当所述计算机可读程序指令被所述处理器读取时,所述指令进一步被配置成:
获取针对所述常数M的m个值的谱;
针对任何距离r,表征能够从m个谱中的任何一个而不模糊地被分配给距离的那些谱特征;
在针对M的每个值的特征的相应的谱位置处,从所述m个谱中的每个中减去针对每个对应的距离r如此表征的谱特征;以及
针对剩余的谱特征、利用修改谱来重复前述两个步骤。
34.根据权利要求32所述的计算机程序产品,其中,当所述计算机可读程序指令被所述处理器读取时在从不同的距离间隔r接收到的回波能量具有重叠的或偏移的谱特征的情况下,所述指令进一步被配置成:
获取针对所述常数M的m个值的谱,以及针对每个距离r执行以下步骤:
(a)使获取的m个谱循环地偏移,使得它们在每个谱中的、在零多普勒速度下从所述距离r接收到的回波能量将位于的点处对齐;
(b)通过针对对齐的谱中的每个频率从对齐的谱整体中取出所述频率处的最小值而创建最小值谱;以及
(c)将所述最小值谱中超出预设阈值并且位于预定频率窗口内的任何谱特征表征为表示针对在距离r处的一个或多个对象的谱特征。
35.根据权利要求32所述的计算机程序产品,其中,当所述计算机可读程序指令被所述处理器读取时在从不同的距离间隔r接收到的回波能量具有重叠的或偏移的谱特征的情况下,所述指令进一步被配置成:
获取针对所述常数M的m个值的谱,以及执行以下步骤直到其中所接收到的回波能量超出预设阈值的每个距离r处的一个或多个谱特征被表征为止:
(a)针对每个距离r执行以下步骤1至3;
(1)以循环的方式使m个谱偏移,使得它们在每个谱中的、在零多普勒速度下来自所述距离r的反射将位于的点处重合;以及
(2)通过针对所述谱中的每个频率从偏移的谱的整体取出所述频率处的谱能量的最小值而针对每个距离r来创建最小值谱;以及
(3)针对每个距离r确定表示所述最小值谱的谱峰中的能量的值;
(b)选择产生最大的这种峰能量值的距离r;
(c)根据针对距离r计算的所述最小值谱来表征针对该选择的距离r的一个或多个谱特征;
(d)在一个或多个对应的谱位置处,通过减去从所有m个谱中移除针对所述距离r如此表征的一个或多个谱特征;以及
(e)重复步骤(a)至(d),使用m个修改谱来表征次高的谱分量。
CN201580040707.8A 2014-05-29 2015-05-26 具有增大的多普勒能力的雷达操作 Expired - Fee Related CN107076834B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/290,708 US9057785B1 (en) 2014-05-29 2014-05-29 Radar operation with increased doppler capability
US14/290708 2014-05-29
PCT/US2015/032478 WO2015183830A1 (en) 2014-05-29 2015-05-26 Radar operation with increased doppler capability

Publications (2)

Publication Number Publication Date
CN107076834A true CN107076834A (zh) 2017-08-18
CN107076834B CN107076834B (zh) 2018-12-04

Family

ID=53279861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580040707.8A Expired - Fee Related CN107076834B (zh) 2014-05-29 2015-05-26 具有增大的多普勒能力的雷达操作

Country Status (16)

Country Link
US (2) US9057785B1 (zh)
EP (1) EP3149511B1 (zh)
JP (1) JP6177467B1 (zh)
KR (1) KR101779315B1 (zh)
CN (1) CN107076834B (zh)
AU (1) AU2015267242B2 (zh)
CA (1) CA2949147C (zh)
DE (1) DE15727241T1 (zh)
DK (1) DK3149511T3 (zh)
ES (1) ES2700935T3 (zh)
IL (1) IL249048A (zh)
NZ (1) NZ727833A (zh)
PL (1) PL3149511T3 (zh)
RU (1) RU2628566C1 (zh)
TW (1) TWI575245B (zh)
WO (1) WO2015183830A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108471321A (zh) * 2018-03-19 2018-08-31 北京大学 一种构建通信数据与雷达性能参数同时同频传输的雷达-通信一体化系统方法
CN108765832A (zh) * 2018-07-06 2018-11-06 厦门信通慧安科技有限公司 一种入侵检测方法及装置
CN109116361A (zh) * 2018-08-03 2019-01-01 中国人民解放军91388部队 一种抗距离模糊水声合作定位信号
CN109932700A (zh) * 2019-03-28 2019-06-25 北京润科通用技术有限公司 一种多普勒速度的解模糊方法及装置
WO2020259193A1 (zh) * 2019-06-27 2020-12-30 华为技术有限公司 激光探测的装置、方法及系统
CN112384281A (zh) * 2020-01-02 2021-02-19 上海联影医疗科技股份有限公司 用于控制放射输出的系统和方法
CN112769564A (zh) * 2021-01-11 2021-05-07 中国科学技术大学 用于量子密钥分发的同步方法、装置电子设备及介质
CN113196097A (zh) * 2018-12-17 2021-07-30 赛灵思公司 数字波束成形雷达系统中的相位噪声补偿
CN113631950A (zh) * 2019-03-15 2021-11-09 株式会社电装 物体追踪装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9057785B1 (en) * 2014-05-29 2015-06-16 Robert W. Lee Radar operation with increased doppler capability
US9864044B2 (en) * 2014-06-25 2018-01-09 Raytheon Company Methods and systems for improving signal to phase noise in radars
JP6226084B2 (ja) * 2014-11-19 2017-11-08 三菱電機株式会社 レーダ装置
US20160195607A1 (en) * 2015-01-06 2016-07-07 Radar Obstacle Detection Ltd. Short-ragne obstacle detection radar using stepped frequency pulse train
WO2017205874A1 (en) 2016-05-27 2017-11-30 Rhombus Systems Group, Inc. Radar system to track low flying unmanned aerial vehicles and objects
CN106020838B (zh) * 2016-05-27 2020-01-14 Oppo广东移动通信有限公司 一种解锁控制方法及移动终端
US10401485B2 (en) * 2016-11-30 2019-09-03 GM Global Technology Operations LLC Method to resolve interfering targets jointly at multiple dimensions
FR3060765B1 (fr) * 2016-12-15 2019-01-25 Sigfox Procede de traitement de l’effet doppler d’un signal transmis par un dispositif emetteur vers un satellite non geosynchrone
DE102017110063A1 (de) * 2017-03-02 2018-09-06 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren und Vorrichtung zur Umfelderfassung
CN111758237B (zh) * 2018-02-27 2023-12-15 Iee国际电子工程股份公司 用于联合雷达通信的方法
US11914021B2 (en) * 2018-03-30 2024-02-27 Alouette Technology Inc. Velocity measurement device, velocity measurement program, recording medium, and velocity measurement method
WO2020012455A1 (en) * 2018-07-09 2020-01-16 Neteera Technologies Ltd. A sub-thz and thz system for physiological parameters detection and method thereof
TWI673510B (zh) 2018-07-17 2019-10-01 昇雷科技股份有限公司 具打線互連結構之都普勒雷達
US11022670B1 (en) * 2018-09-13 2021-06-01 L3Harris Technologies, Inc. Opportunistic adjustable rate cross-ambiguity function geolocation
CN109613507B (zh) * 2018-12-21 2021-04-06 北京理工大学 一种针对高阶机动目标雷达回波的检测方法
US11240082B1 (en) * 2019-04-10 2022-02-01 Arctan, Inc. Methods and systems for modulating and de modulating data
WO2021055085A2 (en) * 2019-07-15 2021-03-25 Blackmore Sensors & Analytics, Llc Method and system for sidelobe suppression in phase encoded doppler lidar
US11644531B2 (en) * 2019-09-20 2023-05-09 University Of Kansas Devoid clutter capture and filling (deccaf) to compensate for intra-CPI spectral notch variation
CN111007466B (zh) * 2019-12-03 2023-05-26 西安电子科技大学 一种基于引入距离门自由度的dcar干扰抑制方法及系统
EP3839561A1 (en) * 2019-12-18 2021-06-23 Imec VZW Radar ranging
US11448744B2 (en) * 2019-12-31 2022-09-20 Woven Planet North America, Inc. Sequential doppler focusing
RU199139U1 (ru) * 2020-01-27 2020-08-19 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны им. Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Радиоприемное устройство импульсно-доплеровской РЛС с многоканальной весовой обработкой
TWI724786B (zh) * 2020-02-14 2021-04-11 立積電子股份有限公司 偵測系統及生命體的偵測方法
CN112764020A (zh) * 2020-02-28 2021-05-07 加特兰微电子科技(上海)有限公司 解速度模糊、确定对象移动速度的方法、装置及相关设备
US11546083B2 (en) * 2020-03-08 2023-01-03 MMRFIC Technology Pvt. Ltd. Method, system and apparatus for time and frequency synchronization for high speed moving platforms
WO2021191991A1 (ja) * 2020-03-24 2021-09-30 三菱電機株式会社 信号処理装置、レーダ装置および信号処理方法
TWI756728B (zh) * 2020-07-01 2022-03-01 立積電子股份有限公司 物體辨識方法及物體辨識裝置
CN113567959B (zh) * 2020-07-27 2022-09-16 北京一径科技有限公司 重频信号的检测方法及装置、处理设备及存储介质
CN111965647B (zh) * 2020-08-05 2021-04-27 江苏科技大学 基于雷达通信一体化的路况探测方法
CN112433191B (zh) * 2021-01-27 2021-04-09 成都市克莱微波科技有限公司 脉冲信号的处理方法、装置、电子设备及存储介质
CN113391311B (zh) * 2021-06-21 2022-08-09 电子科技大学 一种分布式雷达广义孔径合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422646A (en) * 1983-02-24 1995-06-06 The United States Of America As Represented By The Secretary Of The Navy High frequency MTI radar
US5870054A (en) * 1982-12-10 1999-02-09 Us Navy Moving target indicator with no blind speeds
EP1314997A1 (en) * 2001-11-24 2003-05-28 EADS Deutschland Gmbh Method for HPRF-radar measurement
CN101097255A (zh) * 2006-07-02 2008-01-02 张丽 谱线增强式脉冲多卜勒雷达回波信号预处理器

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3750172A (en) 1971-06-02 1973-07-31 Bendix Corp Multifrequency cw radar with range cutoff
US3883871A (en) 1973-03-12 1975-05-13 Randolph G Moore Method and modulation system for ambiguity reduction in pulsed radar
US3935572A (en) 1973-11-23 1976-01-27 Hughes Aircraft Company System for resolving velocity ambiguity in pulse-doppler radar
US4042925A (en) 1975-11-24 1977-08-16 International Telephone And Telegraph Corporation Pseudo-random code (PRC) surveilance radar
US6225943B1 (en) 1978-05-01 2001-05-01 Raytheon Company Method of operating pulse radar
SE418018B (sv) 1979-04-25 1981-04-27 Ericsson Telefon Ab L M Forfarande att i en foljeradar astadkomma stort entydighetsavstand for detekterade mal medelst radarpulser med hog repetitionsfrekvens
US4499467A (en) 1982-04-14 1985-02-12 The United States Of America As Represented By The Secretary Of The Army Doppler radar sets with target direction sensing capability
US5047784A (en) 1991-01-30 1991-09-10 The United States Of America As Represented By The Secretary Of The Navy Zero cross-correlation complementary radar waveform signal processor for ambiguous range radars
US5173706A (en) 1991-04-16 1992-12-22 General Electric Company Radar processor with range sidelobe reduction following doppler filtering
US5151702A (en) 1991-07-22 1992-09-29 General Electric Company Complementary-sequence pulse radar with matched filtering following doppler filtering
US5657022A (en) 1992-11-17 1997-08-12 The United States Of America As Represented By The Secretary Of The Air Force Unambiguous range-doppler processing method and system
DE4317038A1 (de) 1993-05-21 1994-11-24 Atlas Elektronik Gmbh Verfahren zum Erkennen von Zielen und/oder Bestimmen ihrer Zieldaten
FR2712094B1 (fr) 1993-11-02 1995-12-01 Thomson Csf Procédé de détermination du rang d'ambiguïté en distance d'échos radar.
US5528246A (en) 1994-06-30 1996-06-18 Kustom Signals, Inc. Traffic radar with digital signal processing
US5442359A (en) 1994-06-30 1995-08-15 Unisys Corporation Apparatus and method for mitigating range-doppler ambiguities in pulse-doppler radars
US5583512A (en) 1995-06-06 1996-12-10 Point Loma Industries, Inc. Optimal ambiguity function radar
US5808580A (en) 1997-02-06 1998-09-15 Andrews, Jr.; Grealie A. Radar/sonar system concept for extended range-doppler coverage
US5835199A (en) 1996-05-17 1998-11-10 Coherent Technologies Fiber-based ladar transceiver for range/doppler imaging with frequency comb generator
US5815250A (en) 1997-05-27 1998-09-29 Coherent Technologies, Inc. Doublet pulse coherent laser radar for precision range and velocity measurements
US6411249B1 (en) 2000-07-19 2002-06-25 Northrop Grumman Corporation Apparatus and method for the monopulse linking of frequency agile emitter pulses intercepted in on single interferometer baseline
RU2194288C2 (ru) * 2000-12-15 2002-12-10 Открытое акционерное общество "Корпорация "Фазотрон - научно-исследовательский институт радиостроения" Радиолокационная система
US6639546B1 (en) 2001-11-06 2003-10-28 Lockheed Martin Corporation Radar system in which range ambiguity and range eclipsing are reduced by frequency diversity and alternation of pulse periodicity
RU2239845C2 (ru) * 2002-07-22 2004-11-10 Кошуринов Евгений Иванович Способ и система для радиолокационного измерения скоростей и координат объектов (варианты)
US6828929B2 (en) 2003-01-30 2004-12-07 Raytheon Company Technique for non-coherent integration of targets with ambiguous velocities
CN1532559A (zh) * 2003-03-21 2004-09-29 史田元 利用am语音广播、电视广播信号探测“隐身”飞机的杂波抑制技术
SE525699C2 (sv) 2003-05-05 2005-04-05 Saab Ab Anordning vid radar som arbetar med varierande pulsrepeteringsintervall
US7081848B1 (en) 2004-11-18 2006-07-25 Lockheed Martin Corporation Orthogonal pulse range ambiguity resolution
US7342651B1 (en) 2004-12-27 2008-03-11 Northrop Grumman Corporation Time modulated doublet coherent laser radar
US7327307B2 (en) 2005-07-07 2008-02-05 Raytheon Company Radar system with adaptive waveform processing and methods for adaptively controlling the shape of a radar ambiguity function
CN101506681B (zh) * 2006-08-23 2013-08-14 高通股份有限公司 用于减少所接收sps信号中的模糊性的系统和/或方法
JP4999592B2 (ja) * 2007-07-31 2012-08-15 三菱電機株式会社 レーダ装置
WO2009095797A2 (en) * 2008-01-29 2009-08-06 Anatol Wiesner Method and system for detecting vital signs of living bodies
US7605744B1 (en) 2008-06-03 2009-10-20 Vaisala Oyj Method for extension of unambiguous range and velocity of a weather radar
JP5609191B2 (ja) * 2010-03-19 2014-10-22 日本電気株式会社 パルスレーダ装置、パルスレーダ装置の目標物検出方法及び検出処理プログラム
US8390508B1 (en) * 2010-04-05 2013-03-05 Raytheon Company Generating radar cross-section signatures
CN102906592B (zh) * 2010-07-12 2014-08-27 株式会社尼利可 距离测定装置以及距离测定方法
FR2972055B1 (fr) 2011-02-24 2014-01-03 Thales Sa Procede de determination d'un rang d'ambiguite en distance d'un signal recu par un radar doppler a impulsions
US9057785B1 (en) * 2014-05-29 2015-06-16 Robert W. Lee Radar operation with increased doppler capability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5870054A (en) * 1982-12-10 1999-02-09 Us Navy Moving target indicator with no blind speeds
US5422646A (en) * 1983-02-24 1995-06-06 The United States Of America As Represented By The Secretary Of The Navy High frequency MTI radar
EP1314997A1 (en) * 2001-11-24 2003-05-28 EADS Deutschland Gmbh Method for HPRF-radar measurement
CN101097255A (zh) * 2006-07-02 2008-01-02 张丽 谱线增强式脉冲多卜勒雷达回波信号预处理器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108471321A (zh) * 2018-03-19 2018-08-31 北京大学 一种构建通信数据与雷达性能参数同时同频传输的雷达-通信一体化系统方法
CN108471321B (zh) * 2018-03-19 2020-04-03 北京大学 一种构建通信数据与雷达性能参数同时同频传输的雷达-通信一体化系统方法
CN108765832A (zh) * 2018-07-06 2018-11-06 厦门信通慧安科技有限公司 一种入侵检测方法及装置
CN108765832B (zh) * 2018-07-06 2020-06-19 厦门信通慧安科技有限公司 一种入侵检测方法及装置
CN109116361A (zh) * 2018-08-03 2019-01-01 中国人民解放军91388部队 一种抗距离模糊水声合作定位信号
CN113196097A (zh) * 2018-12-17 2021-07-30 赛灵思公司 数字波束成形雷达系统中的相位噪声补偿
CN113631950A (zh) * 2019-03-15 2021-11-09 株式会社电装 物体追踪装置
CN113631950B (zh) * 2019-03-15 2024-02-23 株式会社电装 物体追踪装置
CN109932700A (zh) * 2019-03-28 2019-06-25 北京润科通用技术有限公司 一种多普勒速度的解模糊方法及装置
WO2020259193A1 (zh) * 2019-06-27 2020-12-30 华为技术有限公司 激光探测的装置、方法及系统
CN112384281A (zh) * 2020-01-02 2021-02-19 上海联影医疗科技股份有限公司 用于控制放射输出的系统和方法
CN112769564A (zh) * 2021-01-11 2021-05-07 中国科学技术大学 用于量子密钥分发的同步方法、装置电子设备及介质

Also Published As

Publication number Publication date
KR20170005119A (ko) 2017-01-11
TW201546474A (zh) 2015-12-16
IL249048A0 (en) 2016-12-01
WO2015183830A1 (en) 2015-12-03
NZ727833A (en) 2017-09-29
IL249048A (en) 2017-02-28
DK3149511T3 (en) 2018-10-29
CA2949147C (en) 2017-03-07
US9297888B2 (en) 2016-03-29
EP3149511A1 (en) 2017-04-05
TWI575245B (zh) 2017-03-21
CA2949147A1 (en) 2015-12-03
AU2015267242B2 (en) 2017-03-30
EP3149511B1 (en) 2018-07-11
US20160011300A1 (en) 2016-01-14
ES2700935T3 (es) 2019-02-20
RU2628566C1 (ru) 2017-08-21
PL3149511T3 (pl) 2019-01-31
CN107076834B (zh) 2018-12-04
JP6177467B1 (ja) 2017-08-09
JP2017524927A (ja) 2017-08-31
US9057785B1 (en) 2015-06-16
DE15727241T1 (de) 2017-06-22
AU2015267242A1 (en) 2017-01-12
KR101779315B1 (ko) 2017-09-18

Similar Documents

Publication Publication Date Title
CN107076834B (zh) 具有增大的多普勒能力的雷达操作
Gogineni et al. Frequency-hopping code design for MIMO radar estimation using sparse modeling
CN106443653A (zh) 雷达装置
CN106353739A (zh) 一种基于多相位分段调制的雷达干扰方法
Wang Large time-bandwidth product MIMO radar waveform design based on chirp rate diversity
CN107192997A (zh) 雷达装置及定位方法
CN103744078A (zh) 一种基于不同码速随机跳频的微波凝视关联成像装置
CN103630897A (zh) 一种多通道合成孔径雷达成像的方法
CN103760545A (zh) 合成孔径雷达中子带串扰对成像性能影响的分析方法
CN105676190B (zh) 一种校正合成孔径雷达回波数据的方法和装置
Yin et al. Integrated waveform for continuous active sonar detection and communication
CN106199602B (zh) 一种Staggered-SAR回波信号重建方法
Fan et al. Transmit–receive design for airborne radar with nonuniform pulse repetition intervals
CN103823210B (zh) 一种非合作式星地双基地sar时频同步方法
Iverson Coherent processing of ultra-wideband radar signals
CN112034447A (zh) 一种提高脉冲多普勒雷达检测性能的二相调制方法及装置
Chellappa et al. Academic press library in signal processing, Volume 7: Array, radar and communications engineering
EP2997394A1 (en) Coherent radar
Yang et al. Parameter identifiability of monostatic MIMO chaotic radar using compressed sensing
Shome et al. Moving target detection and Doppler extraction using digital spread spectrum radar
Li et al. A two-dimensional phase coding for range ambiguity suppression
Thorson Simultaneous Range-Velocity Processing and SNR Analysis of AFIT's Random Noise Radar
Liu et al. Eliminating ghost images in high-range resolution profiles for stepped-frequency train of linear frequency modulation pulses
Stewart et al. Waveform-diverse MIMO imaging radar target measurements
Lellouch Waveform design and processing techniques in OFDM radar

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181204