CN107074597B - 用于纯化污水中亚硝酸根、硝酸根和磷酸根离子的生物复合材料 - Google Patents

用于纯化污水中亚硝酸根、硝酸根和磷酸根离子的生物复合材料 Download PDF

Info

Publication number
CN107074597B
CN107074597B CN201580047978.6A CN201580047978A CN107074597B CN 107074597 B CN107074597 B CN 107074597B CN 201580047978 A CN201580047978 A CN 201580047978A CN 107074597 B CN107074597 B CN 107074597B
Authority
CN
China
Prior art keywords
activated carbon
polymer
sphagnum
nitrate
nitrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580047978.6A
Other languages
English (en)
Other versions
CN107074597A (zh
Inventor
阿列克谢·杰奥尔杰维奇·杰多夫
叶卡捷琳娜·亚历山德罗芙娜·伊万诺娃
叶莲娜·叶夫根耶芙娜·别洛乌索娃
加林娜·亚历山德罗芙娜·多尔尼科娃
亚历山大·加夫里洛维奇·伊什科夫
拉弗特·库图佐维奇·伊迪亚图洛夫
米哈伊尔·彼得罗伊齐·基尔皮奇尼科夫
叶连娜·谢尔盖耶芙娜·洛巴科娃
德尔吉尔·安德烈耶芙娜·桑吉耶娃
安娜·迪米特里耶芙娜·波诺马连科
阿纳斯塔西娅·尼古拉耶芙娜·沙罗诺娃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OTKRYTOE AKTSIONERNOE OBSHCHESTVO "GAZPROM"
Original Assignee
OTKRYTOE AKTSIONERNOE OBSHCHESTVO "GAZPROM"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OTKRYTOE AKTSIONERNOE OBSHCHESTVO "GAZPROM" filed Critical OTKRYTOE AKTSIONERNOE OBSHCHESTVO "GAZPROM"
Publication of CN107074597A publication Critical patent/CN107074597A/zh
Application granted granted Critical
Publication of CN107074597B publication Critical patent/CN107074597B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/108Immobilising gels, polymers or the like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/106Carbonaceous materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/166Nitrites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

申请:本发明涉及包含无纺聚合物材料和固定化的有机体聚集物的生物复合材料,并且本发明可以用于将生活污水和工业污水与含亚硝酸盐、硝酸盐和磷酸盐的污染物分离纯化。生物复合材料是基于源自空气动力形成的丙烯腈和甲基丙烯酸甲酯共聚物的无纺聚合物;活性炭和泥炭藓属(Sphagnum genus)的磨碎的未杀菌植物、或活性炭与浮萍(Lemnaceae)科水生植物细胞壁组合而形成的填料;以及固定化的减少亚硝酸根离子、硝酸根离子和磷酸根离子浓度的微生物聚集体,其中,在空气动力形成期间将所述填料引入聚合物,总计占聚合物重量的10~50%。本申请的技术效果涉及操作特征的改进和生物纯化过程的加强,这是由于用于微生物固定化的材料特异性表面的增加。两个实施例。

Description

用于纯化污水中亚硝酸根、硝酸根和磷酸根离子的生物复合 材料
本发明涉及含有无纺聚合物和固定化的有机体的生物复合材料,以及本发明可以用于将生活和工业污水与含亚硝酸盐、硝酸盐和磷酸盐的污染物分离而纯化生活和工业污水。
除了污水纯化的物理方法和物理化学方法之外,目前生物清洁方法是广泛使用的。这些方法基于微生物在其生命活动期间使用污染物作为食物的能力。污水的生物纯化可以在天然条件(污水田、吸收场、熟化池)下和各种材料辅助的特殊结构(曝气池、生物过滤器)中进行。因此,在特别地建立的有利环境(繁殖地的组成、溶解氧的丰度、温度)下,微生物的人工培养显著增强污水的生物纯化。
除此之外,用于污水生物纯化的材料具有种种缺点,这决定了开发新的高效材料的重要性。
存在用于纯化污水的已知材料,例如,活性污泥(No.RU 2185338,2002;No.RU2296110,2005;No.RU 2012103445,2010;No.RU 2422380,2010;No.RU 2322399,2006);上面涂覆了活性污泥的负载层(No.RU 2099293,1995;No.RU 2259962,2004;No.RU 2472719,2011;No.RU 2280622,2006);固定于聚合物浮动载体上的活性污泥(No.RU 2448056,2010);进一步沉积生物膜的惰性填充材料,其中金属通过直接接触而与惰性填充材料结合(No.RU 2075202,1995)。
No.RU 2050336,1995中描述了用于生物纯化污水的已知材料,其是与另外载体组合的用于微生物的构架(以拉芙桑(lavsan)刷或尼龙刷的形式)或多孔(膨胀粘土)载体,所述另外载体是含黏土的和含化学活性的多孔质石灰的沉积岩的形式、以及在厌氧初次沉积阶段和第二阶段需氧处理阶段中所使用的硅酸铝钾基多孔质矿物的形式;有与另外载体组合的多孔质载体如膨胀粘土,所述另外载体是以含黏土的和含化学活性的多孔质石灰的沉积岩的形式、以及在第一阶段需氧处理中所使用的硅酸铝钾基多孔质矿物,然而,第二阶段需氧处理的构架或多孔载体是由微藻(小球藻和/或栅藻)改性的,以含黏土的和含化学活性的多孔质石灰的沉积岩的形式和硅酸铝钾基多孔质矿物的另外载体也可用于移走净化水的阶段。
该材料的缺点是:复杂的组成,需要在基于厌氧和需氧过程组合的多阶段污水纯化步骤中使用该材料。
最接近的类似技术是No.RU 49525,2005中描述的用于生物清洁污水的材料,其是含具有纤维束的聚合物网状载体的生物过滤器,其特征在于,生物过滤器载体在以平行六面体形式固定在一起的矩形塑料框的构架块上固定。在这种情况下,聚合物网在边缘且沿着直径面内的六面体高度方向固定,所述直径面与该六面体的纵轴垂直。作为与污水接触的结果,固定化的微生物的生物膜在具有纤维束的网状载体上形成。处理后的液体在网线周围自由流动,纤维束固定在其上,由此(由于形成的相互作用面),污水和固定于网状载体表面上的微生物之间实现必要的物质交换。
该材料的应用允许根据硝酸盐和磷酸盐来实现污水超过60%的纯度。
该材料的缺点是,由于仅在网状载体表面上形成固定化微生物的生物膜,所述网状载体决定了相对小的特定工作区域,所以将污水与硝酸盐和磷酸盐分离纯化是不充分的;以及当纯化生活污水时,所述的材料仅在农业和公共服务中的实用性。
本发明的目的是创造具有改进的纯化能力的更有效的生物复合材料,所述纯化能力旨在将生活和工业污水的亚硝酸根、硝酸根和磷酸根离子纯化至符合当前监管标准的水平。
通过描述的用于纯化污水中亚硝酸根、硝酸根和磷酸根离子的生物复合材料完成设定的任务,所述生物复合材料含有基于通过空气动力形成方法获得的丙烯腈和甲基丙烯酸甲酯共聚物的无纺聚合物;活性炭和泥炭藓属(Sphagnum genus)的磨碎的未杀菌植物、或活性炭与浮萍(Duckweeds(Lemnaceae))科水生植物细胞壁组合而形成的填充物;以及固定化的减少硝酸根、亚硝酸根和磷酸根离子浓度的微生物聚集体,其中,在空气动力形成期间将所述填充物引入聚合物,总计占聚合物重量的10~50%。
所实现的技术效果涉及由于用于微生物固定化的材料比表面积增加导致的操作特征的改善和生物纯化过程的强化。该材料的高效率是由于微生物被固定化于聚合物纤维表面上和导入的填充物的结构中,所述填充物为:活性炭和泥炭藓属的磨碎的未杀菌植物,或活性炭和浮萍(Lemnaceae)科水生植物的细胞壁。
所述的生物复合材料是在以下方法的帮助下获得的。
基于丙烯腈和甲基丙烯酸甲酯共聚物的无纺聚合物含有活性炭和泥炭藓属的磨碎的未杀菌植物、或活性炭和浮萍(Lemnaceae)科水生植物的细胞壁作为填充物,所述无纺聚合物的获得是通过空气动力学形成方法进行的。例如在B.V.Zametta,L.V.Agen,N.B.Zaikina,E.G.Moroz,“通过空气动力学形成获得无纺材料(Derivation of non-wovenmaterials by aerodynamic formation)”,Moscow:Textile Industry,1973,No.1,p.64-67中描述了空气动力学形成方法。将小球状起始聚合物原料在熔融装置(挤出机)中熔融或溶解于溶剂如二甲基甲酰胺中,并且过滤以移除杂质。将填料如活性炭(GOST 6217-74或GOST 4453-7)和泥炭藓属的磨碎的未杀菌植物、或活性炭与浮萍(Lemnaceae)科水生植物的细胞壁添加至熔融或溶解的聚合物中,并且使它们通过衬套。将从衬套中流出的液流提取,并且在导流口装置(muzzle device)的帮助下引导至递送单元表面。同时将纺丝浴从喷嘴递送至递送单元表面。因此,发生纤维分离,并且形成了具有引入的填料(活性炭和泥炭藓属的磨碎的未杀菌植物、或活性炭与浮萍(Lemnaceae)科水生植物的细胞壁)的纤维化聚合物薄片结构。将所形成的无纺聚合物材料薄片从递送表面上取下,在洗涤设备中洗掉溶剂,并且在干燥器中在70~100℃下干燥。无纺聚合物材料具有50~220kg/m3的体积密度、4~41μm的纤维直径。
在这种情况下,使用未灭菌的泥炭藓属植物,尤其是尖叶泥炭藓(nemoroseSphagnum(Sphagnum nemoreum))、密叶泥炭藓(compact Sphagnum(Sphagnumcompactum))。制备泥炭藓属的未杀菌植物的过程包括以下步骤。首先,在室温的自然条件下或在温度为50-70℃的干燥盒中使各种泥炭藓属的未杀菌的泥炭藓苔藓干燥,直到达到恒重。然后在电动振动滚筒磨机中将干燥的泥炭藓苔藓磨碎。在具有盖子的、部分地填充了球的钢杯中进行磨碎,所述球具有5~6cm的直径且由与杯相同的材料制成。球的数目为2~3个。磨碎后的材料的颗粒细度为50~60μm。引入的填料的量可以是聚合物重量的10~50%。
使用浮萍(Lemnaceae)科水生植物的细胞壁,尤其是品藻(star duckweed(Lemnatrisulca))和鳞根萍(Lemna turionifera)。制备浮萍(Lemnaceae)科水生植物细胞壁的过程包括以下步骤。在流动水中洗涤浮萍(Lemnaceae)科水生植物的生物质,然后放置在温至50℃的40%酒精溶剂中,然后在48小时内提取。提取后移除酒精。然后在70%酒精溶剂中重复步骤。然后干燥所获得的浮萍(Lemnaceae)科水生植物的细胞壁,获得的结构的核的大小为10nm~10μm。获得的结构的数量可达聚合物重量的10~50%。
在通过空气动力学形成从溶剂或熔融的材料获得聚合物纤维的过程中,进行填料(粉末形式的活性炭和泥炭藓属的磨碎的未杀菌植物、或粉末形式的活性炭和浮萍(Lemnaceae)科水生植物的细胞壁)的引入。
通过将基于丙烯腈和甲基丙烯酸甲酯的无纺聚合物浸入微生物聚集体的细胞悬液中进行微生物的固定化,所述微生物聚集体减少了由于粘附而附着在纤维表面的硝酸根离子、亚硝酸根离子和磷酸根离子的浓度。可通过在100~200rps、18~26℃下且在1~2天内连续震荡实现细胞固定化。当该过程完成时,将获得的生物复合材料在蒸馏水中洗涤以去除未附着的微生物细胞。
具体地,使用节杆菌、芽孢杆菌和假单胞菌属的细菌作为减少硝酸根离子、亚硝酸根离子和磷酸根离子的浓度的微生物聚集体,聚集体含有圆酵母属的甲基营养型酵母。
要纯化的污水以再循环模式穿过所述的生物复合材料的层。从上方递送至设备的污水沿整个设备从顶部向下自然流动。将用特殊固定器固定的生物复合材料片放置在设备内。污水穿过生物复合材料薄片,硝酸根离子、亚硝酸根离子和磷酸根离子的清洁在所述生物复合材料薄片上发生,这是由于在微生物的代谢过程中这些离子的参与形成了气态氮作为终产物。
因此,在通过空气动力学方法形成无纺聚合物材料的阶段,活性炭和泥炭藓属的磨碎的未杀菌植物、或活性炭和浮萍(Lemnaceae)科水生植物的细胞壁的引入允许获得额外的意料不到的效果,所述意料不到的效果包括材料孔隙率(表面上和内部结构中)的增加,以及由于合成无纺聚合物材料与生物体的亲和性的增加而导致具有微生物聚集体的材料的更高程度的沉积率。将填充物(活性炭和泥炭藓属的磨碎的未杀菌植物、或活性炭和浮萍(Lemnaceae)科水生植物的细胞壁)引入聚合物纤维,导致微生物固定化表面的增加和有利环境的产生,减少了微生物对环境变化的敏感性。
下文给出用于说明但不限制本发明的实施例。
实施例1
为纯化含有浓度分别为16.5mg/l、225mg/l、17.5mg/l的亚硝酸根离子、硝酸根离子和磷酸盐离子的污水,使用通过自空气动力学形成所获得的、基于丙烯腈和甲基丙烯酸甲酯共聚物的生物复合材料。其厚度是1.52mm,体积密度是0.09g/cm3,孔隙率为92%。所述材料含有15%磨碎的活性炭、干燥且磨碎的泥炭藓属植物-尖叶泥炭藓-占所述聚合物重量的15%;使用了减少硝酸根离子、亚硝酸根离子和磷酸盐离子的固定化微生物聚集体的细胞,具有该功能的聚集体包括圆酵母属的甲基营养型酵母聚集体、节杆菌、芽孢杆菌和假单胞菌属的细菌-占聚合物重量的50%。
被污染的污水通过设备循环2天,在设备内部放置了所述生物复合材料的薄片。由于用于固定化微生物的材料表面的增加,第2天污水纯化程度在NO3 -离子方面是99%;在NO2 -离子方面是92%;在PO4 3-离子方面是81%,这超过了已知材料的纯化程度大约20%。纯化后亚硝酸根、硝酸根和磷酸根离子的残余浓度大大低于阈值限值(TLV)。因此,使用该生物复合材料的污水纯化效率显著高于已知材料。
实施例2
为纯化含有浓度分别为16.5mg/l、225mg/l、17.5mg/l的亚硝酸根、硝酸根和磷酸根离子的污水,使用基于丙烯腈和甲基丙烯酸甲酯共聚物通过自空气动力学形成获得的生物复合材料。它的厚度是1.46mm,体积密度是0.1g/cm3,孔隙率为91%。
所述材料含有17%磨碎的活性炭和品藻(Lemna trisulca)水生植物细胞壁-占所述聚合物重量的20%;使用了减少硝酸根、亚硝酸根和磷酸根离子的固定化微生物聚集体的细胞,具有该功能的聚集体包括圆酵母属的甲基营养型酵母聚集体、节杆菌、芽孢杆菌和假单胞菌属的细菌-占聚合物重量的50%。被污染的污水通过设备循环2天,在设备内部放置了所述生物复合材料的薄片。由于用于固定化微生物的材料表面的增加,第2天污水纯化程度在NO3 -离子方面是99%;在NO2 -离子方面是91%;在PO4 3-离子方面是85%,这超过了已知材料的纯化程度大约24%。纯化后亚硝酸根、硝酸根和磷酸根离子的残余浓度大大低于阈值限值(TLV)。因此,使用该生物复合材料的污水纯化效率显著高于已知材料。
在规定的时间间隔内在描述的材料中使用不同量的填充物导致相似的结果。
提供的数据意味着,由于活性炭和泥炭藓属的磨碎的未杀菌植物、或活性炭和浮萍(Lemnaceae)科水生植物的细胞壁的引入,它们增加了表面上和材料结构中的固定化细胞的量,因此生物复合材料具有高度发达的比表面。该材料证明了将生活和工业污水的亚硝酸根、硝酸根和磷酸根离子清洁至低于饮用和生活和农业目的的水体的TLV,以及允许在污水中减少上述离子81~99%的水平的高效性。

Claims (1)

1.一种用于将污水与亚硝酸根离子、硝酸根离子和磷酸根离子分离而纯化污水的生物复合材料,含有通过空气动力学形成而获得的基于丙烯腈和甲基丙烯酸甲酯共聚物的无纺聚合物;活性炭和泥炭藓属(Sphagnum genus)的磨碎的未杀菌植物、或活性炭与浮萍科水生植物细胞壁组合而成的填料;以及减少亚硝酸根离子、硝酸根离子和磷酸根离子浓度的固定化的微生物聚集体,具有该功能的聚集体包括圆酵母属的甲基营养型酵母聚集体、节杆菌、芽孢杆菌和假单胞菌属的细菌,总计占聚合物重量的50%,其中,在空气动力形成期间将所述填料引入无纺聚合物,所述填料总计占聚合物重量的10~50%,
其中,所述空气动力学形成包括:将小球状起始聚合物原料在熔融装置中熔融或溶解于二甲基甲酰胺中,并且过滤以移除杂质;将活性炭和泥炭藓属的磨碎的未杀菌植物、或活性炭与浮萍科水生植物的细胞壁添加至熔融或溶解的聚合物中,并且使它们通过衬套;将从衬套中流出的液流提取,并且在导流口装置的帮助下引导至递送单元表面;同时将纺丝浴从喷嘴递送至递送单元表面,发生纤维分离,并且形成了具有活性炭和泥炭藓属的磨碎的未杀菌植物、或活性炭与浮萍科水生植物的细胞壁的纤维化聚合物薄片结构。
CN201580047978.6A 2015-06-17 2015-12-09 用于纯化污水中亚硝酸根、硝酸根和磷酸根离子的生物复合材料 Active CN107074597B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2015123301A RU2608527C2 (ru) 2015-06-17 2015-06-17 Биокомпозитный материал для очистки сточных вод от нитрит-, нитрат-, фосфат-ионов
RU2015123301 2015-06-17
PCT/RU2015/000864 WO2016204649A1 (en) 2015-06-17 2015-12-09 Biocomposite material for purification of sewage waters from nitrite, nitrate and phosphate ions

Publications (2)

Publication Number Publication Date
CN107074597A CN107074597A (zh) 2017-08-18
CN107074597B true CN107074597B (zh) 2021-06-08

Family

ID=55538575

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580047978.6A Active CN107074597B (zh) 2015-06-17 2015-12-09 用于纯化污水中亚硝酸根、硝酸根和磷酸根离子的生物复合材料

Country Status (4)

Country Link
CN (1) CN107074597B (zh)
CA (1) CA2957653C (zh)
RU (1) RU2608527C2 (zh)
WO (1) WO2016204649A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2693780C2 (ru) * 2017-12-06 2019-07-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский государственный университет" Биокомпозитный материал для очистки сточных вод от фосфатов
RU2734251C1 (ru) * 2019-08-14 2020-10-13 Андрей Николаевич Глушко Наплавные секционные растительные биоплато для утилизации загрязнений в стоках
CN111054312A (zh) * 2020-01-15 2020-04-24 中新曜昂环境修复(江苏)有限公司 浮萍生物炭负载纳米零价铁的制备方法和修复Pb污染物土壤的方法
CN116332361B (zh) * 2023-02-20 2024-01-02 中国科学院南京土壤研究所 一种利用浮萍-木屑生物炭联合去除水体复合农药的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1441751A (zh) * 2000-04-21 2003-09-10 沃特维森斯国际公司 含有可膨胀物质的复合材料的制备
CN101538083A (zh) * 2009-03-19 2009-09-23 常州华钛化学股份有限公司 一种污水生物处理高效新型生物载体及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2023685C1 (ru) * 1991-06-11 1994-11-30 Елена Алексеевна Олешкевич Способ биологической очистки сточных вод от органических загрязнений
RU2050336C1 (ru) 1993-02-23 1995-12-20 Терентьева Наталья Алексеевна Способ глубокой биологической очистки сточных вод
RU2075202C1 (ru) 1995-02-28 1997-03-10 Московский научно-исследовательский и проектно-изыскательский институт "МосводоканалНИИпроект" Способ биологической очистки сточных вод
RU2099293C1 (ru) 1995-09-05 1997-12-20 Государственный научно-исследовательский институт "Кристалл" Способ очистки сточных вод
RU2185338C2 (ru) 2000-05-31 2002-07-20 Воронов Юрий Викторович Способ глубокой биологической очистки сточных вод от азота аммонийных солей
DE10047709A1 (de) * 2000-09-25 2002-05-02 Thomas Willuweit Verfahren zur Aufbereitung von Wasser unter Einsatz von Mikroorganismen
US20050098495A1 (en) * 2001-03-02 2005-05-12 Hughes Kenneth D. Purification materials and method of filtering using the same
ES2190895B2 (es) * 2002-02-01 2004-05-16 Universida De Santiago De Compostela Reactor biologico hibrido de membranas para tratamiento de aguas residuales industriales y urbanas.
RU2259962C1 (ru) 2004-04-27 2005-09-10 Государственное образовательное учреждение высшего профессионального образования Уфимский государственный нефтяной технический университет (ГОУ ВПО УГНТУ) Способ биохимической очистки сточных вод
RU2280622C2 (ru) 2004-07-01 2006-07-27 Геннадий Владимирович Шишло Унифицированная модульная установка для биохимической очистки сточных вод
RU49525U1 (ru) 2005-07-26 2005-11-27 Ооо Торгово-Промышленное Объединение "Топол-Эко" Биофильтр
RU2296110C1 (ru) 2005-08-15 2007-03-27 Общество с ограниченной ответственностью "Урал Процесс Инжиниринг Компания" (УПЕК) Способ биологической очистки сточных вод
RU2322399C1 (ru) 2006-07-03 2008-04-20 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Способ очистки сточных вод от аммонийных солей, нитратов и нитритов
FI121506B (fi) 2009-07-17 2010-12-15 Eero Kautia Menetelmä biologiseen puhdistamiseen
RU2422380C1 (ru) 2010-01-27 2011-06-27 Общество С Ограниченной Ответственностью "Евробион" Способ индивидуальной очистки сточных вод и компактное устройство для индивидуальной очистки сточных вод
RU2448056C1 (ru) 2010-10-01 2012-04-20 Открытое акционерное общество "Газпром" Способ биохимической очистки сточных вод
RU2472719C2 (ru) 2011-02-28 2013-01-20 Николай Сергеевич Серпокрылов Способ повышения эффективности аэробной очистки сточных вод
RU2483797C1 (ru) * 2011-11-11 2013-06-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный университет нефти и газа имени И.М. Губкина" Биогибридный материал для сорбции и деградации нефти и нефтепродуктов
RU2535227C1 (ru) * 2013-06-03 2014-12-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный университет нефти и газа имени И.М. Губкина" Биогибридный композиционный материал

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1441751A (zh) * 2000-04-21 2003-09-10 沃特维森斯国际公司 含有可膨胀物质的复合材料的制备
CN101538083A (zh) * 2009-03-19 2009-09-23 常州华钛化学股份有限公司 一种污水生物处理高效新型生物载体及其制备方法

Also Published As

Publication number Publication date
RU2608527C2 (ru) 2017-01-19
RU2015123301A (ru) 2017-01-10
CA2957653C (en) 2020-08-25
CA2957653A1 (en) 2016-12-22
WO2016204649A1 (en) 2016-12-22
CN107074597A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
He et al. Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP)
CN107074597B (zh) 用于纯化污水中亚硝酸根、硝酸根和磷酸根离子的生物复合材料
CN106277283B (zh) 利用滤池中生物铁锰氧化物强化去除水中砷锑离子的方法
CN102260017B (zh) 一种有效去除受污染水体中氨氮的方法
CN102826657A (zh) 碳纤维湿地式生态浮床及其设置方法
CN110156242B (zh) 菌藻协同高效处理养殖污水的方法
CN101514047B (zh) 复合生物膜污水处理工艺及其系统
JP6621342B2 (ja) 硝化細菌が付着した生物活性炭の製造方法及び高度浄水処理方法
KR20150037909A (ko) 암모니아성 질소 함유 물(水)의 저온처리 방법 및 장치
RU2564570C2 (ru) Способ обработки промышленных отходов
CN105621786B (zh) 一种处理农业面源污染的上升流垂直人工湿地系统
CN108993425A (zh) 一种复合型的生物吸附剂及其应用
CN105110562A (zh) 一种农田废水的处理方法
CN107628686A (zh) 一种强化污染源水脱氮性能的生物预处理装置
CN110902950A (zh) 淀粉工业废水的处理方法
Zhang et al. Degradation of organic matter from domestic wastewater with loofah sponge biofilm reactor
CN106698590B (zh) 一种生物培养与生物还原一体化的树脂再生厌氧微生物反应器及其应用
CN102453675B (zh) 功能强化微生物的培养系统及定向富集方法
CN110921841B (zh) 一种用于修复淀粉工业废水的生化制剂
CN113637664A (zh) 基于稻草吸附微藻成膜的纤维载体、其制备方法和用途
CN106554072A (zh) 一种用于水体原位处理的微电解生物滤料组合反应器
CN108996667B (zh) 一种集约式好氧生化降解系统和方法
CN113135639A (zh) 一种水产养殖尾水循环回收再利用处理系统及使用方法
KR20210050926A (ko) 할로이사이트 표면처리를 통해 균사 생장이 억제된 균류 펠릿 구조체 및 그 제조방법
CN108275778A (zh) 一种强化污染源水脱氮性能的生物预处理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant