CN107051591B - 一种PANI/TiO2纳米复合光催化材料及制备方法 - Google Patents

一种PANI/TiO2纳米复合光催化材料及制备方法 Download PDF

Info

Publication number
CN107051591B
CN107051591B CN201710334622.1A CN201710334622A CN107051591B CN 107051591 B CN107051591 B CN 107051591B CN 201710334622 A CN201710334622 A CN 201710334622A CN 107051591 B CN107051591 B CN 107051591B
Authority
CN
China
Prior art keywords
tio
pani
solution
photocatalytic material
certain amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710334622.1A
Other languages
English (en)
Other versions
CN107051591A (zh
Inventor
杨穆
王戈
侯晓钧
张欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201710334622.1A priority Critical patent/CN107051591B/zh
Publication of CN107051591A publication Critical patent/CN107051591A/zh
Application granted granted Critical
Publication of CN107051591B publication Critical patent/CN107051591B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Abstract

本发明公开了一种PANI/TiO2纳米复合光催化材料及制备方法和应用,采用苯胺跟钛源原位反应,制备得到的TiO2和PANI两相达到分子级别的混和,不仅使TiO2对光的吸收范围拓展到可见光区域,而且有利于光生电子和空穴在两相间的输运和分离,显著增加了催化剂的光催化效率。制备得到的纳米复合光催化剂应用于罗丹明B溶液的降解,表现出优异的可见光降解性能。本发明的优点在于,聚苯胺和TiO2两相达到分子级别的混合,界面接触面积大,结合紧密,有利于光生电子‑空穴在两相间的输运和分离;制备流程简单,操作方便,不需要引入其他反应物,也无其他副产物生成,得到的纳米复合材料光催化性能优异。

Description

一种PANI/TiO2纳米复合光催化材料及制备方法
技术领域
本发明属于纳米复合材料领域,尤其涉及一种PANI/TiO2纳米复合光催化材料及制备方法。
背景技术
已有研究成果表明TiO2因其高效、价廉、无毒、化学性质稳定、成本低等优点,受到研究者们广泛的重视。由于TiO2光催化剂降解有毒物质和化学污染物不会产生二次污染、也无任何毒副作用,因而与传统的生物降解方法相比,使用TiO2光催化剂降解有机污染物,便成为一种更为理想而有效的方法。Mattews 在1986年和1987年,用TiO2/UV光催化法对水中含有的34种有机污染物进行了研究,发现他们的最终产物是CO2和HCl等无机小分子,这更进一步说明,TiO2光催化剂在降解有机污染物方面确实有传统方法所不能比拟的优势。除此之外,TiO2光催化剂在污水处理、空气净化、消毒抗菌、水的净化,以及癌症治疗等领域中都得到了广泛的研究和应用。
但TiO2光催化剂带隙较宽,只能被波长较短的紫外光激发,而这部分光只占太阳光的4%-6%,降低了对太阳光的利用率,因此如何高效地利用太阳光成为了人们研究的重点。目前,研究者们已经采用多种手段对TiO2进行改性,包括半导体复合、非金属掺杂、金属掺杂、表面敏化等方法。其中采用导电聚合物进行表面敏化处理已有较多研究报道。CN104857995A提供一种纳米结构的聚苯胺(PANI)修饰的N掺杂二氧化钛复合光催化剂的制备方法,该催化剂使用尿素提供N元素,形成N掺杂,有效减小了TiO2带隙宽度使吸收谱红移,从而提高了可见光光催化效率,再通过PANI修饰改性,同时实现二氧化钛光催化量子效率提高和增强可见光吸收的作用。CN105817269A提供一种炭化聚苯胺/二氧化钛复合光催化剂的制备方法,先采用溶胀法在单分散的聚苯乙烯微球表面包裹一层聚苯胺,接着利用钛酸四丁酯的水解继续包覆一层二氧化钛,最后高温烧结除去聚苯乙烯内核,得到炭化聚苯胺/二氧化钛复合光催化剂。CN102389836A提供了一种聚苯胺/二氧化钛/粘土纳米复合光催化剂及其制备方法,以四氯化钛和粘土为原料,采用原位合成法制备纳米二氧化钛/粘土复合材料,利用四氯化钛水解生成的盐酸提供苯胺聚合所需酸性环境,合成聚苯胺导电聚合物负载在二氧化钛表面,利用导电聚苯胺接受二氧化钛受光子激发产生的电子,抑制电子-空穴对复合,提高复合材料光催化性能。CN104383966A提供了三维有序大孔聚苯胺/二氧化钛复合光催化材料的制备方法。这些报道验证了聚苯胺改性TiO2的可行性及其作用机制,但这些复合材料制备大多是通过在TiO2表面进行苯胺的聚合,得到的复合材料中两相结合不紧密、接触界面面积较小。
发明内容
本发明的目的在于提供一种分子级别混合的PANI/TiO2纳米复合材料,两者通过氧化还原反应同时生成,两相结合紧密、接触界面面积大,有利于光生电子-空穴的输运和分离,不仅扩展了光响应范围,也提高了光量子传输效率,从而提高光催化效率。
本发明的另一目的在于提供一种原料便宜、工艺简单、操作方便、产品光催化性能优异的PANI/TiO2纳米复合光催化剂制备方法。
本发明通过如下技术方案实现的:首先制备过氧化钛配合物(Peroxo TitaniumComplex,缩写为PTC)水溶液,加入苯胺跟PTC发生氧化还原反应,然后加热回流,生成PANI/TiO2纳米复合材料。高分辨透镜显示PANI/TiO2纳米复合材料主要由细小的晶粒组成,晶粒尺寸为5-20 nm,晶粒的晶格间距为0.35 nm显示其为锐钛矿相TiO2,大部分小晶粒聚集形成大颗粒,尺寸为50-120 nm,其间夹杂或包裹着PANI。复合材料比表面积高达170-240 m2/g,通过罗丹明B溶液降解实验来检测该催化剂的光催化性能。
具体制备方法包括以下步骤:
1)配制过氧化钛水溶液:将不同钛源滴加(溶解)到水中,滴加氨水溶液调节体系pH至7-11,得到白色沉淀。所得沉淀经过多次去离子水洗涤除去其他杂质和离子,再加入一定量的H2O2溶液,得到透明的橙黄色溶液,室温下静置6-36 h至剩余的H2O2完全分解,即得到过氧化钛(PTC)水溶液;
2)制备PANI/TiO2复合光催化剂:在PTC水溶液中加入一定量水,稀释成0.01-1.8mol/L的PTC水溶液。在60-120 r/min搅拌,下加入无机酸水溶液调节体系pH至1-7,再加入一定量苯胺单体(苯胺/TiO2质量比为0.01%-25%),在200-400 r/min搅拌下反应6-36 h;再经过12-48 h加热回流,离心洗涤,冷冻干燥后得到PANI/TiO2纳米复合光催化剂。
所述钛源包括:钛酸四丁酯、钛酸四乙酯、钛酸四异丙酯、四氯化钛、硫酸氧钛等。
所述的无机酸包括盐酸、硫酸、磷酸、硝酸等。
本发明的有益效果是:由于采用上述技术方案,该方法利用PTC和苯胺之间的氧化还原反应,一步制备了PANI/TiO2纳米复合光催化剂,不需要引入其他氧化剂和还原剂,制备流程简单,操作方便,也无其他副产物生成;得到的PANI/TiO2纳米复合光催化剂TiO2结晶度高、晶粒小,PANI和TiO2两相达到分子级别混和,界面面积大,结合紧密,不仅扩展了TiO2的光响应范围,还有利于光生电子-空穴在两相间的输运和分离,大大提升了材料的光催化性能。
附图说明:
图1为本发明实施案例1得到的PANI/TiO2光催化材料的透射电镜图。
图2为本发明实施案例3得到的PANI/TiO2光催化材料的高分辨透射电镜图。
图3为本发明实施案例5得到的PANI/TiO2光催化材料的高分辨透射电镜图。
具体实施方式:
为了让本发明特点和优势更加明显,下面结合具体的实施案例对本发明的技术方案做进一步说明。
实施案例1
将TiCl4滴加至冰水中,得到Ti4+的无色透明溶液,滴加氨水溶液调节体系pH为8,得到白色沉淀。所得沉淀经过多次洗涤直到无法检测出氯离子,再加入一定量的H2O2溶液,得到透明的橙黄色溶液,室温下静置12 h至反应剩余的H2O2完全分解,即得过氧化钛(PTC)水溶液。加入一定量水,调节PTC浓度为 [Ti] = 0.25 mol/L。在80 r/min搅拌下,加入H2SO4溶液调节体系pH为1,加入一定量苯胺(质量比ANI/TiO2 = 5%),在400 r/min搅拌下反应24h;再经过24 h加热回流后取产物离心洗涤,冷冻干燥后得到PANI/TiO2纳米复合材料。所得的复合材料尺寸为50-80 nm,由TiO2锐钛矿晶粒包裹聚苯胺组成,平均晶粒为6 nm,如图1。
取20 mg所制备的催化剂,加入到100 mL的5 mg/L罗丹明B溶液中,在黑暗中搅拌40 min之后,在可见光(λ > 420 nm)下照射120 min,光催化的降解率为66%。
实施案例2
将钛酸四丁酯滴加至冰水中,滴加氨水溶液调节体系pH为10,得到白色沉淀。所得沉淀经过多次洗涤,再加入一定量的H2O2溶液,得到透明的橙黄色溶液,室温下静置24 h至反应剩余的H2O2完全分解,即得过氧化钛(PTC)水溶液。加入一定量水,调节PTC浓度为 [Ti]= 0.05 mol/L。在100 r/min搅拌下加入HCl溶液调节pH为4,加入一定量苯胺(质量比AN/Ti= 3%),在350 r/min搅拌下反应24 h;再经过48 h加热回流后取产物离心洗涤,冷冻干燥后得到PANI/TiO2纳米复合物。所得的复合材料呈颗粒状,尺寸为60-100 nm,由TiO2锐钛矿晶粒包裹聚苯胺组成,平均晶粒为8 nm。
取20 mg所制备的催化剂,加入到100 mL的5 mg/L罗丹明B溶液中,在黑暗中搅拌40 min之后,在可见光(λ > 420 nm)下照射120 min,光催化的降解率为70%。
实施案例3
将钛酸四乙酯滴加至冰水中,滴加氨水溶液调节体系pH为9,得到白色沉淀。所得沉淀经过多次洗涤,再加入一定量的H2O2溶液,得到透明的橙黄色溶液,室温下静置24 h至反应剩余的H2O2完全分解,即得过氧化钛(PTC)水溶液。加入一定量水,调节PTC浓度为 [Ti]= 1.2 mol/L。在120 r/min搅拌下加入HNO3溶液调节pH为6,加入一定量苯胺(质量比AN/Ti= 1%),在300 r/min高速搅拌下反应36 h;再经过48 h加热回流后取产物离心洗涤,冷冻干燥后得到PANI/TiO2纳米复合物。所得的复合材料呈叶片状,尺寸为80-120 nm,由TiO2锐钛矿晶粒包裹聚苯胺组成,平均晶粒为12 nm,如图2。
取20 mg所制备的催化剂,加入到100 mL的5 mg/L罗丹明B溶液中,在黑暗中搅拌40 min之后,在可见光(λ > 420 nm)下照射120 min,光催化的降解率为72%。
实施案例4
将钛酸四异丙酯滴加至冰水中,滴加氨水溶液调节体系pH为11,得到白色沉淀。所得沉淀经过多次洗涤,再加入一定量的H2O2溶液,得到透明的橙黄色溶液,室温下静置36h至反应剩余的H2O2完全分解,即得过氧化钛(PTC)水溶液。加入一定量水,调节PTC浓度为将PTC浓度为 [Ti] = 0.80 mol/L。在100 r/min搅拌下加入H2SO4溶液调节pH为2,加入一定量苯胺(质量比AN/Ti = 2%),在200 r/min高速搅拌下反应36 h;再经过36 h加热回流后取产物离心洗涤,冷冻干燥后得到PANI/TiO2纳米复合物。所得的复合材料呈球形,尺寸为50-120nm,由TiO2锐钛矿晶粒包裹聚苯胺组成,平均晶粒为16 nm。
取20 mg所制备的催化剂,加入到100 mL的5 mg/L罗丹明B溶液中,在黑暗中搅拌40 min之后,在可见光(λ > 420 nm)下照射120 min,光催化降解率为76%。
实施案例5
将硫酸氧钛溶于水中,得到Ti4+的无色透明溶液,滴加氨水溶液至pH为9时,得到白色沉淀。所得沉淀经过多次洗涤直到无法检测出硫酸根离子,再加入一定量的H2O2溶液,得到透明的橙黄色溶液,室温下静置36 h至反应剩余的H2O2完全分解,即得过氧化钛(PTC)水溶液。加入一定量水,调节PTC浓度为将PTC浓度为 [Ti] = 0.50 mol/L。在100 r/min搅拌下加入HNO3溶液调节pH为4,加入一定量苯胺(质量比AN/Ti = 2%),在300 r/min高速搅拌下反应24 h;再经过48 h加热回流后取产物离心洗涤,冷冻干燥后得到PANI/TiO2纳米复合物。所得的复合材料呈颗粒状,尺寸为60-100 nm,由TiO2锐钛矿晶粒包裹聚苯胺组成,平均晶粒为9 nm,如图3。
取20 mg所制备的催化剂,加入到100 mL的5 mg/L罗丹明B溶液中,在黑暗中搅拌40 min之后,在可见光(λ > 420 nm)下照射120 min,光催化的降解率为80%。

Claims (5)

1.一种PANI/ TiO2纳米复合光催化材料的制备工艺,其特征在于,具体包括以下步骤:
步骤1) 配制过氧化钛水溶液:将钛源滴加到水中,滴加氨水溶液调节体系pH至7-11,得到白色沉淀,所得沉淀经过多次去离子水洗涤除去其他杂质和离子,再加入一定量的H2O2溶液,得到透明的橙黄色溶液,在室温下静置6-36 h直至剩余的H2O2完全分解,即得到过氧化钛水溶液;
步骤2)制备PANI/TiO2复合光催化材料:在步骤1制备得到的过氧化钛水溶液中加入一定量水,稀释成浓度为0.01-1.8 mol/L溶液,在搅拌60-120 r/min搅拌下,加入无机酸水溶液调节体系pH至1-7,再加入一定量苯胺单体,在200-400 r/min搅拌下反应6-36 h;再经过12-48 h加热回流,离心洗涤,冷冻干燥后得到PANI/ TiO2纳米复合光催化材料,由TiO2锐钛矿晶粒包裹聚苯胺组成,晶粒尺寸为5-20 nm,大部分小晶粒聚集形成大颗粒,尺寸为50-120 nm。
2.根据权利要求1所述的工艺,其特征在于,所述苯胺/TiO2质量比为0.01%-25%。
3.根据权利要求1所述的工艺,其特征在于,所述钛源包括:钛酸四丁酯、钛酸四乙酯、钛酸四异丙酯、四氯化钛、硫酸氧钛。
4.根据权利要求1所述的工艺,其特征在于,所述的无机酸包括盐酸、硫酸、磷酸、硝酸。
5.根据权利要求1所述的工艺,其特征在于,所述制备得到的PANI/TiO2纳米复合光催化材料的比表面积高达170-240 m2/g。
CN201710334622.1A 2017-05-12 2017-05-12 一种PANI/TiO2纳米复合光催化材料及制备方法 Expired - Fee Related CN107051591B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710334622.1A CN107051591B (zh) 2017-05-12 2017-05-12 一种PANI/TiO2纳米复合光催化材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710334622.1A CN107051591B (zh) 2017-05-12 2017-05-12 一种PANI/TiO2纳米复合光催化材料及制备方法

Publications (2)

Publication Number Publication Date
CN107051591A CN107051591A (zh) 2017-08-18
CN107051591B true CN107051591B (zh) 2020-07-03

Family

ID=59596410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710334622.1A Expired - Fee Related CN107051591B (zh) 2017-05-12 2017-05-12 一种PANI/TiO2纳米复合光催化材料及制备方法

Country Status (1)

Country Link
CN (1) CN107051591B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108479857B (zh) * 2018-04-14 2021-04-27 扬州工业职业技术学院 一种离子液体修饰的聚苯胺/二氧化钛复合材料的制备方法
CN108939952B (zh) * 2018-09-28 2021-01-15 四川好鑫量子科技有限公司 一种油水分离用pmia超疏水纳米纤维膜及制备方法
CN113634279A (zh) * 2021-07-14 2021-11-12 浙江工业大学 一种油水双亲钛基Ag/TiO2@PANI光催化剂的制备及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102389836B (zh) * 2011-09-23 2013-12-18 常州大学 聚苯胺/二氧化钛/粘土纳米复合光催化剂及其制备方法
CN104383966A (zh) * 2014-12-03 2015-03-04 中国石油大学(华东) 三维有序大孔聚苯胺/二氧化钛复合光催化材料的制备方法及其应用
CN104857995A (zh) * 2015-05-21 2015-08-26 中国石油大学(华东) 一种纳米结构的聚苯胺修饰的n掺杂二氧化钛复合光催化剂及其制备方法和应用
CN105709842B (zh) * 2016-01-22 2018-10-26 湖南大学 聚苯胺修饰的介孔单晶二氧化钛微球及其制备方法和应用
CN105817269A (zh) * 2016-05-06 2016-08-03 扬州大学 一种炭化聚苯胺/二氧化钛复合光催化剂的制备方法

Also Published As

Publication number Publication date
CN107051591A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
Kumar et al. Wide spectral degradation of Norfloxacin by Ag@ BiPO4/BiOBr/BiFeO3 nano-assembly: elucidating the photocatalytic mechanism under different light sources
Hasija et al. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review
Jangid et al. Polyaniline-TiO 2-based photocatalysts for dyes degradation
Reddy et al. Nanocarbons-supported and polymers-supported titanium dioxide nanostructures as efficient photocatalysts for remediation of contaminated wastewater and hydrogen production
Kang et al. Mesoporous SiO2-modified nanocrystalline TiO2 with high anatase thermal stability and large surface area as efficient photocatalyst
Wang et al. Photodegradation of methyl orange with PANI-modified BiOCl photocatalyst under visible light irradiation
Rabanimehr et al. Fabrication of Z-scheme Bi2WO6/CNT/TiO2 heterostructure with enhanced cephalexin photodegradation: Optimization and reaction mechanism
Huang et al. Honeycomb-like carbon nitride through supramolecular preorganization of monomers for high photocatalytic performance under visible light irradiation
Hamdi et al. Phthalocyanine/chitosan-TiO2 photocatalysts: Characterization and photocatalytic activity
Jyothi et al. Non-metal (oxygen, sulphur, nitrogen, boron and phosphorus)-doped metal oxide hybrid nanostructures as highly efficient photocatalysts for water treatment and hydrogen generation
CN107051591B (zh) 一种PANI/TiO2纳米复合光催化材料及制备方法
Tahir et al. Photocatalytic degradation and hydrogen evolution using bismuth tungstate based nanocomposites under visible light irradiation
Azami et al. Formation of an amorphous carbon nitride/titania composite for photocatalytic degradation of RR4 dye
Pi et al. Properly aligned band structures in B-TiO2/MIL53 (Fe)/g-C3N4 ternary nanocomposite can drastically improve its photocatalytic activity for H2 evolution: Investigations based on the experimental results
Hassan et al. Recent advancement in Bi5O7I-based nanocomposites for high performance photocatalysts
Pattanayak et al. Noble metal–free doped graphitic carbon nitride (g-C3N4) for efficient photodegradation of antibiotics: progress, limitations, and future directions
Wang et al. Enhancement in the photocatalytic activity of TiO2 nanofibers hybridized with g-C3N4 via electrospinning
Heshmatpour et al. A probe into the effect of fixing the titanium dioxide by a conductive polymer and ceramic on the photocatalytic activity for degradation of organic pollutants
CN112517081B (zh) 金属锡卟啉轴向功能化二氧化钛的复合光催化剂及其制备方法
Saianand et al. Conducting polymer based visible light photocatalytic composites for pollutant removal: Progress and prospects
Ke et al. In situ fabrication of Bi2O3/C3N4/TiO2@ C photocatalysts for visible-light photodegradation of sulfamethoxazole in water
Zhang et al. Novel La3+/Sm3+ co-doped Bi5O7I with efficient visible-light photocatalytic activity for advanced treatment of wastewater: Internal mechanism, TC degradation pathway, and toxicity analysis
Vijayakumar et al. Promoting spatial charge transfer of ZrO2 nanoparticles: embedded on layered MoS2/g-C3N4 nanocomposites for visible-light-induced photocatalytic removal of tetracycline
Zhao et al. Polyoxometalates-doped TiO 2/Ag hybrid heterojunction: removal of multiple pollutants and mechanism investigation
Xing et al. N-doped synergistic porous thin-walled g-C3N4 nanotubes for efficient tetracycline photodegradation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200703