CN107039578A - 一种免极化压电基机电转换元件的制备方法 - Google Patents
一种免极化压电基机电转换元件的制备方法 Download PDFInfo
- Publication number
- CN107039578A CN107039578A CN201710231336.2A CN201710231336A CN107039578A CN 107039578 A CN107039578 A CN 107039578A CN 201710231336 A CN201710231336 A CN 201710231336A CN 107039578 A CN107039578 A CN 107039578A
- Authority
- CN
- China
- Prior art keywords
- piezoelectric
- conversion element
- preparation
- mechanical conversion
- electro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 239000000835 fiber Substances 0.000 claims abstract description 34
- 230000010287 polarization Effects 0.000 claims abstract description 25
- 238000004528 spin coating Methods 0.000 claims abstract description 24
- 239000004744 fabric Substances 0.000 claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 239000004205 dimethyl polysiloxane Substances 0.000 claims abstract description 13
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims abstract description 13
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims abstract description 13
- 238000010041 electrostatic spinning Methods 0.000 claims abstract description 11
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims abstract description 11
- 238000001338 self-assembly Methods 0.000 claims abstract description 11
- 230000002269 spontaneous effect Effects 0.000 claims abstract description 11
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 5
- 239000007788 liquid Substances 0.000 claims abstract description 5
- 229920005573 silicon-containing polymer Polymers 0.000 claims abstract description 5
- 230000005484 gravity Effects 0.000 claims abstract description 4
- 238000003801 milling Methods 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000003980 solgel method Methods 0.000 claims description 6
- -1 polydimethylsiloxane Polymers 0.000 claims description 4
- 238000007711 solidification Methods 0.000 claims description 4
- 230000008023 solidification Effects 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910002113 barium titanate Inorganic materials 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 239000002657 fibrous material Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 238000007747 plating Methods 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 229920001688 coating polymer Polymers 0.000 claims 1
- 230000000694 effects Effects 0.000 claims 1
- 238000005538 encapsulation Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 8
- 238000000227 grinding Methods 0.000 abstract description 4
- 238000005452 bending Methods 0.000 abstract description 2
- 238000013480 data collection Methods 0.000 abstract description 2
- 238000007431 microscopic evaluation Methods 0.000 abstract 1
- 238000005457 optimization Methods 0.000 abstract 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000000243 solution Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N acetone Substances CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000002999 depolarising effect Effects 0.000 description 2
- 239000002305 electric material Substances 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 2
- 230000028161 membrane depolarization Effects 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- FQNGWRSKYZLJDK-UHFFFAOYSA-N [Ca].[Ba] Chemical compound [Ca].[Ba] FQNGWRSKYZLJDK-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005621 ferroelectricity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229940046892 lead acetate Drugs 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002336 repolarization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/09—Forming piezoelectric or electrostrictive materials
- H10N30/093—Forming inorganic materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/06—Forming electrodes or interconnections, e.g. leads or terminals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/08—Shaping or machining of piezoelectric or electrostrictive bodies
- H10N30/085—Shaping or machining of piezoelectric or electrostrictive bodies by machining
- H10N30/086—Shaping or machining of piezoelectric or electrostrictive bodies by machining by polishing or grinding
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Fibers (AREA)
Abstract
本发明提供了一种免极化压电基机电转换元件的制备方法,将静电纺丝制备的压电纤维研磨成合适长度的纤维棒后与聚二甲基硅氧烷(PDMS)混合,作为机电转换元件的主体材料,通过控制研磨时间,使纤维棒长度在2‑3微米范围,而根据压电力显微镜分析纤维的压电、铁电性能,此长度的纤维短棒能够保持单一的自发极化取向;采用优化的旋涂工艺,通过控制旋涂转速,在重力和离心力的协同作用下,压电纤维棒在液态聚二甲基硅氧烷中分散均匀,且纤维棒的长度方向与基底平行。同时在静电力作用下,纤维棒之间沿自发极化方向自组装。从而使得制备的“三明治”结构的机电转换器件无需极化过程就能在弯曲应变下产生10V高电压输出。该方法简单有效,可进行大批量生产。
Description
技术领域
发明属于机电转换元件制备技术领域,具体是制备一种基于静电自组装的压电纤维短棒与PDMS复合的免极化机电转换元件。
背景技术
在全球变暖和能源危机日益严峻的形势下,对于绿色可再生能源的探索成为维持人类文明可持续发展最为紧迫的挑战之一。一些具有机电耦合效应的材料可以实现机械能和电能之间的转换,广泛地被应用于制备传感器、驱动器、换能器和能量回收等器件,在航空、信息、生物、传感等领域有着十分重要的应用。例如压电型机电转换元件,目前应用于器件中的铁电材料,在低于居里温度时,通常有多个不同的自发极化取向,需要通过外电场对铁电材料进行高压极化使其具有一致的极化取向,才能够将其投入使用。但是,铁电材料在使用过程中会产生退极化,铁电性能逐渐衰弱,需要重新极化才能继续工作。然而,当铁电材料具有较大矫顽场,低的击穿电压,或者实际服役环境难以满足极化的条件的时候,极化成为难题。因此,探索制备免极化高输出机电转换元件具有重要意义。
自组装是自然界存在的一个普遍现象,是一种由简单到复杂、由无序到有序、由多组分收敛到单一组分的不断自我修正、自我完善的自发过程,避免了一些人为误差干扰;某种意义上自组装产物的缺陷程度是最低的,因为自组装的过程是自发的,即各个组份之间就是按照最佳的结构和组合方式组装的。研究表明,内部驱动力是实现自组装的关键,包括范德华力、氢键、静电力等只能作用于分子水平的非共价键力和那些能作用于较大尺寸范围的力,如表面张力、重力、离心力、毛细管力等。目前自组装器件主要有光电器件、化学传感器、生物传感器、药物载体、电化学功能电极等。目前尚未出现通过自组装实现的免极化机电转换元件。
秦勇课题组研磨了静电纺丝和热处理后的BZT-BCT纤维,并通过旋涂法及后续极化过程制备BZT-BCT/PDMS磁力驱动机电转换元件,但对纤维棒的长度以及压电层的厚度都没有明确规定。(Li Cheng,Miaomiao Yuan,Long Gu etc.Wireless power-free andimplantable nanosystem for resistance-based biodetection.Nano Energy(2015)15,598–606)
本发明所提出的免极化压电基机电转换元件与传统的压电转换元件相比具有很大的优势:特有的厚度为150~200um,长度为2~3um压电纤维短棒自组装结构。本发明通过控制研磨时间使纤维棒长度维持在2~3um,这个尺寸恰好形成微观单畴结构,且畴向沿纤维棒直径方向产生自发极化;通过控制旋涂转速,使压电层厚度维持在几百微米之间,在重力和离心力的协同作用下,压电纤维棒在液态聚二甲基硅氧烷中分散均匀,纤维棒的长度方向与基底平行。同时在静电力的作用下,纤维棒之间自组装。且压电层的厚度适中,便于电荷的有效导出。本发明所提出的免极化压电基机电转换元件与传统的压电机电转换元件相比具有很大的优势:传统的压电材料在使用前需要进行极化且在使用过程中存在退极化问题,影响元件性能和寿命。而本发明提出的挠曲电压电材料体系不需要这一过程,且该方法简单有效,工艺重复性好,操作性强。
发明内容
技术问题:本发明提供了一种基于静电自组装的免极化的柔性机电转换元件的制备方法。对比需直流高压加热极化数小时的机电转换元件制备过,生产效率大大提高,更加高效环保;解决了当铁电材料具有较大矫顽场,低的击穿电压,或者实际服役环境难以满足极化的条件如极化温度的时候,难以极化的难题;能够极大地减小退极化效应,大大提高了机电转换元件的使用寿命。
技术方案:本发明的一种免极化高输出柔性压电基机电转换元件制备方法具体步骤如下:
步骤1、采用溶胶-凝胶法和静电纺丝法制备压电纤维,
步骤2、对压电纤维进行热处理,
步骤3、将经静电纺丝及热处理后的压电纤维研磨成短纤维棒,
步骤4、压电短纤维与聚二甲基硅氧烷PDMS混合作为压电复合材料,即机电转换元件的主体材料;
步骤5、在基底镀上电极,在底电极上用银浆固定导线并引出,之后旋涂高分子封装材料,固化0.2~0.5h;
步骤6、在镀上电极和旋涂了高分子介电层的基底上,旋涂一层所述压电复合材料;
步骤7、在另一片基底上镀上电极,电极上旋涂一层高分子封装材料,固化0.2~0.5h,利用残余粘性粘贴到步骤6制备的压电相上,固化0.2h~0.5h,固化时利用重物压住器件,使之界面牢固结合。
其中:
步骤3中研磨时间为0.5~1h,使得纤维棒的长度为2~3um,以保持较单一的自发极化取向。
步骤4中所述的将静电纺丝及热处理后的压电纤维研磨成短纤维棒后与PDMS混合,其混合的质量比是:1:5~1:10之间。
步骤6中所述的旋涂,其转速控制在800r~1000r,旋涂时间为50s~60s,在重力和离心力的协同作用下,压电纤维棒在液态聚二甲基硅氧烷中分散均匀,且纤维棒的长度方向与基底平行,且在静电力的作用下,纤维棒之间自组装并产生自发极化,使得制备的压电层厚度为几百微米,厚度适中,便于电荷的有效导出。
所述的压电纤维可以是Pb(Zr1-xTix)O3基、BaTiO3基或(KxNa1-x)NbO3基的多种无机压电纤维材料。
有益效果:本发明制备的机电转换元件无需极化即可产生电压,单个器件受到形变作用时,输出电压最大可达10V,电流约达到40nA,工作多天电压未有明显衰减,能够在多种变形弯曲/按压/振动下都能够工作。对比需直流高压加热极化数小时的机电转换元件制备过,生产效率大大提高,更加高效环保;解决了当铁电材料具有较大矫顽场,低的击穿电压,或者实际服役环境难以满足极化的条件如极化温度的时候,难以极化的难题;能够极大地减小退极化效应,大大提高了机电转换元件的使用寿命。该方法简单有效,可进行大批量生产,在MEMS、纳米发电机、应力应变传感器等领域具有很好的应用前景。
附图说明
图1是压电纤维三维图和PFM振幅相位图,可以看出纤维展现出一致的向上自发极化取向。
图2是旋涂前后压电纤维棒的排布情况对比图,可以看出旋涂之前自极化的压电纤维棒混乱排布,控制旋涂转速后,纤维棒的长度方向与基底平行,自组装为免极化机电转换元件。
图3是本发明机电转换元件外接不同负载时的电压和功率输出图,当外接负载为1000MΩ及以上时,电压达到10V。最大功率约为130nW。
具体实施方式
本发明的免极化机电转换元件的制备方法,包括如下关键步骤:通过控制研磨时间,将静电纺丝及热处理后的无机压电纤维织物研磨为2~3um长的压电纤维棒;将压电纤维棒与PDMS按一定配比均匀复合,作为压电相,制备基底/上电极—压电相—下电极/基底的“三明治”结构的机电转换元件,其中通过控制旋涂转速得到厚度为几百微米左右的压电层。
纤维棒与PDMS均匀复合后,在较快的旋涂过程中,纤维棒最稳定状态是平躺在基底上。纤维材料可以是Pb(Zr1-xTix)O3基、BaTiO3基、(KxNa1-x)NbO3基的多种无机压电纤维材料,但不限于这些,所有利用该方法制备的免极化压电纤维都属于本专利权利保护之内。
下面结合实施例和附图对本发明做更进一步的解释。下列实施例仅用PZT压电纤维来说明本发明,但并不用来限定发明的实施范围。
实施例1
步骤1、采用溶胶-凝胶法和静电纺丝法制备PZT纺丝前驱体溶液。以无水乙醇、乙酰丙酮和乙酸组成混合溶液,按照Zr:Ti比为52:48的化学计量比先后称取钛酸四丁酯、乙酰丙酮锆、碱式乙酸铅,最后按照0.35~0.45g/ml加入聚乙烯吡咯烷酮(PVP)使溶液具有合适粘度,放于磁力搅拌台上搅拌至溶液混合均匀,形成稳定、澄清、透明、具有合适粘度的PZT静电纺丝前驱体。把3ml前驱体溶液加入到5ml的注射器中,使用直径0.6mm的针头,将针头通过导管与注射器连接,并将注射器固定在注射泵上,将高压电源的输出端接在针头上,将地线与滚筒连接,控制纺丝环境湿度小于30%,温度为32~38℃。设置溶胶的流速为0.03~0.08ml/min,滚筒的转速约为600~800r/min,高压电源的输出电压为15~30KV,针头距滚筒表面最短距离为15~30cm,纺丝时间为2小时左右。
步骤2、纤维热处理工艺过程如下:升温速率为2℃/min。,在38℃、282℃各保温半小时,随后升温至650℃后并保温1小时,后随炉冷却,得到平整的淡黄色锆钛酸铅压电纤维。
步骤3、现在研钵中加入微量酒精,将手工捏碎的纤维织物倒入研钵中,研磨1h左右,使得微观上纤维棒的长度保持在2~3um之间。
步骤4、按质量比1:10将PZT纤维棒与PDMS均匀复合成为液态压电相。
步骤5、将两片相同的聚对苯二甲酸乙二酯基底用丙酮、乙醇、去离子水超声清洗之后烘干,利用磁控溅射工艺在两片基底的一面溅射铜,作为顶电极和底电极。其中溅射工艺参数如下:本底真空6.4×10-4~6.6×10-4Pa,溅射气体为高纯氩气,工作气压0.2~0.5Pa,Ar/sccm25~35,溅射功率为48~52W,溅射时间为3~6分钟。在顶电极和底电极一端涂刷银浆,固定铜导线并引出。铜导线作为机电转换元件正负电荷输出端口。
步骤6、在顶电极上旋涂一层PDMS,固化0.2~0.5h,再以800r/min~1000r/min的转速维持50s~60s,旋涂PZT/PDMS压电复合相,在60~80℃下固化。
步骤7、在底电极上旋涂一层PDMS,固化0.2h,利用残余粘性粘贴到压电复合相上,固化0.2h左右,固化时利用重物压住器件,使之界面牢固结合。
以上对本发明所提供的一种无需极化高输出柔性机电转换元件及其制备方法进行了详细介绍,以上参照附图对本申请的示例性的实施方案进行了描述。以上发明所用压电材料并不限于使用锆钛酸铅压电纤维,还包括锆钛酸钡钙、铌酸钾钠等压电纤维。本领域技术人员应该理解,上述实施方案仅仅是为了说明的目的而所举的示例,而不是用来进行限制,凡在本申请的教导和权利要求保护范围下所作的任何修改、等同替换等,均应包含在本申请要求保护的范围内。
Claims (5)
1.一种免极化压电基机电转换元件的制备方法,其特征在于该制备方法的具体步骤如下:
步骤1、采用溶胶-凝胶法和静电纺丝法制备压电纤维,
步骤2、对压电纤维进行热处理,
步骤3、将经静电纺丝及热处理后的压电纤维研磨成短纤维棒,
步骤4、压电短纤维与聚二甲基硅氧烷PDMS混合作为压电复合材料,即机电转换元件的主体材料;
步骤5、在基底镀上电极,在底电极上用银浆固定导线并引出,之后旋涂高分子封装材料,固化0.2~0.5h;
步骤6、在镀上电极和旋涂了高分子介电层的基底上,旋涂一层所述压电复合材料;
步骤7、在另一片基底上镀上电极,电极上旋涂一层高分子封装材料,固化0.2~0.5h,利用残余粘性粘贴到步骤6制备的压电相上,固化0.2h~0.5h,固化时利用重物压住器件,使之界面牢固结合。
2.根据权利要求1所述的免极化压电基机电转换元件的制备方法,其特征在于,步骤3中研磨时间为0.5~1h,使得纤维棒的长度为2~3um,以保持较单一的自发极化取向。
3.根据权利要求1所述的免极化压电基机电转换元件的制备方法,其特征在于,步骤4中所述的将静电纺丝及热处理后的压电纤维研磨成短纤维棒后与PDMS混合,其混合的质量比是:1:5~1:10之间。
4.根据权利要求1所述的免极化压电基机电转换元件的制备方法,其特征在于,步骤6中所述的旋涂,其转速控制在800r~1000r,旋涂时间为50s~60s,在重力和离心力的协同作用下,压电纤维棒在液态聚二甲基硅氧烷中分散均匀,且纤维棒的长度方向与基底平行,且在静电力的作用下,纤维棒之间自组装并产生自发极化,使得制备的压电层厚度为几百微米,厚度适中,便于电荷的有效导出。
5.根据权利要求1所述的免极化压电基机电转换元件的制备方法,其特征在于,所述的压电纤维可以是Pb(Zr1-xTix)O3基、BaTiO3基或(KxNa1-x)NbO3基的多种无机压电纤维材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710231336.2A CN107039578B (zh) | 2017-04-10 | 2017-04-10 | 一种免极化压电基机电转换元件的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710231336.2A CN107039578B (zh) | 2017-04-10 | 2017-04-10 | 一种免极化压电基机电转换元件的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107039578A true CN107039578A (zh) | 2017-08-11 |
CN107039578B CN107039578B (zh) | 2019-03-12 |
Family
ID=59535010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710231336.2A Active CN107039578B (zh) | 2017-04-10 | 2017-04-10 | 一种免极化压电基机电转换元件的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107039578B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110350081A (zh) * | 2019-06-19 | 2019-10-18 | 南京航空航天大学 | 一种有序结构的多功能柔性压电复合薄膜及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1456360A (zh) * | 2003-05-28 | 2003-11-19 | 东南大学 | 可吸收超细纤维组织修复材料及其制备方法 |
CN105051926A (zh) * | 2013-03-25 | 2015-11-11 | 株式会社东芝 | 压电振子、超声波探头、压电振子制造方法以及超声波探头制造方法 |
CN105386158A (zh) * | 2015-11-03 | 2016-03-09 | 浙江大学 | 一种多孔中空的铁酸铋纳米纤维的制备方法 |
CN106328803A (zh) * | 2016-10-12 | 2017-01-11 | 上海师范大学 | 一种压电能量回收器件及其制备方法 |
-
2017
- 2017-04-10 CN CN201710231336.2A patent/CN107039578B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1456360A (zh) * | 2003-05-28 | 2003-11-19 | 东南大学 | 可吸收超细纤维组织修复材料及其制备方法 |
CN105051926A (zh) * | 2013-03-25 | 2015-11-11 | 株式会社东芝 | 压电振子、超声波探头、压电振子制造方法以及超声波探头制造方法 |
CN105386158A (zh) * | 2015-11-03 | 2016-03-09 | 浙江大学 | 一种多孔中空的铁酸铋纳米纤维的制备方法 |
CN106328803A (zh) * | 2016-10-12 | 2017-01-11 | 上海师范大学 | 一种压电能量回收器件及其制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110350081A (zh) * | 2019-06-19 | 2019-10-18 | 南京航空航天大学 | 一种有序结构的多功能柔性压电复合薄膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107039578B (zh) | 2019-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Additive manufacturing of piezoelectric materials | |
CN103490005B (zh) | 基于压电-摩擦效应的纳米发电机的制备方法 | |
CN103107737B (zh) | 压电摩擦复合式微纳发电机及其制备方法 | |
CN108530806A (zh) | 具有高输出的双层结构柔性压电薄膜及其制备和应用方法 | |
CN103367629B (zh) | 纳米发电机及其制备方法和纤维阵列制备方法 | |
US11968904B2 (en) | Flexible piezoceramic composites and method for fabricating thereof | |
CN110473960B (zh) | 压电材料、压电材料制备方法及用途 | |
CN107512909B (zh) | 一种完全可卷曲的压电纳米复合发电器的制备方法 | |
Zhu et al. | High output power density nanogenerator based on lead-free 0.96 (K 0.48 Na 0.52)(Nb 0.95 Sb 0.05) O 3–0.04 Bi 0.5 (Na 0.82 K 0.18) 0.5 ZrO 3 piezoelectric nanofibers | |
CN109994315A (zh) | 由磁性纳米纤维铁电薄膜组合的磁电复合材料及其制备方法 | |
CN107039578A (zh) | 一种免极化压电基机电转换元件的制备方法 | |
CN104671277B (zh) | 制备高比表面积氧化锌复合材料的方法及该氧化锌复合材料 | |
CN108899415B (zh) | 一种柔性铁电复合薄膜的流延-极化制备方法 | |
CN103208587B (zh) | 一种压电纤维复合物的制备方法 | |
CN102522491A (zh) | 具有驱动和传感能力的聚合物器件及其制备和应用 | |
CN114436654A (zh) | 具有高相变温度、优异抗疲劳性和高机电性能的弛豫铁电铅基陶瓷材料及制备方法和应用 | |
CN109449280A (zh) | 一种微机电换能器及其制备方法 | |
CN101533889B (zh) | ZnO纳米晶须增强硅基锆钛酸铅压电复合厚膜的制备方法 | |
CN107093666A (zh) | 一种柔性压电发电元件及其制备方法 | |
Zhu et al. | Piezoelectric one-to two-dimensional nanomaterials for vibration energy harvesting devices | |
Kordlar et al. | Barium titanate nanorods on micro-machined silicon substrate for performance enhancement of piezoelectric Nanogenerators (NGs) | |
Li et al. | A piezoelectric generator based on PVDF/GO nanofiber membrane | |
CN102838350B (zh) | 一种低温烧结压电陶瓷材料及其制备方法 | |
CN108539008A (zh) | 一种基于铋铁酸铋化合物的无铅纳米压电发电机及制备方法 | |
CN113106628A (zh) | 一种基于锆钛酸铅/pvdf复合纤维的柔性压电能量转化器件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |