CN107512909B - 一种完全可卷曲的压电纳米复合发电器的制备方法 - Google Patents

一种完全可卷曲的压电纳米复合发电器的制备方法 Download PDF

Info

Publication number
CN107512909B
CN107512909B CN201710924800.6A CN201710924800A CN107512909B CN 107512909 B CN107512909 B CN 107512909B CN 201710924800 A CN201710924800 A CN 201710924800A CN 107512909 B CN107512909 B CN 107512909B
Authority
CN
China
Prior art keywords
nkns
film
pvdf
nano composite
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710924800.6A
Other languages
English (en)
Other versions
CN107512909A (zh
Inventor
张红
王子韩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710924800.6A priority Critical patent/CN107512909B/zh
Publication of CN107512909A publication Critical patent/CN107512909A/zh
Application granted granted Critical
Publication of CN107512909B publication Critical patent/CN107512909B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/22Methods relating to manufacturing, e.g. assembling, calibration
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种完全可卷曲的压电纳米复合发电器的制备方法,利用聚偏二氟乙烯作为基体,组成调制的铌酸钾钠压电纳米颗粒作为分散体制备纳米复合发电器薄膜,并集成一种新型的柔性电极实现纳米发电器的完全可卷曲性,电极的表面电阻随卷曲次数的变化较小,经过200次卷曲循环后,开路电压仍可保持稳定。上述结果说明PVDF‑(NKNS‑LT‑BZ)纳米复合发电器可以很好地适用于自驱动可卷曲电子器件中,比如:管状的运动传感器,可穿戴的电子皮肤,完全可卷曲的移动电子,汽车轮胎内的发电系统等。

Description

一种完全可卷曲的压电纳米复合发电器的制备方法
技术领域
本发明属于纳米材料与器件的制备技术领域,特别涉及一种完全可卷曲的压电纳米复合发电器的制备方法。
背景技术
将机械能转化为电能可以有效地缓解全球能源危机并且解决相伴的环境问题,从而具有重要的战略意义。在过去十年,柔性压电纳米发电器作为自驱动电子系统和实时活性传感器被广泛地研究,它可以有效地从机械变形、振动、流体运动、声波、甚至是身体或器官运动中收集转化机械能。到目前为止,基于氧化锌纳米线、氮化镓纳米棒、二硫化钼纳米片、传统压电陶瓷晶体、有机-无机铅卤化物和聚偏二氟乙烯的各种结构的压电纳米发电器被相继报道。尤其是,由聚二甲基硅氧烷和纳米尺寸的压电体构成的压电纳米复合发电器作为一种新型的范例被提出,它具有更好的机械柔性和更高的电学输出。另外,这种类型的纳米发电器制备过程简单、成本较低、易于规模化。
β相聚偏二氟乙烯及其共聚物具有较优的压电性能、适当的机械强度和柔性,因此成为了最受人关注的有机压电材料。尽管研究人员基于聚偏二氟乙烯设计了一系列不同结构的压电纳米发电器,但还是很少用它作为基体制备纳米复合发电器。另一方面,考虑到纳米复合发电器产生的压电电势主要取决于其中的无机组成部分,具有高压电活性的无机压电材料应受到特殊关注。铌酸钾钠体系作为一种生物相容的无铅压电陶瓷材料因其杰出的压电和机电特性被大量研究。其中,位于多晶型相界处的组成具有相当高的压电常数,很接近一些铅基压电陶瓷材料,因而使它们很适合用于纳米复合发电器。
发明内容
本发明要解决的技术问题是:利用聚偏二氟乙烯作为基体,组成调制的铌酸钾钠压电纳米颗粒作为分散体制备纳米复合发电器薄膜,并集成一种新型的柔性电极实现纳米发电器的完全可卷曲性。
本发明采用如下技术方案:完全可卷曲的压电纳米复合发电器的制备方法,其包括如下步骤:
步骤S1(0.915(Na0.5K0.5)(Nb0.94Sb0.06)O3- 0.045LiTaO3-0.04BaZrO3 (NKNS-LT-BZ)的制备):易吸湿的的碳酸钠和碳酸钾粉末首先在150 oC完全干燥,按照化学计量比称量碳酸钠、碳酸钾、碳酸锂、碳酸钡、五氧化二铌、五氧化二锑、五氧化二钽和二氧化锆,混合后以酒精为介质球磨12 h,得到的浆料在80 oC干燥12 h后研磨均匀,置于850 oC煅烧5 h得到NKNS-LT-BZ钙钛矿压电晶体,再对粉体进行二次球磨24 h得到粒径均匀的结晶纳米颗粒;
步骤S2(PVDF-(NKNS-LT-BZ)纳米复合薄膜的制备):将钙钛矿压电纳米粉末NKNS-LT-BZ按照一定的质量比分散在10 ml溶剂N,N-二甲基甲酰胺中,进行室温搅拌和超声1 h,然后在悬浮液中加入PVDF(10 wt%)粉末,加热至65 oC激烈搅拌3 h后超声分散1 h,将均匀混合的浆料倒入表面皿中置于75 oC烘干溶剂,得到的薄膜在真空中120 oC退火3 h;
步骤S3(尼龙纤维基银纳米线电极的制备及PVDF-(NKNS-LT-BZ)纳米复合发电器的集成):将PA6粉末颗粒溶于甲酸中(15 wt%)配制前驱体溶液,通过静电纺丝的方法制备得到尼龙纤维薄膜,在其表面真空抽滤银纳米线得到薄膜电极,之后通过在PVDF-(NKNS-LT-BZ)纳米复合薄膜表面旋涂PDMS粘附层集成上薄膜电极,将得到的纳米复合发电器样品置于80 oC固化1 h后用PET薄膜进行真空封装,最后在20 kV/mm下室温极化1 h。
附图说明
图1.尼龙纤维基银纳米线电极的扫描电子显微镜俯视图;
图2.退火后的PVDF-(NKNS-LT-BZ)基纳米复合薄膜的扫描电子显微镜下的局部放大照片;
图3.NKNS-LT-BZ纳米颗粒具有铁电四方相和菱方相共存的相结构图;
图4.制备的纳米复合薄膜及集成好的柔性纳米复合发电器样品的光学图片。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明,但并不局限如此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
结果说明:
采用D/Max2500V Rigaku型X-射线衍射仪(XRD)、LabRam HR-800型拉曼光谱仪(Raman)、Nicolet 67型远红外光谱仪(FT-IR)对所得样品进行相结构表征,采用SU8020型扫描电子显微镜(SEM)对所得样品进行显微结构观察,采用MFP-3D-SA-DV, AsylumResearch型压电力显微镜(PFM)研究NKNS-LT-BZ纳米颗粒的压电和铁电性能,采用RTS-9型四探针电阻测试系统测量柔性电极的表面电阻,采用Keithley 6514 SystemElectrometer and Stanford Research SR570型测试系统测量集成的纳米复合发电器的电学性能。
通过样品光学照片图4,可以看到本发明采用的制备方法可以实现PVDF-(NKNS-LT-BZ)纳米复合薄膜的规模化制备,并且集成了尼龙纤维基银纳米线电极后所得的纳米复合发电器具有非常好的机械柔性和稳定性。物相结构表征结果图3显示所制备的NKNS-LT-BZ纳米颗粒具有铁电四方相和菱方相共存的相结构。扫描电子显微镜照片显示尺寸均一的NKNS-LT-BZ纳米颗粒可以均匀地分散在PVDF基体中,针状条纹形貌也反映出PVDF基体为具有压电活性的β相。另外,从图1、2中可以看到,银纳米线均匀地分布在尼龙纤维网络载体上,保证了电极具有非常好的导电性和机械柔性。集成的纳米复合发电器厚度大约为80 μm,电极与复合薄膜上下表面的贴合十分紧密。
压电力显微镜的测试结果表明,NKNS-LT-BZ纳米颗粒具有非常好的压电和铁电性能,蝴蝶状的振幅曲线和类矩形状的相位回线反映出其较小的矫顽场,通过不同交流压电信号下的振幅压电响应测试,得到其压电常数为53 pm/V,高于铌酸钠纳米线(4 pm/V),钛酸铋钠纳米纤维(18 pm/V),溴铅甲醚(25 pm/V)和钛酸钡(28 pm/V)纳米颗粒。这些结果表明本发明所制备的NKNS-LT-BZ纳米颗粒十分适用于压电能量转换。
电学性能测试结果表明,PVDF-(NKNS-LT-BZ)纳米复合发电器的电学输出信号对NKNS-LT-BZ纳米颗粒的含量依赖性较强。当NKNS-LT-BZ纳米颗粒含量为30 %时,在垂直压力50 N的条件下,本发明所制备的纳米复合发电器可输出开路电压为18 V,短路电流密度为0.65 μA/cm2。极化翻转测试结果表明,该纳米复合发电器电学信号的产生来源于压电效应。另外,由于电极与发电层的机械柔性和稳定性,本发明所制备的纳米复合发电器具有完全可卷曲性,电极的表面电阻随卷曲次数的变化较小,经过200次卷曲循环后,开路电压仍可保持稳定。上述结果说明PVDF-(NKNS-LT-BZ)纳米复合发电器可以很好地适用于自驱动可卷曲电子器件中,比如:管状的运动传感器,可穿戴的电子皮肤,完全可卷曲的移动电子,汽车轮胎内的发电系统等。

Claims (2)

1.一种完全可卷曲的压电纳米复合发电器的制备方法,包括以下步骤:
步骤S1(0.915(Na0.5K0.5)(Nb0.94Sb0.06)O3- 0.045LiTaO3-0.04BaZrO3 (NKNS-LT-BZ)的制备):易吸湿的碳酸钠和碳酸钾粉末首先在150 oC完全干燥,按照化学计量比称量碳酸钠、碳酸钾、碳酸锂、碳酸钡、五氧化二铌、五氧化二锑、五氧化二钽和二氧化锆,混合后以酒精为介质球磨12 h,得到的浆料在80 oC干燥12 h后研磨均匀,置于850 oC煅烧5 h得到NKNS-LT-BZ钙钛矿压电晶体,再对该晶体进行二次球磨24 h得到粒径均匀的结晶纳米颗粒;
步骤S2(PVDF-(NKNS-LT-BZ)纳米复合薄膜的制备):将钙钛矿压电纳米颗粒NKNS-LT-BZ按照一定的质量比分散在10 ml溶剂N,N-二甲基甲酰胺中,进行室温搅拌和超声1 h,然后在悬浮液中加入重量比为10 wt%的PVDF粉末,加热至65 oC激烈搅拌3 h后超声分散1 h,将均匀混合的浆料倒入表面皿中置于75 oC烘干溶剂,得到的薄膜在真空中120 oC退火3 h;
步骤S3(尼龙纤维基银纳米线电极的制备及PVDF-(NKNS-LT-BZ)纳米复合发电器的集成):将PA6粉末颗粒溶于重量比为15 wt%的甲酸中配制前驱体溶液,通过静电纺丝的方法制备得到尼龙纤维薄膜,在其表面真空抽滤银纳米线得到薄膜电极,之后通过在PVDF-(NKNS-LT-BZ)纳米复合薄膜表面旋涂PDMS粘附层集成上薄膜电极,将得到的纳米复合发电器样品置于80 oC固化1 h后用PET薄膜进行真空封装,最后在20 kV/mm下室温极化1 h。
2.根据权利要求1所述一种完全可卷曲的压电纳米复合发电器的制备方法,其特征在于,步骤S3中制备的薄膜电极采用静电纺丝的尼龙纤维网络为载体和银纳米线纳米网络为导电层的双层结构,同时兼备了较好的机械柔性和导电性,通过PDMS集成于PVDF-(NKNS-LT-BZ)纳米复合薄膜后使样品具有可完全卷曲的特性,并且机械结构和发电性能非常稳定。
CN201710924800.6A 2017-10-01 2017-10-01 一种完全可卷曲的压电纳米复合发电器的制备方法 Active CN107512909B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710924800.6A CN107512909B (zh) 2017-10-01 2017-10-01 一种完全可卷曲的压电纳米复合发电器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710924800.6A CN107512909B (zh) 2017-10-01 2017-10-01 一种完全可卷曲的压电纳米复合发电器的制备方法

Publications (2)

Publication Number Publication Date
CN107512909A CN107512909A (zh) 2017-12-26
CN107512909B true CN107512909B (zh) 2020-10-09

Family

ID=60726939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710924800.6A Active CN107512909B (zh) 2017-10-01 2017-10-01 一种完全可卷曲的压电纳米复合发电器的制备方法

Country Status (1)

Country Link
CN (1) CN107512909B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108339729B (zh) * 2018-02-07 2020-10-30 太原理工大学 基于石墨烯掺杂的无铅压电复合薄膜超声换能器的制备方法
CN108975912B (zh) * 2018-09-20 2021-05-18 歌尔光学科技有限公司 三元系铌酸钾钠基无铅压电陶瓷及其制备方法
CN111768895A (zh) * 2020-07-06 2020-10-13 东华大学 一种透气性透明柔性纤维基表皮电极及其制备方法
CN111765995A (zh) * 2020-07-06 2020-10-13 东华大学 一种自驱动抗菌型柔性电子皮肤及其制备方法
CN112062562B (zh) * 2020-09-17 2022-04-19 广西大学 一种knn基超高击穿电场单晶薄膜材料的制备方法
CN115305593A (zh) * 2022-08-02 2022-11-08 河南师范大学 基于静电纺丝聚丙烯腈基压电纳米发电机的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103440907A (zh) * 2013-09-05 2013-12-11 中国科学院青岛生物能源与过程研究所 一种纤维素纳米纤维与银纳米线复合导电薄膜及其制备方法
CN104051606A (zh) * 2014-06-09 2014-09-17 北京派和科技股份有限公司 一种铌酸钾钠基多层压电陶瓷元件及其制备方法
CN104157784A (zh) * 2014-07-31 2014-11-19 北京科技大学 一种复合纳米压电发电机的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103440907A (zh) * 2013-09-05 2013-12-11 中国科学院青岛生物能源与过程研究所 一种纤维素纳米纤维与银纳米线复合导电薄膜及其制备方法
CN104051606A (zh) * 2014-06-09 2014-09-17 北京派和科技股份有限公司 一种铌酸钾钠基多层压电陶瓷元件及其制备方法
CN104157784A (zh) * 2014-07-31 2014-11-19 北京科技大学 一种复合纳米压电发电机的制备方法

Also Published As

Publication number Publication date
CN107512909A (zh) 2017-12-26

Similar Documents

Publication Publication Date Title
CN107512909B (zh) 一种完全可卷曲的压电纳米复合发电器的制备方法
Hu et al. Strategies to achieve high performance piezoelectric nanogenerators
Guo et al. Synthesis of orthorhombic perovskite-type ZnSnO3 single-crystal nanoplates and their application in energy harvesting
Dudem et al. Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting
Zhang et al. Fully rollable lead-free poly (vinylidene fluoride)-niobate-based nanogenerator with ultra-flexible nano-network electrodes
Alluri et al. Flexible, hybrid piezoelectric film (BaTi (1–x) Zr x O3)/PVDF nanogenerator as a self-powered fluid velocity sensor
Yan et al. High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes
Sultana et al. An effective electrical throughput from PANI supplement ZnS nanorods and PDMS-based flexible piezoelectric nanogenerator for power up portable electronic devices: an alternative of MWCNT filler
Gupta et al. Flexible high-performance lead-free Na0. 47K0. 47Li0. 06NbO3 microcube-structure-based piezoelectric energy harvester
Ippili et al. Unveiling predominant air-stable organotin bromide perovskite toward mechanical energy harvesting
Biswas et al. Highly efficient and durable piezoelectric nanogenerator and photo-power cell based on CTAB modified montmorillonite incorporated PVDF film
Batra et al. Tb-doped ZnO: PDMS based flexible nanogenerator with enhanced piezoelectric output performance by optimizing nanofiller concentration
Singh et al. Recent advances, challenges, and prospects of piezoelectric materials for self-charging supercapacitor
Yao et al. Mechanical energy harvesting and specific potential distribution of a flexible piezoelectric nanogenerator based on 2-D BaTiO3-oriented polycrystals
Biswas et al. Portable self-powered piezoelectric nanogenerator and self-charging photo-power pack using in situ formed multifunctional calcium phosphate nanorod-doped PVDF films
Cao et al. Enhanced output performance of a flexible piezoelectric nanogenerator realized by lithium-doped zinc oxide nanowires decorated on MXene
Korkmaz et al. BaTiO3-based nanogenerators: fundamentals and current status
AlTowireb et al. Core-Shell structures for the enhancement of energy harvesting in piezoelectric Nanogenerators: A review
Nor et al. Recent advancement in sustainable energy harvesting using piezoelectric materials
Huan et al. Ultrahigh energy harvesting properties in Ag decorated potassium-sodium niobite particle-polymer composite
Sapkal et al. A review of piezoelectric materials for nanogenerator applications
Babu et al. A hybrid microwave sintered PZT composite as a flexible piezoelectric nanogenerator
Shi et al. Advances in wearable flexible piezoelectric energy harvesters: materials, structures, and fabrication
KR101169544B1 (ko) 플렉서블 나노제너레이터 제조방법 및 이에 의하여 제조된 플렉서블 나노제너레이터
Ben Ayed et al. Robust and flexible piezoelectric lead-free Zn-BCZT/PVDF-HFP nanogenerators for wearable energy harvesting

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant