CN107034663A - 一种二硫化钨/碳纳米纤维复合材料及其制备方法和用途 - Google Patents

一种二硫化钨/碳纳米纤维复合材料及其制备方法和用途 Download PDF

Info

Publication number
CN107034663A
CN107034663A CN201710254952.XA CN201710254952A CN107034663A CN 107034663 A CN107034663 A CN 107034663A CN 201710254952 A CN201710254952 A CN 201710254952A CN 107034663 A CN107034663 A CN 107034663A
Authority
CN
China
Prior art keywords
tungsten disulfide
carbon nano
composite material
fiber composite
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710254952.XA
Other languages
English (en)
Other versions
CN107034663B (zh
Inventor
黄云鹏
袁寿其
李华明
崔芬
赵岩
包健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201710254952.XA priority Critical patent/CN107034663B/zh
Publication of CN107034663A publication Critical patent/CN107034663A/zh
Application granted granted Critical
Publication of CN107034663B publication Critical patent/CN107034663B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/53Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with hydrogen sulfide or its salts; with polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Textile Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inert Electrodes (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明提供了一种二硫化钨/碳纳米纤维复合材料及其制备方法和用途,制备步骤如下:(1)在高速搅拌和油浴条件下,配制聚丙烯腈纺丝溶液;(2)采用静电纺丝法制备聚丙烯腈纳米纤维;(3)通过程序控温,对步骤(2)的聚丙烯腈纳米纤维进行预氧化处理;(4)通过阶段升温,对步骤(3)的预氧化处理的聚丙烯腈纳米纤维进行碳化处理;(5)将一定量的二硫化钨前驱体化合物加入溶剂中,超声得到二硫化钨前驱体溶液;(6)将碳纳米纤维膜浸入二硫化钨前驱体溶液中,接着置于高压反应釜中,在一定温度下进行溶剂热反应,得到二硫化钨/碳纳米纤维复合材料。本发明制备过程简单,易于操作,所用的聚合物及试剂均环境友好。

Description

一种二硫化钨/碳纳米纤维复合材料及其制备方法和用途
技术领域
本发明属于功能化复合碳纳米材料领域,具体为一种二硫化钨/碳纳米纤维复合材料及其制备方法。
背景技术
随着化石能源的日益减少和极端气候的频发,全世界的科学工作者们都致力于开发可再生、低成本和环境友好的能源存储与转换技术,并以此来满足移动电子设备和新能源汽车的快速发展所带来的能源需求。其中,超级电容器、燃料电池、锂离子电池被认为是目前最具发展前景的三种电化学能源存储与转换系统。决定这些新能源体系性能的关键,则在于高性能电极材料和催化剂材料的设计与开发。而为了促进这类新能源技术的产业化,寻找绿色、低成本的非贵金属基材料也是研究者们重点关注的方向。
最近,一种新型的层状过渡金属硫族化合物因为其独特的电化学活性而成为研究热点。作为类石墨烯的新型二维材料,它有着特殊的X-M-X(M=钼、钨等,X=硫、硒、碲)层状结构,层间靠弱的范德华力相互作用,层内则靠强的共价键结合,这类材料有着可调的能带结构和优异的电化学性能,在能源存储与转换领域有着潜在的应用价值。大量研究工作显示,少片层的二硫化钨纳米片具有很高的析氢催化性能,在用作析氢催化剂时表现出极高的活性和长循环寿命。理论模拟和实验研究也表明,二硫化钨片层边缘暴露的硫原子有着非常高的电化学活性,而少片层或单片层的结构又进一步增大了活性硫原子的密度。但是在实际应用中二硫化钨纳米片常常存在着易团聚和导电性差的问题,这都很大程度上抑制了该材料的性能表现。由此可见,若要提高二硫化钨的电化学活性需要考虑两点:(1)让二硫化钨暴露更多的活性边缘,或者充分利用其纳米效应,减小其尺寸来提高材料的活性位点密度;(2)通过与导电性好的材料进行复合来增强二硫化钨复合材料的导电性。
静电纺丝是一种能够简单、高效地制备连续纳米纤维的方法,其产物直径一般在10nm到几个微米。利用静电纺丝(如聚丙烯腈polyacrylonitrile(PAN)或聚酰亚胺polyimide(PI)的电纺纳米纤维)结合高温碳化处理可以很便捷地制备碳纳米纤维膜。由于电纺碳纳米纤维膜的高机械强度、良好的导电性、化学稳定性和柔韧性,其在电池电极材料、超级电容器、燃料电池、传感器、催化剂和可穿戴电子器件等领域应用非常广泛。故本发明以电纺制备的自支撑碳纳米纤维膜为柔性基板,利用溶剂热法在其表面上载二硫化钨纳米片,通过纳米纤维多孔的交联网络来实现纳米材料的均匀分散,同时导电性良好的碳纳米纤维基板还能大幅提高复合材料的导电性能,两方面同时增强二硫化钨/碳纳米纤维复合材料的电化学性能。
发明内容
本发明的目的在于提供一种柔性、自支撑的二硫化钨/碳纳米纤维复合材料及其制备方法。
本发明利用静电纺丝技术结合高温碳化制备的碳纳米纤维膜为导电、自支撑模板,通过简单的溶剂热法,制备得到新型的二硫化钨/碳纳米纤维复合材料。
本发明是通过如下技术方案实现的:
一种二硫化钨/碳纳米纤维复合材料,所述二硫化钨/碳纳米纤维复合材料是由二硫化钨纳米片与碳纳米纤维复合而成的,所述二硫化钨纳米片呈竖立姿态均匀生长在碳纳米纤维上。
一种二硫化钨/碳纳米纤维复合材料的制备方法,步骤如下:
(1)在高速搅拌和油浴条件下,配制聚丙烯腈纺丝溶液;
(2)采用静电纺丝法制备聚丙烯腈纳米纤维;
(3)通过程序控温,对步骤(2)的聚丙烯腈纳米纤维进行预氧化处理;
(4)通过阶段升温,对步骤(3)的预氧化处理的聚丙烯腈纳米纤维进行碳化处理;
(5)将一定量的二硫化钨前驱体化合物加入溶剂中,超声得到二硫化钨前驱体溶液;
(6)将步骤(4)得到的碳纳米纤维膜浸入步骤(5)得到的二硫化钨前驱体溶液中,接着置于高压反应釜中,在一定温度下进行溶剂热反应,得到二硫化钨/碳纳米纤维复合材料。
本发明步骤(1)中所述的配制聚丙烯腈纺丝溶液的溶剂为N,N-二甲基甲酰胺,聚丙烯腈纺丝溶液的浓度为0.1~0.2g/mL;所述油浴的温度为75~85℃。
本发明步骤(2)中,所述的静电纺丝法的工艺参数为:流速0.15~0.35mm/min,电压为17~25kV,接收距离为12~20cm。
本发明步骤(3)中,所述的程序控温,气氛为空气,升温速率为1~2℃/min,平台温度为230~300℃,保持2~4h,然后自然降温。
本发明步骤(4)中,所使用的阶段升温程序为:以2~5℃/min的速率从50℃升温至400~500℃,保温50~80min;以5~10℃/min的速率从400~500℃升温至800~1000℃,保温50~80min;自然降温至室温。
本发明步骤(5)中,所述的二硫化钨前驱体化合物为四硫代钨酸铵,溶剂为N,N-二甲基甲酰胺,前驱体溶液浓度为2~5mg/mL。
本发明步骤(6)中,所述的碳纳米纤维膜的加入量为10~30mg每20mL反应溶液,溶剂热反应的温度为200~240℃,时间为10~20h。
本发明所制备的二硫化钨/碳纳米纤维复合材料具有大量暴露的活性位点、丰富的孔隙和良好的导电性能,可作为电化学催化剂、超级电容器电极材料以及锂离子电池等新能源器件的电极材料。
本发明涉及了四个基本原理:
(1)选择聚丙烯腈作为原料来制备电纺碳纳米纤维是因为其良好的可纺性和较高的碳产率;
(2)对聚丙烯腈纳米纤维的预氧化处理可将聚丙烯腈的线性分子结构转化为稳定的梯形结构,有利于纤维在碳化过程中保持稳定的形态;
(3)溶剂热反应过程中,四硫代钨酸铵发生以下反应(NH4)2WS4→2NH3+H2S+S+WS2
(4)电纺碳纳米纤维的高孔隙率和大比表面积为二硫化钨纳米片的生长提供了大量的成核位点,极大地分散了其均匀生长。
有益效果
(1)本发明制备过程简单,易于操作,所用的聚合物及试剂均环境友好。
(2)设计思路巧妙,以自支撑的电纺碳纳米纤维膜为生长模板,成功解决了纳米材料易团聚的难题;碳纳米纤维基底还增强了复合材料的导电性。
(3)所制备的二硫化钨/碳纳米纤维复合材料适合应用于电化学催化剂、超级电容器电极材料以及锂离子电池等新能源器件的电极材料。
(4)选择聚丙烯腈作为原料来制备电纺碳纳米纤维是因为其良好的可纺性和较高的碳产率
(5)电纺碳纳米纤维的高孔隙率和大比表面积为二硫化钨纳米片的生长提供了大量的成核位点,极大地分散了其均匀生长。
附图说明
图1是碳纳米纤维与四硫代钨酸铵在不同质量比时所得二硫化钨/碳纳米纤维复合材料的电镜照片:(A)1:2,(B)1:6,(C)1:10,(D)未加碳纳米纤维。
图2是碳纳米纤维与四硫代钨酸铵在质量比为1:6时所得二硫化钨/碳纳米纤维复合材料的低倍电镜图。
图3是碳纳米纤维与四硫代钨酸铵在质量比为1:6时所得二硫化钨/碳纳米纤维复合材料的元素分布图。
图4是碳纳米纤维与四硫代钨酸铵在质量比为1:6时所得二硫化钨/碳纳米纤维复合材料的X射线衍射谱图。
具体实施方式
下面结合具体实例,进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明做各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
本实施例包括以下步骤:
称取1.2g聚丙烯腈粉末加入10mL DMF中,在85℃油浴加热下高速搅拌8h后得到澄清的聚丙烯腈溶液。对上述聚丙烯腈溶液进行静电纺丝,设置纺丝参数为:流速0.28mm/min,电压为22kV,接收距离为18cm。制备的聚丙烯腈纳米纤维最终以纳米纤维膜的形式沉积在滚筒接收器上,将纤维膜揭下并置于真空干燥箱内保存24h以除去残余DMF。干燥的聚丙烯腈纤维膜固定在平板上并转移至程序控温烘箱中进行预氧化处理,以1.5℃/min的升温速率从室温升至250℃并保持2.5h,然后自然降至室温,预氧化处理后的聚丙烯腈纤维膜颜色变为深棕色。将预氧化的聚丙烯腈纳米纤维置于程序控温管式炉中进行高温碳化处理,以2.5℃/min的升温速率从50℃升温至400℃,保温60min,接着以10℃/min的速率从400℃升温至800℃,保温60min后自然降温,得到黑色的电纺碳纳米纤维。
称取60mg四硫代钨酸铵粉末,加入30mL DMF中,超声并搅拌之后得到浓度为2mg/mL的四硫代钨酸铵溶液。称取30mg碳纳米纤维膜加入上述溶液中,一并转移至聚四氟乙烯内衬的反应釜中,在200℃烘箱中反应12h后取出,将产物进行清洗、烘干,便得到二硫化钨/碳纳米纤维复合膜材料。
使用场发射扫描电子显微镜(FESEM)、能谱仪(EDS)和X射线衍射(XRD)来表征本发明所获得的二硫化钨/碳纳米纤维复合材料的形貌与组成,其结果如下:
(1)随着溶剂热反应中碳纳米纤维与四硫代钨酸铵在质量比由1:2、1:6、1:10逐渐增大时,二硫化钨纳米片在碳纳米纤维上的生长呈现出逐渐密集的趋势,且在两者质量比为1:6时二硫化钨的分布最为均匀,纳米片呈竖立姿态均匀生长在每根碳纳米纤维上。质量比为1:10时二硫化钨会出现较严重的团聚,参见图1(A-C)以及图2。
(2)当不使用碳纳米纤维作为生长模板时,二硫化钨呈现出球状的团聚体形态,说明了碳纳米纤维在分散二硫化钨均匀生长中起到的重要作用,参见图1(D)。
(3)溶剂热反应中碳纳米纤维与四硫代钨酸铵在质量比为1:6时,所得的二硫化钨/碳纳米纤维复合材料其表面有着明显的碳、钨、硫的元素分布,参见图3。
(4)溶剂热反应中碳纳米纤维与四硫代钨酸铵在质量比为1:6时,所得的二硫化钨/碳纳米纤维复合材料的X射线衍射谱图中显示出归属于二硫化钨的一系列特征峰:(002)、(004)、(100)、(105)、(110),参见图4。
实施例2
本实施例包括以下步骤:
制备电纺碳纳米纤维膜的步骤同实施例1。
分别称取180mg、300mg四硫代钨酸铵加入30mL DMF中,超声并搅拌之后配置浓度分别为6mg/mL和10mg/mL的四硫代钨酸铵溶液。称取两块30mg碳纳米纤维膜分别加入上述两种溶液中,转移至聚四氟乙烯内衬的反应釜中,在200℃烘箱中反应12h后取出,将产物进行清洗、烘干,便得到上载量更大的两种二硫化钨/碳纳米纤维复合膜材料。
实施例3
本实施例包括以下步骤:
称取60mg四硫代钨酸铵粉末,加入30mL DMF中,超声并搅拌之后得到浓度为2mg/mL的四硫代钨酸铵溶液。将上述溶液转移至聚四氟乙烯内衬的反应釜中,在200℃烘箱中反应12h后取出,将产物进行离心、清洗、烘干,便得到纯的二硫化钨。

Claims (9)

1.一种二硫化钨/碳纳米纤维复合材料,其特征在于,所述二硫化钨/碳纳米纤维复合材料是由二硫化钨纳米片与碳纳米纤维复合而成的,所述二硫化钨纳米片呈竖立姿态均匀生长在碳纳米纤维上。
2.如权利要求1所述的一种二硫化钨/碳纳米纤维复合材料的制备方法,其特征在于,步骤如下:
(1)在高速搅拌和油浴条件下,配制聚丙烯腈纺丝溶液;
(2)采用静电纺丝法制备聚丙烯腈纳米纤维;
(3)通过程序控温,对步骤(2)的聚丙烯腈纳米纤维进行预氧化处理;
(4)通过阶段升温,对步骤(3)的预氧化处理的聚丙烯腈纳米纤维进行碳化处理,得到碳纳米纤维膜;
(5)将一定量的二硫化钨前驱体化合物加入溶剂中,超声得到二硫化钨前驱体溶液;
(6)将步骤(4)得到的碳纳米纤维膜浸入步骤(5)得到的二硫化钨前驱体溶液中,接着置于高压反应釜中,在一定温度下进行溶剂热反应,得到二硫化钨/碳纳米纤维复合材料。
3.如权利要求2所述的一种二硫化钨/碳纳米纤维复合材料的制备方法,其特征在于,步骤(1)中所述的配制聚丙烯腈纺丝溶液的溶剂为N,N-二甲基甲酰胺,聚丙烯腈纺丝溶液的浓度为0.1~0.2g/mL;所述油浴的温度为75~85℃。
4.如权利要求2所述的一种二硫化钨/碳纳米纤维复合材料的制备方法,其特征在于,步骤(2)中,所述的静电纺丝法的工艺参数为:流速0.15~0.35mm/min,电压为17~25kV,接收距离为12~20cm。
5.如权利要求2所述的一种二硫化钨/碳纳米纤维复合材料的制备方法,其特征在于,步骤(3)中,所述的程序控温,气氛为空气,升温速率为1~2℃/min,平台温度为230~300℃,保持2~4h,然后自然降温。
6.如权利要求2所述的一种二硫化钨/碳纳米纤维复合材料的制备方法,其特征在于,步骤(4)中,所使用的阶段升温程序为:以2~5℃/min的速率从50℃升温至400~500℃,保温50~80min;以5~10℃/min的速率从400~500℃升温至800~1000℃,保温50~80min;自然降温至室温。
7.如权利要求2所述的一种二硫化钨/碳纳米纤维复合材料的制备方法,其特征在于,步骤(5)中,所述的二硫化钨前驱体化合物为四硫代钨酸铵,溶剂为N,N-二甲基甲酰胺,前驱体溶液浓度为2~5mg/mL。
8.如权利要求2所述的一种二硫化钨/碳纳米纤维复合材料的制备方法,其特征在于,步骤(6)中,所述的碳纳米纤维膜的加入量为10~30mg每20mL反应溶液,溶剂热反应的温度为200~240℃,时间为10~20h。
9.权利要求2~8任意一项所述的方法制备的二硫化钨/碳纳米纤维复合材料的用途,其特征在于,所述二硫化钨/碳纳米纤维复合材料用作电化学催化剂、超级电容器电极材料以及锂离子电池的电极材料。
CN201710254952.XA 2017-04-19 2017-04-19 一种二硫化钨/碳纳米纤维复合材料及其制备方法和用途 Expired - Fee Related CN107034663B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710254952.XA CN107034663B (zh) 2017-04-19 2017-04-19 一种二硫化钨/碳纳米纤维复合材料及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710254952.XA CN107034663B (zh) 2017-04-19 2017-04-19 一种二硫化钨/碳纳米纤维复合材料及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN107034663A true CN107034663A (zh) 2017-08-11
CN107034663B CN107034663B (zh) 2019-10-01

Family

ID=59535987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710254952.XA Expired - Fee Related CN107034663B (zh) 2017-04-19 2017-04-19 一种二硫化钨/碳纳米纤维复合材料及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN107034663B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107511149A (zh) * 2017-09-05 2017-12-26 江西师范大学 一种Ag‑碳纳米纤维复合材料及其制备方法和应用
CN108766776A (zh) * 2018-05-31 2018-11-06 上海电力学院 一种适用于碳布基柔性超级电容器电极材料的制备方法
CN108760847A (zh) * 2018-06-07 2018-11-06 海南师范大学 一种静电纺丝与高温碳化法制备氧化锌-碳纳米纤维复合材料及其修饰电极的方法
CN109110817A (zh) * 2018-09-17 2019-01-01 哈尔滨理工大学 一种二硫化钨纳米球/碳纳米纤维复合材料的制备及应用
CN109647440A (zh) * 2019-01-24 2019-04-19 青岛科技大学 一种秸秆的利用方法
CN111463443A (zh) * 2020-03-28 2020-07-28 旌德君创科技发展有限公司 一种Pt-WS2@碳布复合催化剂及其制备方法
CN112837941A (zh) * 2021-01-13 2021-05-25 巫国家 一种活性碳纤维多孔二硫化钨纳米复合材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105322147A (zh) * 2015-09-28 2016-02-10 复旦大学 一种二硫化钨/碳纳米纤维/石墨烯复合材料及其制备方法
CN105600745A (zh) * 2016-03-18 2016-05-25 复旦大学 一种二硫化钴/碳纳米纤维复合材料及其制备方法
CN106115786A (zh) * 2016-06-27 2016-11-16 中国地质大学(北京) 一种二硫化钨纳米片管状聚集体及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105322147A (zh) * 2015-09-28 2016-02-10 复旦大学 一种二硫化钨/碳纳米纤维/石墨烯复合材料及其制备方法
CN105600745A (zh) * 2016-03-18 2016-05-25 复旦大学 一种二硫化钴/碳纳米纤维复合材料及其制备方法
CN106115786A (zh) * 2016-06-27 2016-11-16 中国地质大学(北京) 一种二硫化钨纳米片管状聚集体及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TIANYU LEI等: ""Multi-Functional Layered WS2 Nanosheets for Enhancing the Performance of Lithium–Sulfur Batteries"", 《ADVANCED ENERGY MATERIALS》 *
邹美玲: ""硫属化钨/超细碳纤维杂化材料的制备及其析氢性能"", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107511149A (zh) * 2017-09-05 2017-12-26 江西师范大学 一种Ag‑碳纳米纤维复合材料及其制备方法和应用
CN107511149B (zh) * 2017-09-05 2020-02-11 江西师范大学 一种Ag-碳纳米纤维复合材料及其制备方法和应用
CN108766776A (zh) * 2018-05-31 2018-11-06 上海电力学院 一种适用于碳布基柔性超级电容器电极材料的制备方法
CN108766776B (zh) * 2018-05-31 2020-07-17 上海电力学院 一种适用于碳布基柔性超级电容器电极材料的制备方法
CN108760847A (zh) * 2018-06-07 2018-11-06 海南师范大学 一种静电纺丝与高温碳化法制备氧化锌-碳纳米纤维复合材料及其修饰电极的方法
CN109110817A (zh) * 2018-09-17 2019-01-01 哈尔滨理工大学 一种二硫化钨纳米球/碳纳米纤维复合材料的制备及应用
CN109647440A (zh) * 2019-01-24 2019-04-19 青岛科技大学 一种秸秆的利用方法
CN109647440B (zh) * 2019-01-24 2021-07-20 青岛科技大学 一种秸秆的利用方法
CN111463443A (zh) * 2020-03-28 2020-07-28 旌德君创科技发展有限公司 一种Pt-WS2@碳布复合催化剂及其制备方法
CN112837941A (zh) * 2021-01-13 2021-05-25 巫国家 一种活性碳纤维多孔二硫化钨纳米复合材料的制备方法

Also Published As

Publication number Publication date
CN107034663B (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
CN107034663B (zh) 一种二硫化钨/碳纳米纤维复合材料及其制备方法和用途
Xue et al. Template-free, self-doped approach to porous carbon spheres with high N/O contents for high-performance supercapacitors
Ji et al. Design and synthesis of porous channel-rich carbon nanofibers for self-standing oxygen reduction reaction and hydrogen evolution reaction bifunctional catalysts in alkaline medium
CN105597791B (zh) 一种硒化钼/多孔碳纳米纤维复合材料及其制备方法和应用
Yuan et al. Chitosan-derived hybrid porous carbon with the novel tangerine pith-like surface as supercapacitor electrode
Huang et al. Enhanced electrolyte retention capability of separator for lithium-ion battery constructed by decorating ZIF-67 on bacterial cellulose nanofiber
Yan et al. Regulating the specific surface area and porous structure of carbon for high performance supercapacitors
Ye et al. Heteroatom-doped porous carbon derived from zeolite imidazole framework/polymer core-shell fibers as an electrode material for supercapacitor
Zhang et al. Sb-doped SnO2 nanoparticle-modified carbon paper as a superior electrode for a vanadium redox flow battery
CN105322146A (zh) 一种硒化钼/碳纳米纤维/石墨烯复合材料及其制备方法
CN105712303B (zh) 一种硒化钼纳米片/纤维基碳气凝胶复合材料及其制备方法
Tamilselvi et al. Reduced graphene oxide (rGO): supported NiO, Co 3 O 4 and NiCo 2 O 4 hybrid composite on carbon cloth (CC)—bi-functional electrode/catalyst for energy storage and conversion devices
CN109167077B (zh) 一种磷掺杂多孔碳氧还原催化剂及其制备方法和应用
CN108492996A (zh) 一种氟、氮共掺杂的类石墨烯片层材料的制备方法
Wang et al. Preparation of hierarchical micro-meso porous carbon and carbon nanofiber from polyacrylonitrile/polysulfone polymer via one-step carbonization for supercapacitor electrodes
Xia et al. Hierarchical porous carbon nanofibers with tunable geometries and porous structures fabricated by a scalable electrospinning technique
Chen et al. Facile synthesis of nitrogen-containing porous carbon as electrode materials for superior-performance electrical double-layer capacitors
Liu et al. Electrospun Fe2C-loaded carbon nanofibers as efficient electrocatalysts for oxygen reduction reaction
CN103977825A (zh) 一种磷掺杂多孔碳催化剂及制备方法
Hong et al. In Situ chemical synthesis of MnO 2/HMCNT nanocomposite with a uniquely developed three-dimensional open porous architecture for supercapacitors
Zhang et al. Preparation and electrochemical properties of MOF-derived nitrogen self-doped porous carbon
Shenggao et al. Synergistic effects of microstructures and active nitrogen content on the oxygen reduction reaction performance of nitrogen-doped carbon nanofibers via KOH activation heat treatment
CN114031079A (zh) 碳化钼碳纳米纤维复合材料及其制备方法和应用
CN106098396A (zh) 一种用于超级电容器的垂直孔碳复合薄膜及其制备方法
Jiang et al. Marine biomass–derived nitrogen-doped carbon microsphere electrocatalyst for vanadium redox flow battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191001

Termination date: 20200419