CN107032785B - 一种窄带隙高极性的无铅铁电陶瓷及其制备方法 - Google Patents

一种窄带隙高极性的无铅铁电陶瓷及其制备方法 Download PDF

Info

Publication number
CN107032785B
CN107032785B CN201710330701.5A CN201710330701A CN107032785B CN 107032785 B CN107032785 B CN 107032785B CN 201710330701 A CN201710330701 A CN 201710330701A CN 107032785 B CN107032785 B CN 107032785B
Authority
CN
China
Prior art keywords
hours
babio
tio
drying
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710330701.5A
Other languages
English (en)
Other versions
CN107032785A (zh
Inventor
周昌荣
黎清宁
许积文
曾卫东
杨玲
袁昌来
陈国华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201710330701.5A priority Critical patent/CN107032785B/zh
Publication of CN107032785A publication Critical patent/CN107032785A/zh
Application granted granted Critical
Publication of CN107032785B publication Critical patent/CN107032785B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种可调窄带隙高极性无铅铁电陶瓷,组成通式为:(1‑x)Ba0.9Ca0.1TiO3xBaBiO3+0.06Bi2WO6;其中x表示摩尔分数,0.01≤x≤0.3。这种陶瓷用多步合成方法,结合球磨混合添加分散剂以及等静压与微波烧结制备方法制备而成,该系列产品具有可调窄带隙Eg=1.2‑2.2eV,高的稳定性,优良的铁电性能P max=21‑35μC/cm2,绿色环保。

Description

一种窄带隙高极性的无铅铁电陶瓷及其制备方法
技术领域
本发明涉及光电应用的无铅铁电陶瓷材料,具体是一种ABO3型钙钛矿结构的具有窄带隙高极性的无铅铁电陶瓷及其制备方法。
背景技术
光伏发电技术可以将能量来源巨大的太阳辐射光能直接转换为清洁的电能,是新能源中最具开发规模和商业化发展前景的发电方式。光伏发电是利用半导体界面p-n结的光生伏特效应,将光能直接转变为电能的一种技术。光伏效应依赖于两个基本过程来实现:光生载流子的产生与内建电场的作用下光生电子和空穴分离和收集,形成向特定方向流动的净电流。其中最核心的问题之一是通过光伏材料吸收太阳光子分离电子-空穴产生光伏效应,但是传统p-n 结分离电子-空穴的光伏器件的能量转换效率受到限制。为了避免上述缺陷、获得更高的能量转换效率,需要开发无结场结构光伏器件。
铁电材料是指在居里温度以下具有铁电自发极化的功能材料,铁电极化所形成的极化电场可有效地分离光激发下产生的电子—空穴对,可产生明显的光伏效应。然而铁电材料是宽带隙的绝缘体,无法有效地吸收太阳光中的可见光,光电转换效率低。为了提高铁电材料的光电转换效率,必须同时具有窄带隙、高极性。但是,传统的钙钛矿结构氧化物铁电材料很难同时具有铁电性与半导特性。因此开发高极性铁电半导体材料是目前的研究热点。
发明内容
本发明的目的是正对现有技术的不足,而提供一种窄带隙高极性的无铅铁电陶瓷及其制备方法。这种陶瓷材料可有效吸收太阳光能量,同时保持合理内建电场,获得光生电子和空穴分离、收集,具有高的稳定性、优良的铁电性能P max=21-35μC/cm2,绿色环保,内建电场可有效分离电子与空穴,具有优良的光电转换效率。
实现本发明目的的技术方案是:
一种窄带隙高极性的无铅铁电陶瓷,组成通式为:
(1-x) Ba0.9Ca0.1TiO3-xBaBiO3+0.06Bi2WO6;其中x表示摩尔分数,0.01≤x≤0.3。
上述窄带隙高极性的无铅铁电陶瓷的制备方法,该方法为多步合成,球磨混合添加分散剂以及等静压与微波烧结结合,具体包括如下步骤:
(1) 第一步以分析纯BaCO3、CaCO3、TiO2为原料按照化学计量式Ba0.9Ca0.1TO3配料;以无水乙醇为介质球磨12小时,干燥,再在高铝坩埚中于1200℃保温6小时预合成主晶相Ba0.9Ca0.1TiO3
(2) 第二步以分析纯BaCO3、Bi2O3为原料按照化学计量式BaBiO3配料;以无水乙醇为介质球磨12小时,干燥,再在高铝坩埚中于760℃保温3小时预合成主晶相BaBiO3
(3) 第三步以分析纯WO3、Bi2O3为原料按照化学计量式Bi2WO6配料;以无水乙醇为介质球磨12小时,干燥,再在高铝坩埚中于600℃保温2小时预合成主晶相Bi2WO6
(4) 第四步以合成好的Ba0.9Ca0.1TiO3、BaBiO3、Bi2WO6为原料按照化学计量式(1-x) Ba0.9Ca0.1TiO3-xBaBiO3+0.06Bi2WO6,其中x表示摩尔分数(0.01≤x≤0.3)配料;以无水乙醇为介质,加入甲基戊醇分散剂球磨,干燥,再在高铝坩埚中于980℃保温3小时预合成固溶体;
(5) 预合成的固溶体以无水乙醇为介质,加入甲基戊醇分散剂球磨12小时,干燥,加入5%的PVA造粒,150Mpa等静压成型;
(6) 在950-1000℃微波烧结0.3小时,粉碎,粉碎后的粉末测量吸收光谱;
(7) 烧结的样品加工成两面光滑,直径12.0mm,厚度0.5mm的薄片,两面镀银电极即成,测量铁电性能。
这种方法通过Bi2WO6的辅助烧结与提供A位Bi离子协同作用,结合BaBiO3组成中B位Bi的变价,在B位出现相同元素的不同价态Bi3+/ Bi5+,诱导出现特殊的同素异价B位离子有序态,产生电子跳跃导电机制,由于这种电子跳跃是局域束缚状态,产生类似极化子的导电与极化双重作用,结合多步合成主晶相,微波短时烧结,形成多层次成分/结构梯度层结构,一方面降低带隙,同时保持铁电高极性。
这种方法所得陶瓷材料可有效吸收太阳光能量,同时保持合理内建电场,获得光生电子和空穴分离、收集,具有高的稳定性、优良的铁电性能P max=21-35μC/cm2,绿色环保。
具体实施方式:
下面结合具体实施例对本发明内容作进一步的阐述,但不是对本发明的限定。
实施例1:
制备成分为:(1-x) Ba0.9Ca0.1TiO3-xBaBiO3+0.06Bi2WO6 的陶瓷材料,其中x=0.015。
制备方法包括如下步骤:
(1)第一步以分析纯BaCO3、CaCO3、TiO2为原料,按照化学计量式Ba0.9Ca0.1TO3配料;以无水乙醇为介质球磨12小时,干燥,再在高铝坩埚中于1200℃保温6小时预合成主晶相Ba0.9Ca0.1TiO3
(2)第二步以分析纯BaCO3、Bi2O3为原料按照化学计量式BaBiO3配料;以无水乙醇为介质球磨12小时,干燥,再在高铝坩埚中于760℃保温3小时预合成主晶相BaBiO3
(3)第三步以分析纯WO3、Bi2O3为原料按照化学计量式Bi2WO6配料;以无水乙醇为介质球磨12h,干燥,再在高铝坩埚中于600℃保温2小时预合成主晶相Bi2WO6
(4)第四步以合成好的Ba0.9Ca0.1TiO3、BaBiO3、Bi2WO6为原料,按照化学计量式(1-x) Ba0.9Ca0.1TiO3-xBaBiO3+0.06Bi2WO6;其中x表示摩尔分数(x=0.015)配料;以无水乙醇为介质,加入甲基戊醇分散剂球磨,干燥,再在高铝坩埚中于980℃保温3小时预合成固溶体;
(5)预合成的固溶体以无水乙醇为介质,加入甲基戊醇分散剂球磨12h,干燥,加入5%的PVA造粒,150Mpa等静压成型;
(6)在990℃微波烧结0.3小时,粉碎,粉碎后的粉末测量吸收光谱;
(7)烧结的样品加工成两面光滑,直径12.0mm,厚度0.5mm的薄片,两面镀银电极即成,镀银电极可测量铁电性能。
性能测量结果如表1所示。
实施例2:
制备成分为:(1-x) Ba0.9Ca0.1TiO3-xBaBiO3+0.06Bi2WO6的陶瓷材料,其中x=0.025。
制备方法包括如下步骤:
(1)第一步以分析纯BaCO3、CaCO3、TiO2为原料按照化学计量式Ba0.9Ca0.1TO3配料;以无水乙醇为介质球磨12小时,干燥,再在高铝坩埚中于1200℃保温6小时预合成主晶相Ba0.9Ca0.1TiO3
(2)第二步以分析纯BaCO3、Bi2O3为原料按照化学计量式BaBiO3配料;以无水乙醇为介质球磨12小时,干燥,再在高铝坩埚中于760℃保温3小时预合成主晶相BaBiO3
(3)第三步以分析纯WO3、Bi2O3为原料按照化学计量式Bi2WO6配料;以无水乙醇为介质球磨12h,干燥,再在高铝坩埚中于600℃保温2小时预合成主晶相Bi2WO6
(4)第四步以合成好的Ba0.9Ca0.1TiO3、BaBiO3、Bi2WO6为原料按照化学计量式(1-x)Ba0.9Ca0.1TiO3-xBaBiO3+0.06Bi2WO6;其中x表示摩尔分数(x=0.25)配料;以无水乙醇为介质,加入甲基戊醇分散剂球磨,干燥,再在高铝坩埚中于980℃保温3小时预合成固溶体;
(5)预合成的固溶体以无水乙醇为介质,加入甲基戊醇分散剂球磨12h,干燥,加入5%的PVA造粒,150Mpa等静压成型;
(6)在950℃微波烧结0.3小时,粉碎,粉碎后的粉末可测量吸收光谱;
(7)烧结的样品加工成两面光滑,直径12.0mm,厚度0.5mm的薄片,两面镀银电极即成,镀银电极可测量铁电性能。
性能测量结果如表1所示。
实施例3:
制备成分为:(1-x) Ba0.9Ca0.1TiO3-xBaBiO3+0.06Bi2WO6的陶瓷材料,其中x=0.15。
制备方法包括如下步骤:
(1)第一步以分析纯BaCO3、CaCO3、TiO2为原料按照化学计量式Ba0.9Ca0.1TO3配料;以无水乙醇为介质球磨12小时,干燥,再在高铝坩埚中于1200℃保温6小时预合成主晶相Ba0.9Ca0.1TiO3
(2)第二步以分析纯BaCO3、Bi2O3为原料按照化学计量式BaBiO3配料;以无水乙醇为介质球磨12小时,干燥,再在高铝坩埚中于760℃保温3小时预合成主晶相BaBiO3
(3)第三步以分析纯WO3、Bi2O3为原料按照化学计量式Bi2WO6配料;以无水乙醇为介质球磨12h,干燥,再在高铝坩埚中于600℃保温2小时预合成主晶相Bi2WO6
(4)第四步以合成好的Ba0.9Ca0.1TiO3、BaBiO3、Bi2WO6为原料按照化学计量式(1-x)Ba0.9Ca0.1TiO3-xBaBiO3+0.06Bi2WO6;其中x表示摩尔分数(x=0.15)配料;以无水乙醇为介质,加入甲基戊醇分散剂球磨,干燥,再在高铝坩埚中于980℃保温3小时预合成固溶体;
(5)预合成的固溶体以无水乙醇为介质,加入甲基戊醇分散剂球磨12h,干燥,加入5%的PVA造粒,150Mpa等静压成型;
(6)在970℃微波烧结0.3小时,粉碎,粉碎后的粉末可测量吸收光谱;
(7)烧结的样品加工成两面光滑,直径12.0mm,厚度0.5mm的薄片,两面镀银电极即成,镀银电极可测量铁电性能。
性能测量结果如表1所示。
实施例4:
制备成分为:(1-x) Ba0.9Ca0.1TiO3-xBaBiO3+0.06Bi2WO6的陶瓷材料,其中x=0.2。
制备方法包括如下步骤:
(1)第一步以分析纯BaCO3、CaCO3、TiO2为原料按照化学计量式Ba0.9Ca0.1TO3配料;以无水乙醇为介质球磨12小时,干燥,再在高铝坩埚中于1200℃保温6小时预合成主晶相Ba0.9Ca0.1TiO3
(2)第二步以分析纯BaCO3、Bi2O3为原料按照化学计量式BaBiO3配料;以无水乙醇为介质球磨12小时,干燥,再在高铝坩埚中于760℃保温3小时预合成主晶相BaBiO3
(3)第三步以分析纯WO3、Bi2O3为原料按照化学计量式Bi2WO6配料;以无水乙醇为介质球磨12h,干燥,再在高铝坩埚中于600℃保温2小时预合成主晶相Bi2WO6
(4)第四步以合成好的Ba0.9Ca0.1TiO3、BaBiO3、Bi2WO6为原料按照化学计量式(1-x)Ba0.9Ca0.1TiO3-xBaBiO3+0.06Bi2WO6;其中x表示摩尔分数(x=0.015)配料;以无水乙醇为介质,加入甲基戊醇分散剂球磨,干燥,再在高铝坩埚中于980℃保温3小时预合成固溶体;
(5)预合成的固溶体以无水乙醇为介质,加入甲基戊醇分散剂球磨12h,干燥,加入5%的PVA造粒,150Mpa等静压成型;
(6)在990℃微波烧结0.3小时,粉碎,粉碎后的粉末可测量吸收光谱;
(7)烧结的样品加工成两面光滑,直径12.0mm,厚度0.5mm的薄片,两面镀银电极即成,镀银电极可测量铁电性能。
性能测量结果如表1所示。
表1 :(1-x) Ba0.9Ca0.1TiO3-xBaBiO3+0.06Bi2WO6陶瓷的带隙Eg与铁电最大极性P max (为了对比,表中列出了Ba0.9Ca0.1TiO3陶瓷的带隙Eg与铁电最大极性P max)
成分<i>x</i> 带 隙<i>E</i>g(eV) 最大极性<i>P</i><sub>max</sub>(μC/cm<sup>2</sup>) 最大极性电场<i>E</i>(kV/cm) 实施例
Ba<sub>0.9</sub>Ca<sub>0.1</sub>TO<sub>3</sub> 3.1 28 25 对比
0.015 2.1 35 20 1
0.25 1.2 23 18 2
0.15 1.5 26 21 3
0.2 1.8 29 23 4
通过以上给出的实施例,可以进一步的清楚的了解本发明的内容,但他们不是对本发明的限定。

Claims (2)

1.一种窄带隙高极性的无铅铁电陶瓷,其特征在于,组成通式为:
(1-x) Ba0.9Ca0.1TiO3-xBaBiO3+0.06Bi2WO6;其中x表示摩尔分数,0.01≤x≤0.3。
2.如权利要求1所述的窄带隙高极性的无铅铁电陶瓷的制备方法,其特征是多步合成,球磨混合添加分散剂以及等静压与微波烧结结合,具体包括如下步骤:
(1)第一步以分析纯BaCO3、CaCO3、TiO2为原料按照化学计量式Ba0.9Ca0.1TO3配料;以无水乙醇为介质球磨12小时,干燥,再在高铝坩埚中于1200℃保温6小时预合成主晶相Ba0.9Ca0.1TiO3
(2)第二步以分析纯BaCO3、Bi2O3为原料按照化学计量式BaBiO3配料;以无水乙醇为介质球磨12小时,干燥,再在高铝坩埚中于760℃保温3小时预合成主晶相BaBiO3
(3)第三步以分析纯WO3、Bi2O3为原料按照化学计量式Bi2WO6配料;以无水乙醇为介质球磨12小时,干燥,再在高铝坩埚中于600℃保温2小时预合成主晶相Bi2WO6
(4)第四步以合成好的Ba0.9Ca0.1TiO3、BaBiO3、Bi2WO6为原料按照化学计量式(1-x)Ba0.9Ca0.1TiO3-xBaBiO3+0.06Bi2WO6,其中x表示摩尔分数(0.01≤x≤0.3)配料;以无水乙醇为介质,加入甲基戊醇分散剂球磨,干燥,再在高铝坩埚中于980℃保温3小时预合成固溶体;
(5)预合成的固溶体以无水乙醇为介质,加入甲基戊醇分散剂球磨12小时,干燥,加入5%的PVA造粒,150Mpa等静压成型;
(6)在950-1000℃微波烧结0.3小时,粉碎;
(7)烧结的样品加工成两面光滑,直径12.0mm,厚度0.5mm的薄片,两面镀银电极即成。
CN201710330701.5A 2017-05-11 2017-05-11 一种窄带隙高极性的无铅铁电陶瓷及其制备方法 Expired - Fee Related CN107032785B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710330701.5A CN107032785B (zh) 2017-05-11 2017-05-11 一种窄带隙高极性的无铅铁电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710330701.5A CN107032785B (zh) 2017-05-11 2017-05-11 一种窄带隙高极性的无铅铁电陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN107032785A CN107032785A (zh) 2017-08-11
CN107032785B true CN107032785B (zh) 2020-04-17

Family

ID=59538080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710330701.5A Expired - Fee Related CN107032785B (zh) 2017-05-11 2017-05-11 一种窄带隙高极性的无铅铁电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN107032785B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563364B1 (ko) * 2002-12-20 2006-03-22 요업기술원 무연(無鉛)계 압전 세라믹스 및 그 제조방법
CN103086712A (zh) * 2012-12-14 2013-05-08 广西新未来信息产业股份有限公司 一种Bi2WO6改性的钛酸钡基无铅正温度系数电阻材料及其制备方法
CN103787652A (zh) * 2013-12-17 2014-05-14 江苏省陶瓷研究所有限公司 一种新型复相的ntc热敏电阻材料及其制备方法
CN104557024A (zh) * 2014-12-18 2015-04-29 天津大学 高居里温度无铅钛酸钡基ptcr陶瓷材料及制备和应用
CN105884350A (zh) * 2016-04-08 2016-08-24 江苏大学 一种锆钛酸钡钙无铅压电陶瓷材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563364B1 (ko) * 2002-12-20 2006-03-22 요업기술원 무연(無鉛)계 압전 세라믹스 및 그 제조방법
CN103086712A (zh) * 2012-12-14 2013-05-08 广西新未来信息产业股份有限公司 一种Bi2WO6改性的钛酸钡基无铅正温度系数电阻材料及其制备方法
CN103787652A (zh) * 2013-12-17 2014-05-14 江苏省陶瓷研究所有限公司 一种新型复相的ntc热敏电阻材料及其制备方法
CN104557024A (zh) * 2014-12-18 2015-04-29 天津大学 高居里温度无铅钛酸钡基ptcr陶瓷材料及制备和应用
CN105884350A (zh) * 2016-04-08 2016-08-24 江苏大学 一种锆钛酸钡钙无铅压电陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN107032785A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
Lin et al. Effects of annealing temperature on the microstructure, optical, ferroelectric and photovoltaic properties of BiFeO3 thin films prepared by sol–gel method
Prochowicz et al. Mechanosynthesis of pure phase mixed-cation MA x FA 1− x PbI 3 hybrid perovskites: photovoltaic performance and electrochemical properties
CN103237773B (zh) 氧化物烧结体及其制造方法、溅射靶材、氧化物透明导电膜及其制造方法、和太阳能电池
KR20130083651A (ko) 글래스 프릿, 이를 포함하는 도전성 페이스트 조성물 및 태양전지
WO2014097963A1 (ja) 酸化亜鉛系透明導電膜
Zhao et al. First-principles study on the doping effects of nitrogen on the electronic structure and optical properties of Cu 2 O
Pang et al. Anomalous photovoltaic effect in Bi (Ni2/3Ta1/3) O3‐PbTiO3 ferroelectric solid solutions
CN102976748B (zh) 高致密钛酸锶钡陶瓷及其制备方法
CN102515848A (zh) 一种电子封装陶瓷用黑色色料及其制备方法
CN107032785B (zh) 一种窄带隙高极性的无铅铁电陶瓷及其制备方法
CN106699177B (zh) 一种具有高发电特性的无铅压电能量收集材料及其制备方法
CN101695997A (zh) 铜锌锡硒光电材料的制备方法
Lan et al. Semiconducting tailoring and electrical properties of A-site Co substituted Bi0· 5Na0· 5TiO3-δ ferroelectric ceramics
CN114956804B (zh) 一种钙钛矿型高熵陶瓷材料及其制备方法
EP2921467B1 (en) Oxide sinter, sputtering target using same, and oxide film
CN111217604A (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷及制备方法
CN113004038B (zh) 一种高击穿场强、高光电流密度的铌酸钠基无铅铁电陶瓷材料及其制备方法
KR20110055138A (ko) 태양전지용 광전변환막의 제조방법
CN103613381A (zh) 一种n型钆掺杂钛酸锶氧化物热电陶瓷的制备方法
CN107043253B (zh) 一种高极性无铅铁电半导体陶瓷及制备方法
KR101559942B1 (ko) 칼슘-바나듐계 페롭스카이트 단일상 합성에 의한 열전물성과 전기전도도 향상방법
CN112851336A (zh) 一种钛酸铋钠铋层状压电陶瓷的制备方法
CN110422882A (zh) 一种新型铁电材料及其制备方法
KR101509946B1 (ko) 태양전지의 광흡수층 소재 및 그 제조방법
CN104218143A (zh) 一种BiAgSeTe基热电材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200417