CN107029755A - 一种异质结光催化剂及其制备方法 - Google Patents

一种异质结光催化剂及其制备方法 Download PDF

Info

Publication number
CN107029755A
CN107029755A CN201710246895.0A CN201710246895A CN107029755A CN 107029755 A CN107029755 A CN 107029755A CN 201710246895 A CN201710246895 A CN 201710246895A CN 107029755 A CN107029755 A CN 107029755A
Authority
CN
China
Prior art keywords
sns
silver
beaker
nanometer sheet
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710246895.0A
Other languages
English (en)
Other versions
CN107029755B (zh
Inventor
刘勇平
耿鹏
吕慧丹
王吉祥
林剑飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201710246895.0A priority Critical patent/CN107029755B/zh
Publication of CN107029755A publication Critical patent/CN107029755A/zh
Application granted granted Critical
Publication of CN107029755B publication Critical patent/CN107029755B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Ag2S/SnS2异质结光催化剂及其制备方法。首先通过水热法合成SnS2纳米片,再在含有SnS2纳米片的水溶液中加入银离子,使其与二硫化锡发生离子交换反应,得到Ag2S/SnS2异质结复合光催化剂。Ag2S纳米颗粒与SnS2纳米片的结合明显地增强了它们的光电性能与光催化性能,Ag2S(8wt%)/SnS2复合物,光生电密度是的SnS22倍。异质结光催化降解甲基橙的活性显然优于Ag2S和SnS2纳米片。该方法操作简便、条件温和、产率高,所制备的SnS2超薄纳米片具有很高的光催化活性。

Description

一种异质结光催化剂及其制备方法
技术领域
本发明所属技术领域为光催化、光电化学材料技术领域,特别涉及二硫化锡异质结光催化剂开发及制备方法。
背景技术
SnS2作为一种具有良好光电性的半导体材料,其直接禁带宽度为1.91~2.4eV,而且二维层状的SnS2具有光学性质各向异性和优越的化学稳定性。二维SnS2纳米片因其层间距比较大且有晶格空位,SnS2还被用作光催化剂,分解有机污染物或废水中的重金属离子等,主要是因为高吸光性、无毒、抗氧化性与化学稳定性高。虽然具有窄带隙能的SnS2可以高效利用可见光,光催化活性高,被视为一种极具应用潜力的光催化剂;但是,SnS2的光催化活性依然不够高,且自身易发生分解。另外,光催化反应后,SnS2的再次重复收集比较困难。构建含有SnS2的异质结复合半导体材料,是一种有效提高SnS2光催化活性的途径,便于解决其重复使用性的问题。
硫化银是一种窄带隙的直接半导体,而且其带隙值约为0.9~1.1eV,吸光系数特别高,被应用于太阳能电池、光电导元件、光电设备的光敏薄膜、光敏涂料和红外探测器等。特别地,Ag2S因其带隙比较窄而具有非常宽的吸收光谱,使其成为一种高效的半导体光催化剂材料。所以本专利中将Ag2S作为助催化剂与SnS2构建异质结催化剂,以提高SnS2的光催化活性及稳定性。希望其突出的性能可以在光催化领域有实际的应用,有效解决现在社会环境污染问题。
发明内容
本发明的目的是提供一种Ag2S/SnS2异质结光催化剂及其制备方法,该方法操作简便、条件温和、产率高,所制备的SnS2超薄纳米片具有很高的光催化活性。
具体步骤为:
(1)将0.1~10mmol四氯化锡和0.2~20mmol硫源加入到40mL的蒸馏水中,四氯化锡:硫源摩尔比为1:2,混合均匀后加入到容积为50mL的聚四氟乙烯反应釜中,110~180℃条件下反应0.5~5天,自然冷却至室温后分别用蒸馏水和无水乙醇各离心清洗2~3次,60℃真空干燥,得到SnS2纳米片;
(2)将步骤(1)合成的制的0.5g SnS2纳米片,投入500mL的烧杯中,量取300mL蒸馏水加入烧杯中,超声分散3小时,形成均匀的黄色分散液;随后量取0.01mol/L的Na2S溶液1~10mL加入烧杯中,搅拌10分钟后,再量取0.1mol/L的银盐溶液0.3~20mL,慢慢地逐滴加入烧杯中,30分钟滴加完,仍然搅拌3小时,最后30℃恒温2小时,得到褐色沉淀物,即为Ag2S/SnS2异质结光催化剂。;
所述硫源为硫代乙酰胺(TAA)、硫粉、硫化钠、硫化钾、硫化铵、硫脲和硫代硫酸钠中的一种。
所述的银盐为硝酸银、硫酸银、醋酸银、氟化银、苯甲酸银中的一种
所述化学试剂纯度均为化学纯以上纯度。
本发明Ag2S/SnS2复合物展示出了优异的吸光性能和很强的光电化学响应,光生电流密度为是纯SnS2的2倍;同时其光催化活性显著增强,尤其是,Ag2S(8wt%)/SnS2复合物样品光催化降解甲基橙平均速度0.0440mg/min,20min甲基橙分解率达到99.9%。经过5次循环重复稳定性实验后,仍然保持很高的活性,具有很强的稳定性。因此,Ag2S/SnS2作为一种可见光响应材料,在环境污染如降解染料、光催化处理污水,太阳能电池等方面具有很大的应用潜能。
附图说明
图1为本发明实施例1制备的不同组成粉末XRD谱。
图2为本发明实施例1制备(a,b)SnS2纳米片的TEM图,(c,d)Ag2S/SnS2复合物的TEM图。
图3为本发明实施例1制备的SnS2纳米片、Ag2S和Ag2S/SnS2复合物的光生电流曲线。。
图4为本发明实施例1制备的(a)不同粉末样品光催化降解甲基橙,(b)样品粉末光催化降解甲基橙的动力学线性拟合曲线。
具体实施方式
实施例1:
(1)将4mmol四氯化锡和8mmol硫代乙酰胺加入到40mL的蒸馏水中,,混合均匀后加入到容积为50mL的聚四氟乙烯反应釜中,180℃条件下反应24小时,自然冷却至室温后分别用蒸馏水和无水乙醇各离心清洗2~3次,60℃真空干燥,得到SnS2纳米片;
(2)将步骤(1)合成的制的0.5g SnS2纳米片,投入500mL的烧杯中,量取300mL蒸馏水加入烧杯中,超声分散3小时,形成均匀的黄色分散液;随后量取0.01mol/L的Na2S溶液3mL加入烧杯中,搅拌10分钟后,再量取0.1mol/L的硝酸银溶液4mL,慢慢地逐滴加入烧杯中,30分钟滴加完,仍然搅拌3小时,最后30℃恒温2小时,得到褐色沉淀物,即为Ag2S/SnS2异质结光催化剂。
所制备的SnS2薄纳米片分散液,通过旋涂法在ITO表面做成光电极,制备电极作为工作电极(面积为1cm2),辅助电极为铂电极,饱和甘汞电极(SCE)作为参比电极,0.5mol/LNa2SO4为支持电解质溶液,在太阳光模拟器(一个太阳的光强)下测试光电化学性能,从图3可以看出Ag2S/SnS2异质结的光电流高于SnS2、Ag2S的光电流。
实施例2:
(1)将2mmol四氯化锡和4mmol硫化钠加入到40mL的蒸馏水中,,混合均匀后加入到容积为50mL的聚四氟乙烯反应釜中,180℃条件下反应24小时,自然冷却至室温后分别用蒸馏水和无水乙醇各离心清洗2~3次,60℃真空干燥,得到SnS2纳米片;
(2)将步骤(1)合成的制的0.5g SnS2纳米片,投入500mL的烧杯中,量取300mL蒸馏水加入烧杯中,超声分散3小时,形成均匀的黄色分散液;随后量取0.01mol/L的Na2S溶液3mL加入烧杯中,搅拌10分钟后,再量取0.1mol/L的醋酸银溶液1mL,慢慢地逐滴加入烧杯中,30分钟滴加完,仍然搅拌3小时,最后30℃恒温2小时,得到褐色沉淀物,即为Ag2S/SnS2异质结光催化剂。
实施例3:
(1)将10mmol四氯化锡和20mmol硫脲加入到40mL的蒸馏水中,,混合均匀后加入到容积为50mL的聚四氟乙烯反应釜中,180℃条件下反应24小时,自然冷却至室温后分别用蒸馏水和无水乙醇各离心清洗2~3次,60℃真空干燥,得到SnS2纳米片;
(2)将步骤(1)合成的制的0.5g SnS2纳米片,投入500mL的烧杯中,量取300mL蒸馏水加入烧杯中,超声分散3小时,形成均匀的黄色分散液;随后量取0.01mol/L的Na2S溶液3mL加入烧杯中,搅拌10分钟后,再量取0.1mol/L的苯甲酸银银溶液4mL,慢慢地逐滴加入烧杯中,30分钟滴加完,仍然搅拌3小时,最后30℃恒温2小时,得到褐色沉淀物,即为Ag2S/SnS2异质结光催化剂。
以上实施例所述化学试剂纯度均为化学纯。

Claims (3)

1.一种Ag2S/SnS2异质结光催化剂,摩尔比组成为SnS2 85~99.5%,Ag2S0.5~15%。
2.一种Ag2S/SnS2异质结光催化剂的制备方法,其特征在于具体步骤为:
(1)将0.1~10mmol四氯化锡和0.2~20mmol硫源加入到40mL的蒸馏水中,四氯化锡:硫源摩尔比为1:2,混合均匀后加入到容积为50mL的聚四氟乙烯反应釜中,110~180℃条件下反应0.5~5天,自然冷却至室温后分别用蒸馏水和无水乙醇各离心清洗2~3次,60℃真空干燥,得到SnS2纳米片;
(2)将步骤(1)合成的制的0.5g SnS2纳米片,投入500mL的烧杯中,量取300mL蒸馏水加入烧杯中,超声分散3小时,形成均匀的黄色分散液;随后量取0.01mol/L的Na2S溶液1~10mL加入烧杯中,搅拌10分钟后,再量取0.1mol/L的银盐溶液0.3~20mL,慢慢地逐滴加入烧杯中,30分钟滴加完,仍然搅拌3小时,最后30℃恒温2小时,得到褐色沉淀物,即为Ag2S/SnS2异质结光催化剂。
所述化学试剂纯度均为化学纯以上纯度。
3.根据权利要求1所述的一种制备SnS2超薄纳米片的方法,其特征在于:步骤(1)中硫源为硫代乙酰胺(TAA)、硫粉、硫化钠、硫化钾、硫化铵、硫脲、硫代硫酸钠中的一种。
步骤(2)中银盐为硝酸银、硫酸银、醋酸银、氟化银、苯甲酸银中的一种。
CN201710246895.0A 2017-04-16 2017-04-16 一种异质结光催化剂及其制备方法 Active CN107029755B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710246895.0A CN107029755B (zh) 2017-04-16 2017-04-16 一种异质结光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710246895.0A CN107029755B (zh) 2017-04-16 2017-04-16 一种异质结光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN107029755A true CN107029755A (zh) 2017-08-11
CN107029755B CN107029755B (zh) 2019-07-23

Family

ID=59535422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710246895.0A Active CN107029755B (zh) 2017-04-16 2017-04-16 一种异质结光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN107029755B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109046384A (zh) * 2018-07-17 2018-12-21 杭州电子科技大学 一种三维球状In2S3-SnS2复合物的制备方法
CN109985638A (zh) * 2019-04-17 2019-07-09 南昌航空大学 一种具有可见光响应的层状贴合的球形硫化锌/二硫化锡核壳异质结光催化剂的方法
CN112619669A (zh) * 2020-12-20 2021-04-09 桂林理工大学 一种镍离子掺杂的氧化锌/硫化镉高性能分解水产氢光催化剂及制备方法
CN113753942A (zh) * 2021-08-25 2021-12-07 天津大学 过渡金属掺杂的二硫化锡纳米花及其制备方法
CN115121264A (zh) * 2022-07-11 2022-09-30 合肥工业大学 一种水溶性银锡硫纳米晶光催化剂的室温制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102764652A (zh) * 2012-07-31 2012-11-07 西北工业大学 花状氧化锡/银异质结材料的制备方法
CN103586051A (zh) * 2013-11-28 2014-02-19 中国石油大学(华东) 一种复合金属硫化物光催化剂及其制备方法和应用
JP2014129190A (ja) * 2012-12-28 2014-07-10 Nagoya Univ 半導体ナノ粒子、半導体ナノ粒子担持電極及び半導体ナノ粒子の製法
CN104874408A (zh) * 2015-06-15 2015-09-02 桂林理工大学 一种二硫化锡超薄纳米片光催化剂的制备方法
CN105688945A (zh) * 2016-03-22 2016-06-22 福州大学 MoS2纳米片/CdS纳米线核壳结构复合光催化剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102764652A (zh) * 2012-07-31 2012-11-07 西北工业大学 花状氧化锡/银异质结材料的制备方法
JP2014129190A (ja) * 2012-12-28 2014-07-10 Nagoya Univ 半導体ナノ粒子、半導体ナノ粒子担持電極及び半導体ナノ粒子の製法
CN103586051A (zh) * 2013-11-28 2014-02-19 中国石油大学(华东) 一种复合金属硫化物光催化剂及其制备方法和应用
CN104874408A (zh) * 2015-06-15 2015-09-02 桂林理工大学 一种二硫化锡超薄纳米片光催化剂的制备方法
CN105688945A (zh) * 2016-03-22 2016-06-22 福州大学 MoS2纳米片/CdS纳米线核壳结构复合光催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOMIN GAO ET AL.,: ""Facile fabrication of Bi2S3/SnS2 heterojunction photocatalysts with efficient photocatalytic activity under visible light"", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109046384A (zh) * 2018-07-17 2018-12-21 杭州电子科技大学 一种三维球状In2S3-SnS2复合物的制备方法
CN109985638A (zh) * 2019-04-17 2019-07-09 南昌航空大学 一种具有可见光响应的层状贴合的球形硫化锌/二硫化锡核壳异质结光催化剂的方法
CN112619669A (zh) * 2020-12-20 2021-04-09 桂林理工大学 一种镍离子掺杂的氧化锌/硫化镉高性能分解水产氢光催化剂及制备方法
CN112619669B (zh) * 2020-12-20 2022-06-17 桂林理工大学 一种镍离子掺杂的氧化锌/硫化镉高性能分解水产氢光催化剂及制备方法
CN113753942A (zh) * 2021-08-25 2021-12-07 天津大学 过渡金属掺杂的二硫化锡纳米花及其制备方法
CN115121264A (zh) * 2022-07-11 2022-09-30 合肥工业大学 一种水溶性银锡硫纳米晶光催化剂的室温制备方法

Also Published As

Publication number Publication date
CN107029755B (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
CN107029755B (zh) 一种异质结光催化剂及其制备方法
Trang et al. In situ charge transfer at the Ag@ ZnO photoelectrochemical interface toward the high photocatalytic performance of H2 evolution and RhB degradation
Sahu et al. Two-dimensional CuO-ZnO nanohybrids with enhanced photocatalytic performance for removal of pollutants
Sun et al. Decoration of TiO2 nanotube arrays by graphitic-C3N4 quantum dots with improved photoelectrocatalytic performance
Gomathisankar et al. Photocatalytic hydrogen production with CuS/ZnO from aqueous Na2S+ Na2SO3 solution
Wang et al. Visible-light-responsive TiO2-coated ZnO: I nanorod array films with enhanced photoelectrochemical and photocatalytic performance
Quyen et al. Enhanced the visible light photocatalytic decomposition of antibiotic pollutant in wastewater by using Cu doped WO3
Li et al. Carbon dots decorated three-dimensionally ordered macroporous bismuth-doped titanium dioxide with efficient charge separation for high performance photocatalysis
Hammouche et al. Structural and morphological optimization of Ni doped ZnO decorated silicon nanowires for photocatalytic degradation of methylene blue
Yang et al. In situ growth of flower sphere Bi2WO6/Bi-MOF heterojunction with enhanced photocatalytic degradation of pollutants: DFT calculation and mechanism
Deng et al. Fabrication of p-NiO/n-TiO2 nano-tube arrays photoelectrode and its enhanced photocatalytic performance for degradation of 4-chlorphenol
Rao et al. Gram-scale synthesis of ZnS/NiO core-shell hierarchical nanostructures and their enhanced H2 production in crude glycerol and sulphide wastewater
CN103506142A (zh) 一种二硫化钼/磷酸银复合可见光光催化材料及其制备方法
Zhao et al. One-pot synthesis of flower-like SnS2/SnO2 heterojunction with enhanced visible light photocatalytic performance
Zhang et al. Design of a novel CuBi2O4/CdMoO4 heterojunctions with nano-microsphere structure: Synthesis and photocatalytic degradation mechanism
Oh et al. Significant impact of Pd nanoparticle and CdS nanolayer of Pd@ CdS@ ZnO core-shell nanorods on enhancing catalytic, photoelectrochemical and photocurrent generation activity
Chauhan et al. Enhancement strategies for ZnSe based photocatalysts: Application to environmental remediation and energy conversion
Wang et al. Novel core-shell SnIn4S8@ Bi2MoO6 heterojunction with highly-enhanced photocatalytic activity for visible light-driven Cr (VI) reduction
Ubaidullah et al. Photocatalytic CO2 reduction and pesticide degradation over g-C3N4/Ce2S3 heterojunction
Dong et al. Ingenious design of ternary hollow nanosphere with shell hierarchical tandem heterojunctions toward optimized Visible-light photocatalytic reduction of U (VI)
CN105126844A (zh) 一种二硫化钼/钒酸银可见光复合光催化剂及其制备方法
Mirzaei et al. Black TiO2 nanotube Array/BiVO4 heterojunction photocatalysts for tetracycline removal with high solution detoxification efficiency
CN106994355A (zh) 一种石墨烯量子点/SnS2纳米片复合光催化剂的制备方法
Kumaravel et al. Fabrication of Ag/WO3/g-C3N4 composites for the photocatalytic degradation of harmful dyes
Koyyada et al. Enhanced solar-driven photocatalytic performance of a ternary composite of SnO 2 quantum dots//AgVO 3 nanoribbons//gC 3 N 4 nanosheets (0D/1D/2D) structures for hydrogen production and dye degradation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant