CN107022106A - 一种多维度纳米粒子修饰的超疏水吸油泡沫材料及其制备方法 - Google Patents

一种多维度纳米粒子修饰的超疏水吸油泡沫材料及其制备方法 Download PDF

Info

Publication number
CN107022106A
CN107022106A CN201710176409.2A CN201710176409A CN107022106A CN 107022106 A CN107022106 A CN 107022106A CN 201710176409 A CN201710176409 A CN 201710176409A CN 107022106 A CN107022106 A CN 107022106A
Authority
CN
China
Prior art keywords
particle
nano
foamed material
super
various dimensions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710176409.2A
Other languages
English (en)
Other versions
CN107022106B (zh
Inventor
米皓阳
经鑫
况太荣
刘通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710176409.2A priority Critical patent/CN107022106B/zh
Publication of CN107022106A publication Critical patent/CN107022106A/zh
Application granted granted Critical
Publication of CN107022106B publication Critical patent/CN107022106B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2361/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)

Abstract

本发明公开了一种多维度纳米粒子修饰的超疏水吸油泡沫材料及其制备方法。该方法采用双官能团的化学改性方法将具有不同维度的纳米粒子通过共价键接枝于三维泡沫材料表面,并进一步通过简单的硅烷偶联剂疏水改性,获得具有超疏水性能的吸油泡沫材料。本发明方法通过化学接枝有效提高粒子粘附性,且可通过反复接枝实现纳米粒子的多层修饰,调控材料表面粗糙度。本发明的超疏水性吸油泡沫材料克服了粒子尺度单一、与基体粘附性差的缺陷,且制备工艺简单,成本低,适合规模化生产。

Description

一种多维度纳米粒子修饰的超疏水吸油泡沫材料及其制备 方法
技术领域
本发明涉及表面功能化纳米复合材料技术领域,特别涉及多维度纳米粒子修饰的超疏水吸油泡沫材料。
背景技术
近年来,海上石油泄漏,有机溶剂污染造成了对水资源的严重破坏,开发高效实用、低成本可回收的超疏水吸油泡沫材料受到了越来越多的重视。超疏水吸油材料所运用的原理是油比水的表面张力低,当材料表面的粗糙度足够高、表面能足够低时,可使水在材料表面保持非浸润状态而使油呈浸润状态,从而通过毛细作用将油吸入泡沫材料内部。因此,提高材料的表面粗糙度、降低其表面能是获得超疏水吸油泡沫材料的两个途径。
目前文献、专利报道中已有许多基于弹性泡沫材料表面改性而获得的超疏水吸油材料。然而大部分研究多采用单一粒子、或单一改性粒子来对泡沫材料进行修饰,选用粒子多为纳米球状氧化硅或氧化钛。也有通过复合碳材料改性制备吸油泡沫的研究,例如使用石墨烯、碳纳米管等。这些选用的纳米粒子具有不同的维度:零维球状、一维管状、二维片状。若能将具有不同维度的纳米粒子结合起来对泡沫材料进行改性则可更高效地提高材料的表面粗糙度。
另外,在泡沫材料表面改性方面面临的一个最大难题就是纳米粒子与基体材料的粘附性差。多数的报道中都通过采用喷涂或浸泡的方法使粒子附着于材料表面,但两者之间缺乏化学连接,因而长期使用易导致性能降低及粒子泄漏从而造成二次污染。有研究采用商业胶水或多巴胺基体改性的方法来增强其与粒子的粘附性,然而该方法过程复杂且粘附性(尤其是长期粘附性)仍不是很理想。因此,开发一种可直接通过共价键将多维度纳米粒子接枝于泡沫基体材料表面的改性方法具有重要意义。
事实上大部分纳米粒子本身并不具备疏水性能,有些甚至是亲水粒子,例如:氧化硅和氧化钛。因此,用做疏水材料改性时常常需要先对纳米粒子进行改性,不同的长碳链硅烷偶联剂或含氟硅烷偶联剂经常被用来改性纳米粒子并降低其表面能,然而改性后的粒子更难粘附于材料表面。因此,开发具有反应活性能与泡沫基体紧密连接,又可以疏水改性的纳米粒子具有重要意义和应用价值。
发明内容
针对现有技术吸油泡沫材料中存在的改性粒子尺度单一、粒子与泡沫基体缺乏化学连接等问题,本发明提供一种多维度纳米粒子修饰的超疏水吸油泡沫材料。
本发明还提供所述一种多维度纳米粒子修饰的超疏水吸油泡沫材料的制备方法。
本发明通过如下技术方案实现。
一种多维度纳米粒子修饰的超疏水吸油泡沫材料的制备方法,包括如下步骤:
(1)将零维的球状纳米粒子、一维的棒状或管状纳米粒子及二维的片状纳米粒子混合装入干燥的烧瓶中,加入无水溶剂,密封并超声分散,得到多维度纳米粒子混合液;
(2)将聚氨酯或三聚氰胺泡沫在乙醇溶液中清洗后并干燥,浸入含有二异氰酸酯的甲苯溶液中,密封并搅拌,得到改性的泡沫材料;
(3)将得到的改性的泡沫材料取出并迅速浸入步骤(1)制备的多维度纳米粒子混合液中,密封并搅拌,得到表面接枝纳米粒子的泡沫材料;
(4)将表面接枝纳米粒子的泡沫材料在乙醇溶液中清洗并干燥后,进行硅烷偶联剂改性,在纳米粒子表面接枝疏水基团,得到所述多维度纳米粒子修饰的超疏水吸油泡沫材料。
进一步地,步骤(1)中,所述零维的球状纳米粒子、一维的棒状或管状纳米粒子及二维的片状纳米粒子均具有易与异氰酸酯反应的羟基、氨基或羧基。
进一步地,步骤(1)中,所述零维的球状纳米粒子包括二氧化硅、二氧化钛或羟基磷灰石。
进一步地,步骤(1)中,所述一维的棒状或管状纳米粒子包括纤维素晶体、碳纳米管或埃洛石纳米管。
进一步地,步骤(1)中,所述二维的片状纳米粒子包括纳米粘土、纳米蒙脱土、氧化石墨烯。
进一步地,步骤(1)中,所述零维的球状纳米粒子、一维的棒状或管状纳米粒子及二维的片状纳米粒子的质量比为10~1:10~1:10~1。
进一步地,步骤(1)中,所述无水溶剂为适合纳米粒子分散且不与异氰酸酯反应的极性溶剂,包括二甲基甲酰胺或二甲亚砜。
进一步地,步骤(1)中,所述超声分散的时间为1~2h。
进一步地,步骤(1)中,所述多维度纳米粒子混合液的质量浓度为1%~5%,不同的粒子比例及溶液浓度将对制品的疏水性能产生一定影响。
进一步地,步骤(2)中,所述含有二异氰酸酯的甲苯溶液中,二异氰酸酯的浓度为10wt%。
进一步地,步骤(2)中,所述二异氰酸酯包括甲苯二异氰酸酯、异佛尔酮二异氰酸酯、二环己基甲烷二异氰酸酯、二苯基甲烷二异氰酸酯或六亚甲基二异氰酸酯。
进一步地,步骤(2)、(3)中,所述密封并搅拌是在70~90℃下搅拌1~3h。
进一步地,步骤(2)、(4)中,所述乙醇溶液的浓度为70~75vol%。
进一步地,步骤(4)中,所述硅烷偶联剂改性采取的方法包括溶液法或气相沉积法。
进一步地,步骤(4)中,所述硅烷偶联剂包括正癸基三甲氧基硅烷、正癸基三乙氧基硅烷、正癸基三氯硅烷、正辛基三甲氧基硅烷、正辛基三乙氧基硅烷、正辛基三氯硅烷、十二烷基三甲氧基硅烷、十二烷基三乙氧基硅烷、十二烷基三氯硅烷、十七氟癸基三甲氧基硅烷、十七氟癸基三乙氧基硅烷、十七氟癸基三氯硅烷、十三氟辛基三甲氧基硅烷、十三氟辛基三乙氧基硅烷、十三氟癸基三氯硅烷、全氟十二烷基三甲氧基硅烷、全氟十二烷基三乙氧基硅烷、全氟十二烷基三氯硅烷或三氟丙基三甲氧基硅烷。
进一步地,重复步骤(2)、(3)的操作1~3次,获得具有多层多维度纳米粒子改性层的泡沫材料;对泡沫材料进行多层改性具有增加粒子粘附、提高表面粗糙度的优点,但是同时也增大了改性泡沫的质量和制备成本,优选为1~3层。
由上述任一项所述制备方法制得的一种多维度纳米粒子修饰的超疏水吸油泡沫材料。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明方法采用双官能团的化学改性方法将具有不同维度的纳米粒子通过共价键接枝于三维泡沫材料表面,大幅提升了粒子的稳定性,使材料表面具备层级结构;并进一步通过简单的硅烷偶联剂疏水改性,获得具有超疏水性能的吸油泡沫材料;
(2)本发明方法通过化学接枝有效提高粒子粘附性,且可通过反复接枝实现纳米粒子的多层修饰,调控材料表面粗糙度;
(3)本发明的超疏水性吸油泡沫材料克服了粒子尺度单一、与基体粘附性差的缺陷,且制备工艺简单,成本低,适合规模化生产。
附图说明
图1为实施例1中制备的二氧化硅/纳米纤维素/纳米粘土修饰、正辛基三甲氧基硅烷改性的聚氨酯泡沫材料的X射线光电子能谱图;
图2为实施例1中制备的二氧化硅/纳米纤维素/纳米粘土修饰、正辛基三甲氧基硅烷改性的聚氨酯泡沫材料的扫描电子显微镜图;
图3为实施例1中制备的二氧化硅/纳米纤维素/纳米粘土修饰、正辛基三甲氧基硅烷改性的聚氨酯泡沫材料对不同有机溶剂和油类吸附率的测试结果图;
图4为实施例2中制备的二氧化硅钛/纳米碳管/氧化石墨烯修饰、十二烷基三乙氧基硅烷改性的三聚氰胺泡沫材料的X射线光电子能谱图;
图5为实施例2中制备的二氧化硅钛/纳米碳管/氧化石墨烯修饰、十二烷基三乙氧基硅烷改性的三聚氰胺泡沫材料的扫描电子显微镜图;
图6为实施例3中制备的二氧化硅钛/埃洛石/氧化石墨烯修饰、正癸基三乙氧基硅烷改性的聚氨酯泡沫材料对不同有机溶剂和油类吸附率的测试结果图;
图7为实施例4中制备的一层、二层和三层二氧化钛/纳米纤维素/纳米粘土修饰、十二烷基三甲氧基硅烷改性的三聚氰胺泡沫材料对不同化学试剂的吸附率测试结果对比图;
图8为实施例4中制备的一层、二层和三层二氧化钛/纳米纤维素/纳米粘土修饰、十二烷基三甲氧基硅烷改性的三聚氰胺泡沫材料的水接触角测试结果对比图。
具体实施方式
以下结合具体实施例对本发明作进一步阐述,但本发明不限于以下实施例。
实施例1
(1)分别称取二氧化硅100mg、纳米纤维素10 mg以及纳米粘土10 mg,装入干燥烧瓶中,加入无水二甲基甲酰胺,烧瓶密封超声1小时,使纳米粒子充分分散,配制质量浓度为5%的二氧化硅/纳米纤维素/纳米粘土纳米粒子混合液;
(2)将聚氨酯泡沫在70vol%的乙醇溶液中清洗并干燥,以清洁表面;将干燥后的泡沫材料浸入含有10wt%甲苯二异氰酸酯的甲苯溶液中,密封并在70℃下搅拌反应1小时,得到改性的泡沫材料;
(3)将改性后的泡沫材料取出迅速浸入步骤(1)中制备的二氧化硅/纳米纤维素/纳米粘土纳米粒子混合液中,密封并在70℃下搅拌反应3小时,得到表面接枝纳米粒子的泡沫材料;
(4)将表面接枝纳米粒子的泡沫材料在70vol%的乙醇溶液中清洗并干燥;配制200毫升95vol%的乙醇溶液(通过醋酸调节pH为4.5),添加2wt%的正辛基三甲氧基硅烷(相对于乙醇溶液),将干燥后的泡沫材料浸入溶液中搅拌反应10min,取出样品在110℃下反应10min,得到二氧化硅/纳米纤维素/纳米粘土纳米粒子修饰、正辛基三甲氧基硅烷改性的超疏水吸油泡沫材料。
制备的超疏水吸油泡沫材料的X射线光电子能谱图如图1所示,结果显示了材料表面碳、氮、氧、硅元素的存在,说明了纳米粒子接枝于泡沫基体表面。
制备的超疏水吸油泡沫材料的表面形态扫描电子显微镜图如图2所示,由图2可知,材料进行一层粒子修饰,因而材料表面略显粗糙。
制备的超疏水吸油泡沫材料对不同有机溶剂和油类的吸收率测试结果图如图3所示,由图3可知,改性的泡沫材料对不同的油污和有机溶剂具有良好的吸收性能。
实施例2
(1)分别称取二氧化硅钛10mg、纳米碳管100 mg以及氧化石墨烯100 mg,装入干燥烧瓶中,加入无水二甲亚砜,烧瓶密封超声2小时,使纳米粒子充分分散,配制质量浓度为1%的二氧化钛/纳米碳管/氧化石墨烯纳米粒子混合液;
(2)将聚氨酯泡沫在70vol%的乙醇溶液中清洗并干燥,以清洁表面;将干燥后的泡沫材料浸入含有10wt%甲苯二异氰酸酯的甲苯溶液中,密封并在90℃下搅拌反应3小时,得到改性的泡沫材料;
(3)将改性后的泡沫材料取出迅速浸入步骤(1)中制备的二氧化钛/纳米碳管/氧化石墨烯纳米粒子混合液中,密封并在90℃下搅拌反应1小时,得到表面接枝纳米粒子的泡沫材料;
(4)重复步骤(2)与步骤(3)两次,以在泡沫表面接枝三层复合纳米粒子;
(5)将表面接枝纳米粒子的泡沫材料在72vol%的乙醇溶液中清洗并干燥;配制200毫升的95vol%的乙醇溶液(通过醋酸调节pH为4.5),添加2wt%的十二烷基三乙氧基硅烷(相对于乙醇溶液),将干燥后的泡沫材料浸入溶液中搅拌反应20min,取出样品在110℃下反应20min,得到二氧化钛/纳米碳管/氧化石墨烯纳米粒子修饰、十二烷基三乙氧基硅烷改性的超疏水吸油泡沫材料。
制备的超疏水吸油泡沫材料的X射线光电子能谱图如图4所示,结果显示了材料表面碳、氮、氧、钛元素的存在,说明了纳米粒子接枝于泡沫基体表面。
制备的超疏水吸油泡沫材料的表面形态扫描电子显微镜图如图5所示,材料进行三层粒子修饰,因而表面非常粗糙。
实施例3
(1)分别称取二氧化硅钛100mg、埃洛石50mg以及氧化石墨烯50mg,装入干燥烧瓶中,加入无水二甲亚砜,烧瓶密封超声1.5小时,使纳米粒子充分分散,配制质量浓度为3%的二氧化钛/埃洛石/氧化石墨烯纳米粒子混合液;
(2)将聚氨酯泡沫在70vol%的乙醇溶液中清洗并干燥,以清洁表面;将干燥后的泡沫材料浸入含有10wt%异佛尔酮二异氰酸酯的甲苯溶液中,密封并在80℃下搅拌反应2小时,得到改性的泡沫材料;
(3)将改性后的泡沫材料取出迅速浸入步骤(1)中制备的二氧化钛/埃洛石/氧化石墨烯纳米粒子混合液中,密封并在80℃下搅拌反应2小时,得到表面接枝纳米粒子的泡沫材料;
(4)重复步骤(2)与步骤(3),以在泡沫表面接枝两层复合纳米粒子;
(5)将表面接枝纳米粒子的泡沫材料在75vol%的乙醇溶液中清洗并干燥;配制200毫升的95%的乙醇溶液(通过醋酸调节pH为4.5),添加2wt%的正癸基三乙氧基硅烷(相对于乙醇溶液),将干燥后的泡沫材料浸入溶液中搅拌反应20min,取出样品在110℃下反应20min,得到二氧化钛/埃洛石/氧化石墨烯纳米粒子修饰、正癸基三乙氧基硅烷改性的超疏水吸油泡沫材料。
制备的超疏水吸油泡沫材料对不同有机溶剂及油类的吸附率测试结果图如图6所示,由图6可知,经过两层粒子改性的泡沫材料依然具有良好的油污吸收性能。
实施例4
(1)分别称取二氧化钛50mg、纳米纤维素50mg以及纳米粘土50mg,装入干燥烧瓶中,加入无水二甲亚砜,烧瓶密封超声2小时,使纳米粒子充分分散,配制质量浓度为2%的二氧化钛/纳米纤维素/纳米粘土纳米粒子混合液;
(2)将三聚氰胺泡沫在70vol%的乙醇溶液中清洗并干燥,以清洁表面;将干燥后的泡沫材料浸入含有10wt%甲苯二异氰酸酯的甲苯溶液中,密封并在80℃下搅拌反应3小时,得到改性的泡沫材料;
(3)将改性后的泡沫材料取出迅速浸入步骤(1)中制备的二氧化钛/纳米纤维素/纳米粘土纳米粒子混合液中,密封并在80℃下搅拌反应3小时,得到表面接枝纳米粒子的泡沫材料;
(4)分别重复步骤(2)与步骤(3)一次和两次,获得表面接枝一层、两层和三层复合纳米粒子的泡沫材料;
(5)将制备的表面接枝了一层、两层和三层纳米粒子的泡沫材料在70vol%乙醇溶液中清洗并干燥;配制200毫升的95vol%的乙醇溶液(通过醋酸调节pH为4.5),添加2wt%的十二烷基三甲氧基硅烷(相对于乙醇溶液),将干燥后的泡沫材料浸入溶液中搅拌反应20min,取出样品在110℃下反应20min,分别得到一层、两层和三层二氧化钛/纳米纤维素/纳米粘土纳米粒子修饰、十二烷基三甲氧基硅烷改性的超疏水吸油泡沫材料。
制备的的表面接枝了一层、两层和三层纳米粒子的泡沫材料对不同化学试剂吸附率测试结果对比图如图7所示;制备的的表面接枝了一层、两层和三层纳米粒子的泡沫材料的水接触角测试结果如图8所示;结果显示随着表面修饰层数增多,泡沫材料的质量增加,而吸附率有所降低;但是随着修饰层数的增多,泡沫材料的水接触明显提升,说明对油污的选择性吸收能力增强。

Claims (10)

1.一种多维度纳米粒子修饰的超疏水吸油泡沫材料的制备方法,其特征在于,包括如下步骤:
(1)将零维的球状纳米粒子、一维的棒状或管状纳米粒子及二维的片状纳米粒子混合装入干燥的烧瓶中,加入无水溶剂,密封并超声分散,得到多维度纳米粒子混合液;
(2)将聚氨酯或三聚氰胺泡沫在乙醇溶液中清洗后并干燥,浸入含有二异氰酸酯的甲苯溶液中,密封并搅拌,得到改性的泡沫材料;
(3)将得到的改性的泡沫材料取出并迅速浸入步骤(1)制备的多维度纳米粒子混合液中,密封并搅拌,得到表面接枝纳米粒子的泡沫材料;
(4)将表面接枝纳米粒子的泡沫材料在乙醇溶液中清洗并干燥后,进行硅烷偶联剂改性,在纳米粒子表面接枝疏水基团,得到所述多维度纳米粒子修饰的超疏水吸油泡沫材料。
2.根据权利要求1所述的一种多维度纳米粒子修饰的超疏水吸油泡沫材料的制备方法,其特征在于,步骤(1)中,所述的纳米粒子均具有易与异氰酸酯反应的羟基、氨基或羧基;所述零维的球状纳米粒子包括二氧化硅、二氧化钛或羟基磷灰石;所述一维的棒状或管状纳米粒子包括纤维素晶体、碳纳米管或埃洛石纳米管;所述二维的片状纳米粒子包括纳米粘土、纳米蒙脱土、氧化石墨烯;所述无水溶剂为适合纳米粒子分散且不与异氰酸酯反应的极性溶剂,包括二甲基甲酰胺或二甲亚砜。
3.根据权利要求1所述的一种多维度纳米粒子修饰的超疏水吸油泡沫材料的制备方法,其特征在于,步骤(1)中,所述零维的球状纳米粒子、一维的棒状或管状纳米粒子及二维的片状纳米粒子的质量比为10~1:10~1:10~1;所述超声分散的时间为1~2h;所述多维度纳米粒子混合液的质量浓度为1%~5%。
4.根据权利要求1所述的一种多维度纳米粒子修饰的超疏水吸油泡沫材料的制备方法,其特征在于,步骤(2)中,所述含有二异氰酸酯的甲苯溶液中,二异氰酸酯的浓度为10wt%。
5.根据权利要求1所述的一种多维度纳米粒子修饰的超疏水吸油泡沫材料的制备方法,其特征在于,步骤(2)中,所述二异氰酸酯包括甲苯二异氰酸酯、异佛尔酮二异氰酸酯、二环己基甲烷二异氰酸酯、二苯基甲烷二异氰酸酯或六亚甲基二异氰酸酯。
6.根据权利要求1所述的一种多维度纳米粒子修饰的超疏水吸油泡沫材料的制备方法,其特征在于,步骤(2)、(3)中,所述密封并搅拌是在70~90℃下搅拌1~3h。
7.根据权利要求1所述的一种多维度纳米粒子修饰的超疏水吸油泡沫材料的制备方法,其特征在于,步骤(2)、(4)中,所述乙醇溶液的浓度为70~75vol%。
8.根据权利要求1所述的一种多维度纳米粒子修饰的超疏水吸油泡沫材料的制备方法,其特征在于,步骤(4)中,所述硅烷偶联剂改性采取的方法包括溶液法或气相沉积法;所述硅烷偶联剂包括正癸基三甲氧基硅烷、正癸基三乙氧基硅烷、正癸基三氯硅烷、正辛基三甲氧基硅烷、正辛基三乙氧基硅烷、正辛基三氯硅烷、十二烷基三甲氧基硅烷、十二烷基三乙氧基硅烷、十二烷基三氯硅烷、十七氟癸基三甲氧基硅烷、十七氟癸基三乙氧基硅烷、十七氟癸基三氯硅烷、十三氟辛基三甲氧基硅烷、十三氟辛基三乙氧基硅烷、十三氟癸基三氯硅烷、全氟十二烷基三甲氧基硅烷、全氟十二烷基三乙氧基硅烷、全氟十二烷基三氯硅烷或三氟丙基三甲氧基硅烷。
9.根据权利要求1所述的一种多维度纳米粒子修饰的超疏水吸油泡沫材料的制备方法,其特征在于,重复步骤(2)、(3)的操作1~3次,获得具有多层多维度纳米粒子改性层的泡沫材料。
10.由权利要求1~9任一项所述制备方法制得的一种多维度纳米粒子修饰的超疏水吸油泡沫材料。
CN201710176409.2A 2017-03-23 2017-03-23 一种多维度纳米粒子修饰的超疏水吸油泡沫材料及其制备方法 Expired - Fee Related CN107022106B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710176409.2A CN107022106B (zh) 2017-03-23 2017-03-23 一种多维度纳米粒子修饰的超疏水吸油泡沫材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710176409.2A CN107022106B (zh) 2017-03-23 2017-03-23 一种多维度纳米粒子修饰的超疏水吸油泡沫材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107022106A true CN107022106A (zh) 2017-08-08
CN107022106B CN107022106B (zh) 2021-01-19

Family

ID=59526200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710176409.2A Expired - Fee Related CN107022106B (zh) 2017-03-23 2017-03-23 一种多维度纳米粒子修饰的超疏水吸油泡沫材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107022106B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107698732A (zh) * 2017-11-14 2018-02-16 东莞市鑫益电子科技有限公司 一种三维功能化聚氨酯材料的制备方法
CN108455576A (zh) * 2018-03-13 2018-08-28 西北大学 一种超疏水性辛基石墨烯泡沫及其制备方法和应用
CN108948720A (zh) * 2018-06-25 2018-12-07 董小琳 一种tpu透气膜的制备方法
CN109705393A (zh) * 2019-01-18 2019-05-03 常州乔尔塑料有限公司 一种超低吸水率脲醛泡沫材料及其制备方法
CN110183764A (zh) * 2019-06-29 2019-08-30 山东东宏管业股份有限公司 抗静电、自清洁的碳纳米管组合物及制备方法和应用
CN110591145A (zh) * 2019-10-14 2019-12-20 浙江大学 一种多次互贯穿网络结构纳米复合材料及其制备方法
CN110591146A (zh) * 2019-09-25 2019-12-20 南昌航空大学 一种利用牡蛎壳制备超疏水pdms/ha海绵的方法
CN111718580A (zh) * 2020-07-27 2020-09-29 中国人民解放军海军工程大学 邻苯二甲腈树脂复合材料及制备方法
CN114133487A (zh) * 2021-11-29 2022-03-04 宁波锋成先进能源材料研究院有限公司 改性纤维素基聚表剂、乳化降粘剂及其制备方法和在稠油降粘中的应用
CN114425269A (zh) * 2022-01-26 2022-05-03 武汉纺织大学 基于表面工程的高效油水分离复合泡沫及其制备方法
CN117903491A (zh) * 2024-03-13 2024-04-19 西南石油大学 一种苯并噁嗪改性超疏水型三聚氰胺泡沫及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415757A (zh) * 2006-03-28 2009-04-22 巴斯夫欧洲公司 疏水改性的三聚氰胺树脂泡沫
WO2010078649A3 (en) * 2009-01-08 2010-09-16 The University Of Western Ontario Self-cleaning coatings
WO2015162523A1 (en) * 2014-04-23 2015-10-29 Fondazione Filarete Per Le Bioscienze E L'innovazione Foamed polyurethane polymers for the regeneration of connective tissue
CN105170132A (zh) * 2015-07-24 2015-12-23 河海大学 聚氨酯海绵负载银石墨烯二氧化钛纳米粒子复合材料、制备方法及应用
CN105217603A (zh) * 2015-11-12 2016-01-06 中国科学院新疆理化技术研究所 一种碳纳米管泡沫材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415757A (zh) * 2006-03-28 2009-04-22 巴斯夫欧洲公司 疏水改性的三聚氰胺树脂泡沫
WO2010078649A3 (en) * 2009-01-08 2010-09-16 The University Of Western Ontario Self-cleaning coatings
WO2015162523A1 (en) * 2014-04-23 2015-10-29 Fondazione Filarete Per Le Bioscienze E L'innovazione Foamed polyurethane polymers for the regeneration of connective tissue
CN105170132A (zh) * 2015-07-24 2015-12-23 河海大学 聚氨酯海绵负载银石墨烯二氧化钛纳米粒子复合材料、制备方法及应用
CN105217603A (zh) * 2015-11-12 2016-01-06 中国科学院新疆理化技术研究所 一种碳纳米管泡沫材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘海东等: "石墨烯改性聚氨酯超疏水泡沫的制备与表征", 《高分子材料科学与工程》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107698732A (zh) * 2017-11-14 2018-02-16 东莞市鑫益电子科技有限公司 一种三维功能化聚氨酯材料的制备方法
CN108455576A (zh) * 2018-03-13 2018-08-28 西北大学 一种超疏水性辛基石墨烯泡沫及其制备方法和应用
CN108455576B (zh) * 2018-03-13 2021-05-25 西北大学 一种超疏水性辛基石墨烯泡沫及其制备方法和应用
CN108948720A (zh) * 2018-06-25 2018-12-07 董小琳 一种tpu透气膜的制备方法
CN109705393A (zh) * 2019-01-18 2019-05-03 常州乔尔塑料有限公司 一种超低吸水率脲醛泡沫材料及其制备方法
CN109705393B (zh) * 2019-01-18 2020-05-05 常州乔尔塑料有限公司 一种超低吸水率脲醛泡沫材料及其制备方法
CN110183764B (zh) * 2019-06-29 2022-02-18 山东东宏管业股份有限公司 抗静电、自清洁的碳纳米管管材的加工方法
CN110183764A (zh) * 2019-06-29 2019-08-30 山东东宏管业股份有限公司 抗静电、自清洁的碳纳米管组合物及制备方法和应用
CN110591146A (zh) * 2019-09-25 2019-12-20 南昌航空大学 一种利用牡蛎壳制备超疏水pdms/ha海绵的方法
CN110591146B (zh) * 2019-09-25 2021-08-27 南昌航空大学 一种利用牡蛎壳制备超疏水pdms/ha海绵的方法
CN110591145A (zh) * 2019-10-14 2019-12-20 浙江大学 一种多次互贯穿网络结构纳米复合材料及其制备方法
CN111718580A (zh) * 2020-07-27 2020-09-29 中国人民解放军海军工程大学 邻苯二甲腈树脂复合材料及制备方法
CN114133487A (zh) * 2021-11-29 2022-03-04 宁波锋成先进能源材料研究院有限公司 改性纤维素基聚表剂、乳化降粘剂及其制备方法和在稠油降粘中的应用
CN114425269A (zh) * 2022-01-26 2022-05-03 武汉纺织大学 基于表面工程的高效油水分离复合泡沫及其制备方法
CN114425269B (zh) * 2022-01-26 2023-12-22 武汉纺织大学 基于表面工程的高效油水分离复合泡沫及其制备方法
CN117903491A (zh) * 2024-03-13 2024-04-19 西南石油大学 一种苯并噁嗪改性超疏水型三聚氰胺泡沫及制备方法

Also Published As

Publication number Publication date
CN107022106B (zh) 2021-01-19

Similar Documents

Publication Publication Date Title
CN107022106A (zh) 一种多维度纳米粒子修饰的超疏水吸油泡沫材料及其制备方法
Zhou et al. One-pot synthesis of robust superhydrophobic, functionalized graphene/polyurethane sponge for effective continuous oil–water separation
Qiang et al. Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states
Yin et al. Functional and versatile colorful superhydrophobic nanocellulose-based membrane with high durability, high-efficiency oil/water separation and oil spill cleanup
Anjum et al. Fabrication of coral-reef structured nano silica for self-cleaning and super-hydrophobic textile applications
Lü et al. Constructing polyurethane sponge modified with silica/graphene oxide nanohybrids as a ternary sorbent
Zhao et al. Poly (dimethylsiloxane)/graphene oxide composite sponge: a robust and reusable adsorbent for efficient oil/water separation
CN107722343B (zh) 利用多巴胺和碳纳米管改性的超疏水密胺海绵的制备方法
Li et al. Facile fabrication of a robust superhydrophobic/superoleophilic sponge for selective oil absorption from oily water
CN111632581B (zh) 一种仿树莓状超疏水亲油棉纤维油水吸附/分离膜及其制备方法和应用
Zhang et al. Kapok fiber as a natural source for fabrication of oil absorbent
Yu et al. Biomimetic fabrication of superhydrophobic loofah sponge: robust for highly efficient oil–water separation in harsh environments
Cai et al. Fabrication of superhydrophobic wood surface with enhanced environmental adaptability through a solution-immersion process
CN108410005A (zh) 一种磁性超疏水海绵材料的制备方法
CN109261127A (zh) 一种无选择性疏油亲水材料及其制备方法和应用
CN104151828A (zh) 纳米二氧化硅包覆的多壁碳纳米管提高有机硅树脂耐热性的方法
Sang et al. Hybrid joining of polyamide and hydrogenated acrylonitrile butadiene rubber through heat-resistant functional layer of silane coupling agent
Davardoostmanesh et al. A mechanically flexible superhydrophobic rock wool modified with reduced graphene oxide‐chloroperene rubber for oil‐spill clean‐up
Yu et al. Modification of nanosilica particles with hydrophobic modifier bis [3-(triethoxysilyl) propyl] tetrasulfide by using micro-injection in aqueous solutions
CN103198886B (zh) 一种柔性基底表面透明导电薄膜的制备方法
CN108031448A (zh) 一种玉米蛋白基多孔疏水吸油材料的制备方法
Liu In situ formation of polymethylsiloxane nanofilaments on pristine cotton stalk with natural interconnected pores for rapid and recyclable organic solvents absorption
Zhang et al. Gecko foot-inspired reduced graphene oxide surface with multi-resistant, nonpolar/polar separation and reliable adhesion utility
Gu et al. Design and construction of fluorine-free, cost-effective and robust superhydrophobic coatings using nanosilica with highly covalently bonded octadecyl ligands
Zhong et al. Constructing efficient and recyclable composite absorbent based on the modification of polymer skeleton with in situ assembled mesoporous silica/graphene oxide nanohybrid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210119