CN107022100A - 用于粉末床熔融法的聚合物粉末 - Google Patents

用于粉末床熔融法的聚合物粉末 Download PDF

Info

Publication number
CN107022100A
CN107022100A CN201611145487.8A CN201611145487A CN107022100A CN 107022100 A CN107022100 A CN 107022100A CN 201611145487 A CN201611145487 A CN 201611145487A CN 107022100 A CN107022100 A CN 107022100A
Authority
CN
China
Prior art keywords
powder
polymer powder
polymer
lyophobic dust
bed fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611145487.8A
Other languages
English (en)
Other versions
CN107022100B (zh
Inventor
W.迪克曼
M.格雷贝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Publication of CN107022100A publication Critical patent/CN107022100A/zh
Application granted granted Critical
Publication of CN107022100B publication Critical patent/CN107022100B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • C08J7/065Low-molecular-weight organic substances, e.g. absorption of additives in the surface of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/163Coating, i.e. applying a layer of liquid or solid material on the granule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0093Other properties hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/013Additives applied to the surface of polymers or polymer particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明涉及用于粉末床熔融法的聚合物粉末。本发明涉及用于熔化/烧结粉末颗粒以逐层制备三维物体的方法。

Description

用于粉末床熔融法的聚合物粉末
技术领域
本发明涉及用于粉末床熔融法中的聚合物粉末。
背景技术
快速提供原型或小批量是最近经常提出的任务。能够实现这一点的方法称为快速原型、快速制造、添加式制造法或3D打印。特别合适的是其中所需结构通过粉状材料的选择性熔化和/或凝固得以逐层制备的方法。根据该原理操作的方法统称为上位概念粉末床熔融。
粉末床熔融法的一个实例是激光烧结,其详细描述于专利文件US 6136948和WO9606881中。粉末床熔融法的其它实例描述于专利文件US6531086和EP1740367中。 DE19747309公开了一种良好地适合用于粉末床熔融法中的粉末。
粉末床熔融技术尤其包括直接金属激光烧结(DMLS)、电子束熔化(EBM)、选择性热烧结(SHS)、选择性激光熔化(SLM)、选择性激光烧结(SLS)、选择性吸收烧结(SAS)和选择性抑制烧结(SIS)。
在所有方法中致力于使通过该方法制备的部件尽可能具有与已制备了粉末的聚合物材料相同的密度。腔(Lunker)和/或内含物相应地是不希望的。因此,部分或完全熔化的粉末颗粒的良好融合是必要的。为了避免部件上的表面缺陷,即使对于在粉末床熔融法中多次使用的粉末也要求所述部分或完全熔化的粉末颗粒的良好融合。为了改进聚合物颗粒的融合,聚合物材料粘度的简单降低不适合于该目的,因为熔体的尺寸稳定性在低粘度下受损。这种效果导致非尺寸精确(maßhaltig)的部件,因此是不希望的。
发明内容
本发明的目的是提供由聚合物材料制成的粉末,其允许熔化的粉末颗粒的良好融合,但是其熔体同时具有足够高的尺寸稳定性,这允许制备尺寸精确的部件。
该目的令人惊讶地通过具有小于35mN/m的自由表面能的粉末得以实现。优选地,所述粉末具有小于32mN/m,更优选小于30mN/m的自由表面能。自由表面在此通过接触角测量根据毛细管上升高度法使用Washburn方程和根据Owens、Wendt、Rabel和Kaelble的评价方法来测定。接触角测量在此用Krüss公司的张力计K12处理器在标准气候(23℃,50%空气湿度)下进行,并用安装的K121.2b软件进行评价。作为接触角测量的准备,所述粉末通过夯实体积计(Stampfvolumeter)(STAV 2003 /J.Engelsmann公司)用1000个冲程预压实。在每种情况下在溶剂二碘甲烷、乙二醇和水与乙醇的80/20混合物中进行接触角测量。
令人惊讶地已经发现,通过用疏水性物质涂覆所述粉末颗粒可以改善熔化的粉末颗粒的融合,并且该熔体同时具有足够高的尺寸稳定性。就这点而言,涂有疏水性物质的聚合物粉末是本发明的优选聚合物粉末。
相对于水具有大于90°的接触角的表面被称为疏水性的。疏水性表面通常由疏水性物质构成或被疏水性物质覆盖。接触角在此应使用Krüss公司的DSA100S测量(根据制造商说明的自动化测量)。优选地,疏水性物质相对于水具有大于120°的接触角。
在部分结晶的聚合物的加工中,工艺温度最高设定为低于所述聚合物粉末熔点约10℃,以使待制备的物体的扭曲最小化。此外,应当避免干扰建造过程的卷曲效应。但是,所述聚合物颗粒通过该工艺温度尚不应烧结或甚至熔化,因为这将使由粉末饼制备的物体的拆卸变难。由于部分熔化的颗粒也会使粉末施加变难。
通常,将在所述工艺温度下仍为固体的添加剂加入到用于粉末床熔融法中的粉末中。令人惊讶地已经发现,可以用具有明显低于工艺温度的熔点的疏水性物质涂覆所述聚合物颗粒。换句话说,所述疏水性物质在常规的工艺温度下为液体形式。所述疏水性物质在标准压力(1013hPa)下的熔点因此优选为低于160℃(DIN 53765,来自Perkin Elmer的DSC7,加热速率20K/min)。优选地,所述疏水性物质的熔点低于120℃,更优选低于90℃。然而,所述疏水性物质的沸点应明显高于所述工艺温度。优选地,所述疏水性物质在标准压力下具有大于190℃的沸点(DIN 53765,来自Perkin Elmer的DSC 7,加热速率20K/min)。最优选地,所述疏水性物质在标准压力下的沸点高于300℃。
合适的疏水性物质的实例选自:饱和或不饱和的脂肪醇、饱和和不饱和的脂肪、蜡、内酰胺、烯烃、烷烃及其混合物,优选烷烃和烯烃,其中优选烷烃和具有烷烃的混合物,该混合物含有基于所述疏水性物质的总重量计至少50重量%,优选70重量%和更优选90重量%的烷烃。特别优选的脂肪醇具有12至30个碳原子。特别优选的脂肪是与由12至30个碳原子构成的饱和或不饱和脂肪酸的甘油三酯。蜡的实例是蜡酸与上述脂肪醇的酯。特别优选的内酰胺具有6至15个碳原子。特别优选的烯烃具有12至40个碳原子。特别优选的烷烃具有11至40个碳原子。
就这点而言,通过用疏水性物质涂覆可获得的本发明的聚合物粉末是本发明的特别优选的实施方案。
基于聚合物粉末和疏水性物质的总重量计,涂覆所述聚合物粉末的疏水性物质的量为0.15重量%至20重量%。该含量优选为3重量%和15重量%,更优选为5重量%和12重量%。所述聚合物粉末优选在最大100℃,更优选最大80℃(标准压力)的温度下进行涂覆。
除了所述颗粒的良好融合和所述熔体的尺寸稳定性之外,所述熔体的均匀性对于粉末床熔融法也是有利的。所述熔体的均匀性取决于待熔化的颗粒的粉末床(Pulverschüttung)的形式。所述粉末床的形式可以通过选择颗粒形状来积极地影响。对于粉末床熔融法最佳的粉末床可以通过具有至少0.5的球形度的颗粒来实现。优选地,所述颗粒的球形度为至少0.7。更优选地,所述颗粒的球形度为至少0.9。沃德尔球形度根据ISO 13322-1:2014用Sympatec公司的QICPIC/R高性能图像分析来测量,其中用2336×1728方形像素以500图像/秒、1 ns曝光时间和1百万个所评价的颗粒;通过RODOS/L干燥分散器和VIBRI/L精密振荡通道(Schwingrinne)将50g粉末干燥地分散。
原则上,所有已知的聚合物粉末都适用于粉末床熔融法中。然而,如果所制备的部件应尽可能具有与所述聚合物材料相同的密度,则部分结晶的聚合物是有利的,其中当所述聚合物粉末包含至少一种聚酰胺(PA)或共聚酰胺时是特别有利的。优选地,所述聚合物选自聚酰胺和共聚酰胺。特别合适的是PA11、PA12、PA613和PA106。非常特别合适的是PA12。
优选的聚合物的ηrel值为1.55至2。ηrel值根据ISO 307测量(Schott AVS Pro,溶剂间甲酚酸性,体积法,双重测定,溶解温度100℃,溶解时间2小时,聚合物浓度5g/l,测量温度25℃)。
当所述聚合物粉末具有40μm至95μm,更优选40μm至70μm的粒度d50时,这另外是优选的。粒度d50以及实施例中示出的值d10和d90通过激光衍射法测定(Malvern Mastersizer2000,干燥测量,20-40 g粉末通过Scirocco干式分散仪计量加入,振动通道进料速率70%,分散空气压力3 bar;样品的测量时间为5秒(5000次单独测量),折射率和蓝光值确定为1.52;通过Mie理论进行评价)。
本发明进一步提供用于制备本发明的聚合物粉末的方法。为此,所述聚合物粉末用疏水性物质涂覆。通过将所述疏水性物质溶解在合适的溶剂如具有至少四个碳原子的醇(如1-丁醇或1-己醇)、根据DIN 51632-1或51632-2的石油溶剂油、或松节油(CAS 8006-64-2)中并然后与待涂覆的粉末混合,所述聚合物粉末可以用疏水性物质涂覆。然后可以脱除所述溶剂,并且所述疏水性物质在所述粉末颗粒上保持均匀分布。或者,所述疏水性物质可以喷雾到所述聚合物粉末上。此外,经涂覆的聚合物粉末可以通过热混合来获得。为此,将所述粉末和固体疏水性物质彼此混合并加热至超过所述疏水性物质的熔点。在另一个替代方案中,所述疏水性物质在所述粉末颗粒上的施加可以通过一个或多个喷嘴进行。
如果所述粉末通过DE 29 06 647中描述的方法制备,则所述疏水性物质可以在溶液中沉淀之前或优选在所述悬浮液的沉淀期之后加入。
本发明进一步提供粉末床熔融法,其中使用本发明的聚合物粉末。优选的粉末床熔融法选自选择性激光烧结、选择性吸收烧结和选择性抑制烧结。
本发明进一步提供由所述粉末床熔融法获得的成型体。
具体实施方式
实施例
实施例1:聚酰胺12粉末PA2200 (非本发明)
PA2200是用于选择性激光烧结中的EOS GmbH公司的粉末。ηrel值为1.60。
实施例2:聚酰胺11 Duraform EX(非本发明)
Duraform EX是用于选择性激光烧结中的3D-systems公司的粉末;ηrel值为1.85。
实施例3:聚酰胺613沉淀粉末(PA613)(非本发明)
具有1.65的ηrel值的聚酰胺613粒料通过如DE 10 2004 020 453中所描述的沉淀方法在乙醇中沉淀,随后通过200μm防护筛筛分。表1列出了所得的粉末性能。
实施例4:聚酰胺106沉淀粉末(PA106)(非本发明)
具有1.81的ηrel值的聚酰胺106粒料通过如DE 29 06 647中所描述的沉淀方法在乙醇中沉淀,随后通过200μm防护筛筛分。表1列出了所得的粉末性能。
实施例5:聚酰胺12粉末(本发明)
10kg来自实施例1的粉末用烷烃涂覆。为此,将500g二十四烷溶解在1500g 1-丁醇中,并与所述粉末在Mixaco混合器CM50D中以150转/分钟混合1分钟。之后,通过干燥脱除1-丁醇,并将剩余的粉末通过200μm防护筛筛分。表1列出了所得的粉末性能。
实施例6:聚酰胺11粉末(本发明)
10kg来自实施例2的粉末用烷烃混合物(H&R WAX 58/60 DAB)涂覆。为此,将100 g烷烃混合物溶解在750 g 1-己醇中,并与所述粉末在Mixaco混合器CM50D中以150转/分钟混合1分钟。之后,通过干燥脱除1-己醇,并将剩余的粉末通过200μm防护筛筛分。表1列出了所得的粉末性能。
实施例7:聚酰胺613粉末(本发明)
来自实施例3的613粒料通过如DE 10 2004 020 453中所描述的沉淀方法在乙醇中沉淀,然后向所述悬浮液中加入基于所述粉末质量计10份的二十四烷(在1-丁醇中的25%溶液)。将所述悬浮液干燥,然后通过200μm防护筛筛分。表1列出了所得的粉末性能。
实施例8:聚酰胺106粉末(本发明)
来自实施例4的106粒料通过如例如DE 10 29 06 647中所描述的沉淀方法在乙醇中沉淀,然后向所述悬浮液中加入基于所述粉末质量计14份的三十六烷(在1-丁醇中的25%溶液)。将所述悬浮液干燥,然后通过200μm防护筛筛分。表1列出了所得的粉末性能。
实施例9:聚酰胺12粉末(本发明)
10kg来自实施例1的粉末用脂肪醇涂覆。为此,将600g 1-十六醇溶解在1500g 1-丁醇中,并与所述粉末在Mixaco混合器CM50D中以150转/分钟混合1分钟。之后,通过干燥脱除1-丁醇,并将剩余的粉末通过200μm防护筛筛分。表1列出了所得的粉末性能。
实施例10:聚酰胺12粉末(本发明)
10kg来自实施例1的粉末用脂肪涂覆。为此,将200 g三油酸甘油酯溶解在1500g 1-丁醇中,并与所述粉末在Mixaco混合器CM50D中以150转/分钟混合1分钟。之后,通过干燥脱除1-丁醇,并将剩余的粉末通过200μm防护筛筛分。表1列出了所得的粉末性能。
表1列出了来自所述实施例的粉末的参数。显然,表面能可以通过添加疏水性物质而降低。通过添加烷烃,颗粒分布几乎没有改变。
表 1:所述聚合物粉末的粒度和表面能
聚酰胺 表面能[mN/m] 粒度d90 [µm] 粒度d50 [µm] 粒度d10 [µm]
实施例1* 12 38 82 58 39
实施例2* 11 37 77 47 19
实施例3* 613 39 132 89 50
实施例4* 106 39 90 63 44
实施例5 12 28 80 58 37
实施例6 11 30 77 48 22
实施例7 613 32 130 88 50
实施例8 106 33 91 62 45
实施例9 12 29 79 57 37
实施例10 12 31 80 58 38
* 非本发明。
所述实施例的所有粉末各自根据下面的描述在EOSINT P380上进行加工。将建造室预热至低于所述聚合物的DSC熔点(DIN 53765,来自Perkin Elmer的DSC 7,加热速率20K/min)20℃的温度180分钟。之后,将建造室中的温度增加至低于所述聚合物的DSC熔点10℃。在第一次曝光之前,施加40个层而不曝光。
待曝光的部件位于建造场的中心。具有50mm边缘长度的正方形区域通过激光熔化。激光的能量输入为60mJ/mm2(激光功率21W,扫描速度1170mm/s,曝光线距离0.3mm)。之后,建造平台降低0.15mm并通过涂覆机以100mm/s的速度施加新的粉末层。重复这些步骤,直到形成高度为50mm的三维部件。在曝光结束之后,还施加40个另外的层,然后关闭所述装置的加热元件并开始冷却阶段。在整个建造工艺过程中,每层所需要的时间小于40秒。
在至少12小时的冷却时间之后,取出所述部件并除去粘附的粉末。测定所述部件的尺寸,称量所述部件的质量,并由此计算密度。表2列出了所述实施例的部件的密度。显然,由本发明的粉末制备的部件具有比可比拟的非本发明的粉末更高的密度。因此,通过本发明的粉末可以实现熔体的更好融合。
表 2:所获得的部件的密度
部件 聚酰胺 密度PA[g/cm³] 部件密度[g/cm³]
实施例1 12 1.01 0.93
实施例2 11 1.03 0.98
实施例3 613 1.03 0.99
实施例4 106 1.06 0.99
实施例5 12 1.01 0.97
实施例6 11 1.03 1.01
实施例7 613 1.03 1.02
实施例8 106 1.06 1.02
实施例9 12 1.01 0.96
实施例10 12 1.01 0.95

Claims (12)

1.用于粉末床熔融法中的聚合物粉末,其特征在于:所述聚合物粉末具有小于35 mN/m的表面能。
2.根据权利要求1所述的聚合物粉末,其特征在于:所述表面能小于32 mN/m,优选小于30 mN/m。
3.根据前述权利要求中任一项所述的聚合物粉末,其特征在于:所述聚合物粉末的聚合物选自聚酰胺和共聚酰胺。
4.根据前述权利要求中任一项所述的聚合物粉末,其特征在于:沃德尔球形度为至少0.5。
5.根据前述权利要求中任一项所述的聚合物粉末,其特征在于:所述聚合物粉末用至少一种疏水性物质涂覆,所述疏水性物质优选选自烷烃、烯烃及其混合物。
6.根据权利要求5所述的聚合物粉末,其特征在于:所述疏水性物质的含量基于所述聚合物粉末与所述疏水性物质的总重量计为0.15重量%-20重量%。
7.根据权利要求5或6所述的聚合物粉末,其特征在于:所述疏水性物质具有最大160℃的熔点和至少190℃的沸点。
8.用于制备根据前述权利要求中任一项所述的聚合物粉末的方法,其特征在于:所述聚合物粉末用疏水性物质涂覆。
9.根据权利要求8所述的方法,其特征在于:所述涂覆在最大100℃的温度下进行。
10.根据权利要求8或9所述的方法,其特征在于:所述涂覆在悬浮液中进行。
11.粉末床熔融法,其中使用根据权利要求1-7中任一项所述的聚合物粉末。
12.成型体,其根据权利要求11所述的方法可获得。
CN201611145487.8A 2015-12-14 2016-12-13 用于粉末床熔融法的聚合物粉末 Active CN107022100B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15199919.0 2015-12-14
EP15199919.0A EP3181615A1 (de) 2015-12-14 2015-12-14 Polymerpulver für powder bed fusion-verfahren

Publications (2)

Publication Number Publication Date
CN107022100A true CN107022100A (zh) 2017-08-08
CN107022100B CN107022100B (zh) 2021-03-12

Family

ID=55068764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611145487.8A Active CN107022100B (zh) 2015-12-14 2016-12-13 用于粉末床熔融法的聚合物粉末

Country Status (4)

Country Link
US (2) US10596728B2 (zh)
EP (2) EP3181615A1 (zh)
JP (1) JP6436959B2 (zh)
CN (1) CN107022100B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108748984A (zh) * 2018-06-13 2018-11-06 华域视觉科技(上海)有限公司 一种车灯零部件及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6807917B2 (ja) * 2015-07-16 2021-01-06 スリーエム イノベイティブ プロパティズ カンパニー 歯科用物品の製造方法
EP3181615A1 (de) * 2015-12-14 2017-06-21 Evonik Degussa GmbH Polymerpulver für powder bed fusion-verfahren
EP3181332A1 (de) * 2015-12-14 2017-06-21 Evonik Degussa GmbH Polymerpulver für powder bed fusion-verfahren
ES2950359T3 (es) 2016-09-30 2023-10-09 Evonik Operations Gmbh Polvo de poliamida para procedimientos de sinterización selectivos
DE102016219080A1 (de) 2016-09-30 2018-04-05 Evonik Degussa Gmbh Polyamidpulver für selektive Sinterverfahren
WO2020086099A1 (en) * 2018-10-26 2020-04-30 Hewlett-Packard Development Company, L.P. Three-dimensional printing
EP4299314A1 (en) 2021-02-25 2024-01-03 Toray Industries, Inc. Method for manufacturing three-dimensionally shaped article using resin granular material, three-dimensionally shaped article, and resin granular material
FR3125050A1 (fr) 2021-07-08 2023-01-13 Arkema France Poudre de polymère thermoplastique pour construction d’articles 3D
FR3125051A1 (fr) 2021-07-08 2023-01-13 Arkema France Poudre de polymère thermoplastique pour construction d’articles 3D

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245281B1 (en) * 1997-10-27 2001-06-12 Huels Aktiengesellschaft Use of a nylon-12 for selective laser sintering
CN1480498A (zh) * 2002-08-06 2004-03-10 1 耐磨性得到改进的蜡-改性涂料组合物
CN1504511A (zh) * 2002-11-28 2004-06-16 1 含有金属皂的激光-烧结-粉末、其制备方法和由该激光-烧结-粉末制备的成型体
CN103249760A (zh) * 2010-12-10 2013-08-14 罗地亚经营管理公司 通过选择性地熔合聚合物粉末层生产物品

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906647C2 (de) 1979-02-21 1980-12-11 Chemische Werke Huels Ag, 4370 Marl Verfahren zur Herstellung von pulver· förmigen Beschichtungsmittel!! auf der Basis von Polyamiden mit mindestens 10 aliphatisch gebundenen Kohlenstoffatomen pro Carbonamidgruppe
US5648450A (en) 1992-11-23 1997-07-15 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therein
US5527877A (en) 1992-11-23 1996-06-18 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therewith
SE509088C2 (sv) 1997-04-30 1998-12-07 Ralf Larsson Sätt och anordning för framställning av volymkroppar
US5846607A (en) * 1997-06-30 1998-12-08 Basf Corporation Process for producing customized thermoplastic resins
DE10118345A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Eigenschaften von Strukturbildnern für selbstreinigende Oberflächen und die Herstellung selbiger
EP1400340B1 (de) 2002-09-21 2008-01-16 Evonik Degussa GmbH Verfahren zur Herstellung eines dreidimensionalen Objektes
DE10256097A1 (de) * 2002-12-02 2004-06-17 Eos Gmbh Electro Optical Systems Kunststoffpulver für das Lasersintern
DE10311437A1 (de) * 2003-03-15 2004-09-23 Degussa Ag Laser-Sinter-Pulver mit PMMI, PMMA und/oder PMMI-PMMA-Copolymeren, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Laser-Sinterpulver
DE102004001324A1 (de) * 2003-07-25 2005-02-10 Degussa Ag Pulverförmige Komposition von Polymer und ammoniumpolyphosphathaltigem Flammschutzmittel, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Pulver
DE102004010162A1 (de) 2004-02-27 2005-09-15 Degussa Ag Polymerpulver mit Copolymer, Verwendung in einem formgebenden Verfahren mit nicht fokussiertem Energieeintrag und Formkörper, hergestellt aus diesem Polymerpulver
DE102004012682A1 (de) 2004-03-16 2005-10-06 Degussa Ag Verfahren zur Herstellung von dreidimensionalen Objekten mittels Lasertechnik und Auftragen eines Absorbers per Inkjet-Verfahren
DE102004020453A1 (de) 2004-04-27 2005-11-24 Degussa Ag Polymerpulver mit Polyamid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
DE102004020452A1 (de) 2004-04-27 2005-12-01 Degussa Ag Verfahren zur Herstellung von dreidimensionalen Objekten mittels elektromagnetischer Strahlung und Auftragen eines Absorbers per Inkjet-Verfahren
DE102004024440B4 (de) * 2004-05-14 2020-06-25 Evonik Operations Gmbh Polymerpulver mit Polyamid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
DE102004047876A1 (de) 2004-10-01 2006-04-06 Degussa Ag Pulver mit verbesserten Recyclingeigenschaften, Verfahren zu dessen Herstellung und Verwendung des Pulvers in einem Verfahren zur Herstellung dreidimensionaler Objekte
DE102005002930A1 (de) * 2005-01-21 2006-07-27 Degussa Ag Polymerpulver mit Polyamid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
DE102008000755B4 (de) 2008-03-19 2019-12-12 Evonik Degussa Gmbh Copolyamidpulver und dessen Herstellung, Verwendung von Copolyamidpulver in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Copolyamidpulver
DE102010062347A1 (de) 2010-04-09 2011-12-01 Evonik Degussa Gmbh Polymerpulver auf der Basis von Polyamiden, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
US9296178B2 (en) * 2010-05-28 2016-03-29 Lg Chem, Ltd. Resin article
DE102011078722A1 (de) 2011-07-06 2013-01-10 Evonik Degussa Gmbh Pulver enthaltend mit Polymer beschichtete anorganische Partikel
DE102011078721A1 (de) 2011-07-06 2013-01-10 Evonik Degussa Gmbh Pulver enthaltend mit Polymer beschichtete polymere Kernpartikel
DE102011078719A1 (de) 2011-07-06 2013-01-10 Evonik Degussa Gmbh Pulver enthaltend mit Polymer beschichtete Partikel
DE102011078720A1 (de) 2011-07-06 2013-01-10 Evonik Degussa Gmbh Pulver enthaltend mit Polymer beschichtete Kernpartikel enthaltend Metalle, Metalloxide, Metall- oder Halbmetallnitride
JP6052960B2 (ja) * 2012-01-12 2016-12-27 株式会社神戸製鋼所 軟磁性鉄基粉末の製造方法
DE102012202487A1 (de) 2012-02-17 2013-08-22 Evonik Industries Ag Verfahren zum Aufschmelzen/Sintern von Pulverpartikeln zur schichtweisen Herstellung von dreidimensionalen Objekten
WO2013138204A1 (en) * 2012-03-13 2013-09-19 Mikulak James Materials for powder-based additive manufacturing processes
DE102012205908A1 (de) 2012-04-11 2013-10-17 Evonik Industries Ag Polymerpulver mit angepasstem Schmelzverhalten
DE102012207609A1 (de) 2012-05-08 2013-11-14 Evonik Industries Ag Verfahren zur schichtweisen herstelluing von dreidimensionalen objekten
EP2920255B1 (en) * 2012-11-19 2019-03-13 Hewlett-Packard Development Company, L.P. Compositions for three-dimensional (3d) printing
US20140255666A1 (en) * 2013-03-06 2014-09-11 University Of Louisville Research Foundation, Inc. Powder Bed Fusion Systems, Apparatus, and Processes for Multi-Material Part Production
US9523934B2 (en) * 2013-07-17 2016-12-20 Stratasys, Inc. Engineering-grade consumable materials for electrophotography-based additive manufacturing
WO2016104140A1 (ja) * 2014-12-24 2016-06-30 東レ株式会社 ポリアミド微粒子
EP3385060B1 (en) * 2015-11-30 2020-08-12 Konica Minolta, Inc. Powder material, method of manufacturing a three-dimensional object, and three-dimensional manufacturing apparatus
EP3181615A1 (de) * 2015-12-14 2017-06-21 Evonik Degussa GmbH Polymerpulver für powder bed fusion-verfahren
EP3181332A1 (de) 2015-12-14 2017-06-21 Evonik Degussa GmbH Polymerpulver für powder bed fusion-verfahren
DE102016219080A1 (de) * 2016-09-30 2018-04-05 Evonik Degussa Gmbh Polyamidpulver für selektive Sinterverfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245281B1 (en) * 1997-10-27 2001-06-12 Huels Aktiengesellschaft Use of a nylon-12 for selective laser sintering
CN1480498A (zh) * 2002-08-06 2004-03-10 1 耐磨性得到改进的蜡-改性涂料组合物
CN1504511A (zh) * 2002-11-28 2004-06-16 1 含有金属皂的激光-烧结-粉末、其制备方法和由该激光-烧结-粉末制备的成型体
CN103249760A (zh) * 2010-12-10 2013-08-14 罗地亚经营管理公司 通过选择性地熔合聚合物粉末层生产物品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D. K. OWENS AND R. C. WENDT: ""Estimation of the surface free energy of polymers"", 《JOURNAL OF APPLIED POLYMER SCIENCE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108748984A (zh) * 2018-06-13 2018-11-06 华域视觉科技(上海)有限公司 一种车灯零部件及其制备方法
CN108748984B (zh) * 2018-06-13 2020-10-16 华域视觉科技(上海)有限公司 一种车灯零部件及其制备方法

Also Published As

Publication number Publication date
US10596728B2 (en) 2020-03-24
EP3181615A1 (de) 2017-06-21
US11254030B2 (en) 2022-02-22
EP3181617A1 (de) 2017-06-21
US20200156287A1 (en) 2020-05-21
CN107022100B (zh) 2021-03-12
US20170165913A1 (en) 2017-06-15
JP2017109492A (ja) 2017-06-22
JP6436959B2 (ja) 2018-12-12

Similar Documents

Publication Publication Date Title
CN107022100A (zh) 用于粉末床熔融法的聚合物粉末
JP4913035B2 (ja) ラピッドプロトタイピング用粉末およびその製造方法
US8710144B2 (en) Powder for layerwise manufacturing of objects
US11154929B2 (en) Metal powder material
EP2543701B1 (de) Pulver enthaltend mit polymer beschichtete anorganische partikel
US7968626B2 (en) Three dimensional printing material system and method using plasticizer-assisted sintering
US20110293918A1 (en) Producing an item by the selective fusion of polymer powder layers
US20080122141A1 (en) Sinterable Powder
CN106031916A (zh) 粉末涂敷设备
JP2020164808A (ja) 三次元金属印刷組成物用の表面添加剤
CN106867010A (zh) 用于粉床熔融法的聚合物粉末
JP7039997B2 (ja) 金属粉末材料の製造方法
CN106046755A (zh) 一种3d打印用的聚氨酯复合材料
WO2021002040A1 (ja) 積層造形用粉末、積層造形用スラリー、3次元積層造形体、焼結体、積層造形用スラリーの製造方法、積層造形方法及び焼結方法
EP3628460A2 (en) Resin powder, device for manufacturing solid freeform fabrication object, and method of manufacturing solid freeform fabrication object
DE102004009234A1 (de) Polymerpulver mit Rußpartikeln, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Polymerpulver
Mousa et al. Pre-processing studies for selective laser sintering of glass beads-filled polyamide 12 composites
WO2024143099A1 (ja) 積層造形用粉末
WO2018146245A1 (en) Ground solidifying agent, production method and ground solidifying method
Foadian et al. In-Situ Alloy Formation During Selective Laser Melting with CuSn10 and Aluminum Powders
Saedodin et al. Super-saturation drowning-out coating of metal particles for usage in layered manufacturing processes; Process development, design and manufacturing of coating machine
JP2002285089A (ja) 熱硬化型粉体塗料用樹脂の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Essen, Germany

Applicant after: Evonik Operations Limited

Address before: Essen, Germany

Applicant before: EVONIK DEGUSSA GmbH

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant