CN107010928A - 一种MoSi2/Al2O3耐高温吸波材料、制备方法及其应用 - Google Patents

一种MoSi2/Al2O3耐高温吸波材料、制备方法及其应用 Download PDF

Info

Publication number
CN107010928A
CN107010928A CN201710051339.8A CN201710051339A CN107010928A CN 107010928 A CN107010928 A CN 107010928A CN 201710051339 A CN201710051339 A CN 201710051339A CN 107010928 A CN107010928 A CN 107010928A
Authority
CN
China
Prior art keywords
mosi
absorbing material
high temperature
temperature resistant
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710051339.8A
Other languages
English (en)
Other versions
CN107010928B (zh
Inventor
武志红
张聪
李妤婕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN201710051339.8A priority Critical patent/CN107010928B/zh
Publication of CN107010928A publication Critical patent/CN107010928A/zh
Application granted granted Critical
Publication of CN107010928B publication Critical patent/CN107010928B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明涉及一种新型抗氧化耐高温吸波材料及其制备工艺。具体涉及一种MoSi2/Al2O3耐高温吸波材料、制备方法及其应用。按下列步骤操作:将MoSi2,Al2O3,Al粉和SiO2作为原料,糊精作为粘结剂,B2O3作为烧结助剂,经配料及混匀,加入少量去离子水后困料;用液压式压力试验机在250MPa压力下制成尺寸为的圆片状试样,干燥48h,在高温重烧试验炉中加热至1300~1450℃。该硼掺杂MoSi2/Al2O3抗氧化耐高温吸波材料的显气孔率20.81%~35.43%,体积密度2.89~4.11g·cm‑3。实验表明本发明提供硼掺杂MoSi2/Al2O3的吸波材料,其抗氧化性能好、耐高温,在吸波材料领域有好的应用前景。

Description

一种MoSi2/Al2O3耐高温吸波材料、制备方法及其应用
技术领域
本发明涉及一种化工材料的制备方法,特别涉及一种MoSi2/Al2O3耐高温吸波材料、制备方法及其应用。
背景技术
现代战争中,先敌发现,先敌攻击是克敌制胜的重要保障。由此可见,武器装备隐身化可以显著提高军事效益,是当前世界军事高技术发展的重要方向之一。
理想的吸波材料应该具有吸收强、频段宽、质量轻等特点。传统的磁性吸波材料的比重较大,且在高温可能会失去磁性,其在一些领域中的应用受到限制,因而利用合适的金属或金属合金微粉制备宽频吸收、轻质高强的高温抗氧化吸波材料,是可行而必要的。金属间化合物MoSi2因具有金属和陶瓷的双重特性、具有熔点高、适中的比重、较低的热膨胀系数、良好的高温抗氧化性(抗氧化温度可达1600℃以上)、优良的导电性及热导率等特点,而被广泛研究,成为目前最有前途的高温结构材料之一。
然而,MoSi2因晶体结构中非金属键比例高,结构对称性低,突出的缺点是韧脆转变温度太高,室温时很脆,断裂韧性仅为2.5MPa·m1/2左右,高温(>1250℃)强度,特别是蠕变强度明显不足,目前国内尚未见到能高效耐高温抗氧化的优质吸波材料,本发明提供了这种优良吸波材料。
发明内容
针对现有技术中存在的不足,本发明的目的在于提供一种MoSi2/Al2O3耐高温吸波材料、制备方法及其应用。
为实现上述目标,本发明采取如下的技术方案:
一种MoSi2/Al2O3耐高温吸波材料,按质量百分比计,所述的吸波材料包括以下原料:6wt.%~33wt.%的MoSi2,10wt.%~35wt.%的SiO2,9wt.%~26wt.%的Al粉,15wt.%~30wt.%的Al2O3,8wt.%~10wt.%的糊精以及10wt.%~12wt.%的B2O3
优选的,所述MoSi2/Al2O3耐高温吸波材料,按质量百分比计,所述的吸波材料包括以下原料:24wt.%含量的MoSi2,15wt.%的SiO2,17wt.%的Al粉,25wt.%的Al2O3,9wt.%的糊精以及10wt.%的B2O3
一种MoSi2/Al2O3耐高温吸波材料的制备方法,包含以下步骤:
步骤一:取6wt.%~33wt.%的MoSi2,10wt.%~35wt.%的SiO2,9wt.%~26wt.%的Al粉,15wt.%~30wt.%的Al2O3,8wt.%~10wt.%的糊精以及10wt.%~12wt.%的B2O3,加入无水乙醇,研磨8~10h,得到混合料浆;
步骤二:将混合料浆在80~100℃下干燥36~48h,至混合粉状;
步骤三:研磨混合粉状料浆,研磨4~6h;加入适量去离子水搅拌后困料4~6h;
步骤四:在250~300MPa压力下制成试样,将试样在80~100℃下干燥36~48h,制得干燥试样;
步骤五:将干燥试样加热至650~850℃保温120min,继续加热至1300~1450℃保温120min,停止加热,自然冷却至20~30℃,得到MoSi2/Al2O3耐高温吸波材料。
优选的,所述步骤四中制成试样尺寸为的圆柱状。
所述的MoSi2/Al2O3耐高温吸波材料用于吸波涂层的应用。
相较于现有技术,本发明的技术效果为:
Al2O3陶瓷的主晶相是α-Al2O3,为刚玉型结构,具有熔点高、密度低的特点,并且与MoSi2在化学上和物理上具有相容性,能改变Al2O3-MoSi2的界面能和MoSi2的晶界能,是MoSi2最适合的增强相,通过MoSi2与Al2O3的复合可以有效增强其室温韧性和高温强度。
本发明制备吸波材料密度较小,为2.89~4.11g/m3,电导率为3.92~5.53S·m-1,在8.2~12.4GHz频率下,最大吸波损耗为23~29dB;本发明制备吸波材料耐高温抗氧化性能好。
附图说明
图1是本发明一种新型硼掺杂MoSi2/Al2O3抗氧化耐高温吸波材料的制备方法的流程图。
图2是本发明方法实施例3的硼掺杂MoSi2/Al2O3抗氧化耐高温吸波材料XRD衍射图。
图3是本发明方法实施例3制备的硼掺杂MoSi2/Al2O3抗氧化耐高温吸波材料SEM照片。
图4是本发明方法实施例1制备的硼掺杂MoSi2/Al2O3抗氧化耐高温吸波材料反射率图。
下面结合附图对本发明做出进一步解释说明。
具体实施方式
实施例1
选取MoSi2,Al2O3,Al粉和SiO2作为原料,糊精作为粘结剂,B2O3作为烧结助剂,按质量百分比计,选取6wt.%含量的MoSi2,35wt.%的SiO2,26wt.%的Al粉,15wt.%的Al2O3,8wt.%的糊精以及10wt.%的B2O3,加入无水乙醇用全方位细粉球磨机机械研磨8.5h,球磨速度为350rpm,得到混合料浆;
将混合料浆放置恒温电热干燥箱80℃干燥48h,至混合粉状;
将干燥料浆得到的混合粉用玛瑙研钵研磨4h,随后加入适量去离子水搅拌均匀后困料4h;
用液压式压力试验机在压力机上以250MPa压力制成尺寸为 的圆柱状试样,将圆柱状试样置于恒温电热干燥箱80℃干燥48h;
待试样充分干燥后,放入高温重烧试验机中加热至850℃保温120min,随后加热至1300℃保温120min后,停止加热,自然冷却至22℃,制备得到MoSi2/Al2O3耐高温吸波材料。测量MoSi2/Al2O3耐高温吸波材料的密度为:2.89g·cm-3,显气孔率为:34.30%。
将环氧树脂置于热水中,待软化后取出,将环氧树脂与低分子聚酞胺以体积比1:1混合制备得粘粘剂。然后将MoSi2/Al2O3耐高温吸波材料碾磨成粉,通过粘粘剂与MoSi2/Al2O3粉末按质量比1:1混合,加入与粘结剂质量相同的丙酮,超声分散分钟然后取出置于热水中,充分搅拌分钟使丙酮完全挥发制备得吸波涂料。然后将涂料比较均匀的涂在钢板上,控制钢板平放,使涂料向四周的流动,表面自然均匀。放置24小时后对其打磨至厚度为2mm,即可制备得吸波涂层。使用设备为Agilent Technologies E8362矢量网络分析仪测试复合材料的吸波性能,测量MoSi2/Al2O3吸波材料电导率为3.92S·m-1,在8.2~12.4GHz频率下的吸波损耗为15~20dB。
实施例2
选取MoSi2,Al2O3,Al粉和SiO2作为原料,糊精作为粘结剂,B2O3作为烧结助剂,按质量百分比计,选取16wt.%含量的MoSi2,25wt.%的SiO2,21wt.%的Al粉,20wt.%的Al2O3,9wt.%的糊精以及9wt.%的B2O3,加入无水乙醇用全方位细粉球磨机机械研磨10h,球磨速度为350rpm,得到混合料浆;
将混合料浆放置恒温电热干燥箱80℃干燥48h,至混合粉状;
将干燥料浆得到的混合粉用玛瑙研钵研磨4h,随后加入适量去离子水搅拌均匀后困料4h;
用液压式压力试验机在压力机上以250MPa压力制成尺寸为 的圆柱状试样,将圆柱状试样置于恒温电热干燥箱80℃干燥48h;
待试样充分干燥后,放入高温重烧试验机中加热至750℃保温120min,随后加热至1350℃保温120min后,停止加热,自然冷却至22℃,制备得到一种新型硼掺杂MoSi2/Al2O3抗氧化耐高温吸波材料。测量MoSi2/Al2O3耐高温吸波材料的密度为:2.80g·cm-3,显气孔率为:35.43%。
将环氧树脂置于热水中,待软化后取出,将环氧树脂与低分子聚酞胺以体积比1:1混合制备得粘粘剂。然后将MoSi2/Al2O3耐高温吸波材料碾磨成粉,通过粘粘剂与MoSi2/Al2O3粉末按质量比1:1混合,加入与粘结剂质量相同的丙酮,超声分散分钟然后取出置于热水中,充分搅拌分钟使丙酮完全挥发制备得吸波涂料。然后将涂料比较均匀的涂在钢板上,控制钢板平放,使涂料向四周的流动,表面自然均匀。放置24小时后对其打磨至厚度为2mm,即可制备得吸波涂层。使用设备为Agilent Technologies E8362矢量网络分析仪测试复合材料的吸波性能,测量MoSi2/Al2O3吸波材料电导率为4.82S·m-1,在8.2~12.4GHz的吸波损耗为17~22dB。
实施例3
选取MoSi2,Al2O3,Al粉和SiO2作为原料,糊精作为粘结剂,B2O3作为烧结助剂,按质量百分比计,选取24wt.%含量的MoSi2,15wt.%的SiO2,17wt.%的Al粉,25wt.%的Al2O3,9wt.%的糊精以及10wt.%的B2O3,加入无水乙醇用全方位细粉球磨机机械研磨8h,球磨速度为350rpm,得到混合料浆;
将混合料浆放置恒温电热干燥箱80℃干燥48h,至混合粉状;
将干燥料浆得到的混合粉用玛瑙研钵研磨4h,随后加入适量去离子水搅拌均匀后困料4h;
用液压式压力试验机在压力机上以250MPa压力制成尺寸为 的圆柱状试样,将圆柱状试样置于恒温电热干燥箱80℃干燥48h;
待试样充分干燥后,放入高温重烧试验机中加热至800℃保温120min,随后加热至1400℃保温120min后,停止加热,自然冷却至22℃,制备得到一种新型硼掺杂MoSi2/Al2O3抗氧化耐高温吸波材料。测量MoSi2/Al2O3耐高温吸波材料的密度为:4.11g·cm-3,显气孔率为:20.81%。
将环氧树脂置于热水中,待软化后取出,将环氧树脂与低分子聚酞胺以体积比1:1混合制备得粘粘剂。然后将MoSi2/Al2O3耐高温吸波材料碾磨成粉,通过粘粘剂与MoSi2/Al2O3粉末按质量比1:1混合,加入与粘结剂质量相同的丙酮,超声分散分钟然后取出置于热水中,充分搅拌分钟使丙酮完全挥发制备得吸波涂料。然后将涂料比较均匀的涂在钢板上,控制钢板平放,使涂料向四周的流动,表面自然均匀。放置24小时后对其打磨至厚度为2mm,即可制备得吸波涂层。使用设备为Agilent Technologies E8362矢量网络分析仪测试复合材料的吸波性能,测量MoSi2/Al2O3吸波材料电导率为4.72S·m-1,在8.2~12.4GHz的吸波损耗为23~29dB。
实施例4
选取MoSi2,Al2O3,Al粉和SiO2作为原料,糊精作为粘结剂,B2O3作为烧结助剂,按质量百分比计,选取33wt.%含量的MoSi2,10wt.%的SiO2,9wt.%的Al粉,30wt.%的Al2O3,10wt.%的糊精以及8wt.%的B2O3,加入无水乙醇用全方位细粉球磨机机械研磨10h,球磨速度为350rpm,得到混合料浆;
将混合料浆放置恒温电热干燥箱80℃干燥48h,至混合粉状;
将干燥料浆得到的混合粉用玛瑙研钵研磨4h,随后加入适量去离子水搅拌均匀后困料4h;
用液压式压力试验机在压力机上以250MPa压力制成尺寸为 的圆柱状试样,将圆柱状试样置于恒温电热干燥箱80℃干燥48h;
待试样充分干燥后,放入高温重烧试验机中加热至700℃保温120min,随后加热至1450℃保温120min后,停止加热,自然冷却至22℃,制备得到一种新型硼掺杂MoSi2/Al2O3抗氧化耐高温吸波材料。测量MoSi2/Al2O3耐高温吸波材料的密度为:3.75g·cm-3,显气孔率为:23.89%。
将环氧树脂置于热水中,待软化后取出,将环氧树脂与低分子聚酞胺以体积比1:1混合制备得粘粘剂。然后将MoSi2/Al2O3耐高温吸波材料碾磨成粉,通过粘粘剂与MoSi2/Al2O3粉末按质量比1:1混合,加入与粘结剂质量相同的丙酮,超声分散分钟然后取出置于热水中,充分搅拌分钟使丙酮完全挥发制备得吸波涂料。然后将涂料比较均匀的涂在钢板上,控制钢板平放,使涂料向四周的流动,表面自然均匀。放置24小时后对其打磨至厚度为2mm,即可制备得吸波涂层。使用设备为Agilent Technologies E8362矢量网络分析仪测试复合材料的吸波性能,测量MoSi2/Al2O3吸波材料电导率为5.53S·m-1,在8.2~12.4GHz的吸波损耗为20~25dB。

Claims (5)

1.一种MoSi2/Al2O3耐高温吸波材料,其特征在于:按质量百分比计,所述的吸波材料包括以下原料:6wt.%~33wt.%的MoSi2,10wt.%~35wt.%的SiO2,9wt.%~26wt.%的Al粉,15wt.%~30wt.%的Al2O3,8wt.%~10wt.%的糊精以及10wt.%~12wt.%的B2O3
2.如权利要求1所述的MoSi2/Al2O3耐高温吸波材料,其特征在于:按质量百分比计,所述的吸波材料包括以下原料:24wt.%的MoSi2,15wt.%的SiO2,17wt.%的Al粉,25wt.%的Al2O3,9wt.%的糊精以及10wt.%的B2O3
3.一种MoSi2/Al2O3耐高温吸波材料的制备方法,其特征在于:包含以下步骤:
步骤一:取6wt.%~33wt.%的MoSi2,10wt.%~35wt.%的SiO2,9wt.%~26wt.%的Al粉,15wt.%~30wt.%的Al2O3,8wt.%~10wt.%的糊精以及10wt.%~12wt.%的B2O3,加入无水乙醇,研磨8~10h,得到混合料浆;
步骤二:将混合料浆在80~100℃下干燥36~48h,至混合粉状;
步骤三:研磨混合粉状料浆,研磨4~6h;加入适量去离子水搅拌后困料4~6h;
步骤四:在250~300MPa压力下制成试样,将试样在80~100℃下干燥36~48h,制得干燥试样;
步骤五:将干燥试样加热至650~850℃保温120min,继续加热至1300~1450℃保温120min,停止加热,自然冷却至20~30℃,得到MoSi2/Al2O3耐高温吸波材料。
4.如权利要求3所述的MoSi2/Al2O3耐高温吸波材料,其特征在于:所述步骤四中制成试样尺寸为的圆柱状。
5.权利要求1或2所述的MoSi2/Al2O3耐高温吸波材料用于吸波涂层的应用。
CN201710051339.8A 2017-01-23 2017-01-23 一种MoSi2/Al2O3耐高温吸波材料、制备方法及其应用 Expired - Fee Related CN107010928B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710051339.8A CN107010928B (zh) 2017-01-23 2017-01-23 一种MoSi2/Al2O3耐高温吸波材料、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710051339.8A CN107010928B (zh) 2017-01-23 2017-01-23 一种MoSi2/Al2O3耐高温吸波材料、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN107010928A true CN107010928A (zh) 2017-08-04
CN107010928B CN107010928B (zh) 2020-08-04

Family

ID=59439616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710051339.8A Expired - Fee Related CN107010928B (zh) 2017-01-23 2017-01-23 一种MoSi2/Al2O3耐高温吸波材料、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN107010928B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115285997A (zh) * 2022-07-29 2022-11-04 上海应用技术大学 宽温域抗氧化二氧化硅包覆二硅化钼粉体的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUO-JUN ZHANG ET AL.: "Addition effects of aluminum and in situ formation of alumina in MoSi2", 《JOURNAL OF MATERIALS SCIENCE》 *
ZHIBIN HUANG ET AL.: "Dielectric and Mechanical Properties of MoSi2/Al2O3 Composites Prepared by Hot Pressing", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115285997A (zh) * 2022-07-29 2022-11-04 上海应用技术大学 宽温域抗氧化二氧化硅包覆二硅化钼粉体的制备方法
CN115285997B (zh) * 2022-07-29 2023-07-07 上海应用技术大学 宽温域抗氧化二氧化硅包覆二硅化钼粉体的制备方法

Also Published As

Publication number Publication date
CN107010928B (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
Li et al. Effect of nano-titanium dioxide on mechanical and electrical properties and microstructure of reactive powder concrete
Somaratna et al. Response of alkali activated fly ash mortars to microwave curing
Zheng et al. Complex permittivity and microwave absorbing property of Si3N4–SiC composite ceramic
Hao et al. Dielectric, electromagnetic interference shielding and absorption properties of Si3N4–PyC composite ceramics
CN101885939B (zh) 一种相变保温涂料及其制备方法
CN108947376A (zh) 一种水泥砂浆及其制备方法
CN106497313B (zh) 一种耐高温吸波涂层及其应用
CN106187185A (zh) 一种稀土铌酸盐高温陶瓷的制备方法
CN103880426A (zh) 一种宽频带碳化硅耐高温吸波涂层及制备方法
CN106966599B (zh) 一种利用微波加热制备的结构梯度尾矿微晶玻璃及其制备方法
CN105219145A (zh) 一种耐高温红外反射绝热材料及其制备方法
CN106735249A (zh) 一种铌基复合材料及制备方法
CN106634514A (zh) 一种空心氧化铝陶瓷微球改性聚氨酯涂层的制备方法
CN107010928A (zh) 一种MoSi2/Al2O3耐高温吸波材料、制备方法及其应用
CN108411137A (zh) 超细晶碳化钨基硬质合金的制备方法
CN106189459B (zh) 一种用于取向硅钢的无铬环保绝缘涂料
CN105651027B (zh) 一种用于石膏板的电磁微波干燥装置
CN106277843A (zh) 一种微波辐射制备硅烷改性玻璃纤维的方法
Wu et al. Preparation and properties of microwave-absorbing asphalt mixtures containing graphite and magnetite powder
CN101607813A (zh) 电气石红外辐射地聚物材料及其制备方法
Wang et al. High‐entropy La (Fe0. 2Co0. 2Ni0. 2Cr0. 2Mn0. 2) O3 ceramic exhibiting high emissivity and low thermal conductivity
CN104803691A (zh) 一种热喷涂用耐高温陶瓷及其制备方法
Du et al. Influences of silicon carbide fineness on thermal and mechanical properties of cement-based composites
CN108585912A (zh) 一种含氧化石墨烯的无机高发射率涂层的制备方法
CN112573925B (zh) 高性能电磁屏蔽NdB6/SiO2复相陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200804