CN107001516A - 用于烯烃聚合的铬基催化剂组合物 - Google Patents

用于烯烃聚合的铬基催化剂组合物 Download PDF

Info

Publication number
CN107001516A
CN107001516A CN201580062217.8A CN201580062217A CN107001516A CN 107001516 A CN107001516 A CN 107001516A CN 201580062217 A CN201580062217 A CN 201580062217A CN 107001516 A CN107001516 A CN 107001516A
Authority
CN
China
Prior art keywords
carbon monoxide
chromium
olefin polymeric
catalyst
granular materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580062217.8A
Other languages
English (en)
Other versions
CN107001516B (zh
Inventor
K·J·坎恩
J·H·穆尔豪斯
P·A·科哈尼
T·T·塔马尔戈
K·R·格罗斯
M·G·古德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Univation Technologies LLC
Original Assignee
Univation Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univation Technologies LLC filed Critical Univation Technologies LLC
Publication of CN107001516A publication Critical patent/CN107001516A/zh
Application granted granted Critical
Publication of CN107001516B publication Critical patent/CN107001516B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/69Chromium, molybdenum, tungsten or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/025Metal oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/01Additive used together with the catalyst, excluding compounds containing Al or B
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/02Anti-static agent incorporated into the catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/06Catalyst characterized by its size
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/18Bulk density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本文公开了用于烯烃聚合的改性的铬基催化剂组合物。改性剂防止或降低催化剂粒子聚集,这在烯烃聚合中提供改善的催化剂粒子分散和组合物的一致流动指数反应。

Description

用于烯烃聚合的铬基催化剂组合物
技术领域
本公开大体上涉及用铬基催化剂的聚烯烃制造,并且更具体地说,涉及具有改善的特性的改性的铬基催化剂。
背景技术
聚烯烃已经广泛用于多种应用中,包括食品包装、纺织品和用于多种模制品的树脂材料。根据聚合物的既定用途,可能需要不同的聚合物特性。举例来说,具有相对低分子量和窄分子量分布的聚烯烃适于通过注射模制法模制的制品。另一方面,具有相对高分子量和宽分子量分布的聚烯烃适于通过吹塑模制或充气模制的制品。举例来说,在许多应用中,需要中等到高分子量聚乙烯。这类聚乙烯对于需要此类强度的应用(例如管道应用)来说具有足够的强度,并且同时具有良好的加工特征。类似地,具有特定流动指数或在特定流动指数范围内的聚烯烃(其中流动指数为热塑性聚合物熔体流动容易程度的度量)适合于各种应用。
可以通过使用铬基催化剂获得具有宽分子量分布的乙烯聚合物,所述铬基催化剂通过以下获得:在非还原气氛中煅烧无机氧化物载体上负载的铬化合物来使其活化,使得例如所负载的铬原子的至少一部分转化成六价铬原子(Cr+6)。这一类型的催化剂在本领域中通常称为菲利浦催化剂(Phillips catalyst)。铬化合物浸渍到二氧化硅上,干燥成自由流动的固体,并且在氧气存在下加热到约400℃至860℃,将大部分或全部铬从+3转化成+6氧化态。
用于高密度聚乙烯应用的另一铬基催化剂由烷基铬酸甲硅烷基铬酸酯(例如双-三苯基甲硅烷基铬酸酯)组成,所述甲硅烷基铬酸酯化学吸附到脱水二氧化硅上并且随后用二乙基乙氧基铝(DEAlE)还原。通过这些催化剂中的每一种产生的所得聚乙烯在一些重要特性方面是不同的。氧化铬/二氧化硅催化剂具有良好生产率(g PE/g催化剂),这也通过活性(g PE/g催化剂-h)测得,但常常产生分子量分布比用于如大部件吹塑模制、膜和压力管道的应用所需的分子量分布更窄的聚乙烯。甲硅烷基铬酸酯基催化剂产生具有理想分子量特征的聚乙烯(在分子量分布曲线上具有高分子量肩峰的更宽分子量分布),但通常生产率或活性不如氧化铬/二氧化硅催化剂高。
Monoi等人在日本专利申请案2002-020412中公开使用通过在非还原条件下活化制备的含有无机氧化物负载的Cr+6固体组分(A),接着添加含有二烷基铝官能团的烷氧化物(B)(其含有Al-O-C-X官能团,其中X为氧或氮原子)和三烷基铝(C)来聚合乙烯。所得乙烯聚合物称为具有良好的抗环境应力开裂性和良好的抗吹塑模制蠕变性。
Monoi等人在第6,326,443号美国专利中公开了聚乙烯聚合催化剂的制备:使用铬化合物,比特定数学公式所规定更快速地添加有机铝化合物,并且在不高于60℃的温度下比另一数学公式所规定更快速地干燥所得产物。两个公式都表示为分批量的函数。莫诺伊教示通过将有机铝化合物的添加时间和干燥时间降到最低,获得具有高活性和良好氢反应性的催化剂。
Monoi等人在第6,646,069号美国专利中公开一种在氢气共同存在下,使用三烷基铝化合物负载的铬基催化剂的乙烯聚合法,其中铬基催化剂通过在非还原气氛中煅烧使无机氧化物载体上承载的铬化合物活化以将铬原子转化成+6态,在惰性烃溶剂中用三烷基铝化合物处理所得物质,并且接着去除溶剂来获得。
Hasebe等人在日本专利公开案2001-294612中公开在300℃至1100℃下在非还原气氛、R3-nAlLn(R═C1-C8烷基;L=C1-C8烷氧基或苯氧基;并且0<n<1)以及路易斯碱(Lewisbase)有机化合物中煅烧的含有无机氧化物负载的铬化合物的催化剂。催化剂称为产生具有高分子量和窄分子量分布的聚烯烃。
Da等人在中国专利1214344中教示用于气相聚合乙烯的负载的铬基催化剂,其通过用无机铬化合物水溶液浸渍表面上具有羟基的无机氧化物负载物来制备。形成的粒子在空气中干燥并且在含氧气的气氛中活化。经活化的催化剂中间物用有机铝化合物还原。
Durand等人在第5,075,395号美国专利中教示一种用于在乙烯聚合中消除诱导期的方法。在包含与颗粒状负载物相关联并且通过热处理活化的氧化铬化合物的催化剂存在下用进料粉末进行,这一催化剂以预聚物形式使用。Durand方法的特征在于所采用的进料粉末事先通过使进料粉末与有机铝化合物接触,以这种方式使得紧接在乙烯与装料粉末在预聚物存在下接触之后开始聚合,从而进行处理。
上述铬基催化剂可用于产生所选等级的聚合物。通常需要聚合反应器来产生宽范围的产物,流动指数可例如从0.1dg/min到约100dg/min变化。铬基催化剂的流动指数反应指的是在给定的一组聚合条件下由催化剂制成的聚合物的流动指数范围。期望的是提供可再生产地制造并且具有一致的流动指数反应的铬基催化剂组合物。
发明内容
提供了一种用于烯烃聚合的铬基催化剂组合物,其包含:
a)至少一种无机氧化物负载的铬催化剂;
b)包含平均粒度小于约5微米的至少一种颗粒材料和/或至少一种抗静电剂的改性剂;
c)一种或多种还原剂;以及
d)任选地,一种或多种液体媒剂。
无机氧化物负载的铬催化剂可包含氧化铬催化剂和/或甲硅烷基铬酸酯催化剂。无机氧化物负载物可具有约0.5cm3/g到约6.0cm3/g的孔隙体积和约50m2/g到约1000m2/g的表面积。无机氧化物负载的铬催化剂的平均粒度可为约20微米到约300微米。
至少一种颗粒材料的平均粒度可小于3微米,或可小于2微米,或可小于1微米,或可小于500nm,或可小于250nm。颗粒材料的平均粒度可为1nm到1000nm,或1nm到500nm,或1nm到100nm,或1nm到50nm,或5nm到100nm,或5nm到50nm。
颗粒材料可为至少一种无机氧化物。例示性颗粒材料包括二氧化硅或氧化铝。颗粒材料可为煅制二氧化硅或热解二氧化硅。
颗粒材料可经历高温以便降低含水量和/或降低表面化学官能团的浓度。
颗粒材料可用试剂处理以便降低表面化学官能团。对于其中颗粒材料为无机氧化物的实例,其可经处理以降低其表面羟基官能团的浓度。表面羟基官能团可通过用硅烷或类似物质处理而降低。用试剂处理可发生在高温处理之后。
颗粒材料可为煅制二氧化硅,其已经用硅烷处理以完全或部分地降低表面羟基官能团。
颗粒材料可为疏水性的。
颗粒材料可降低或消除无机氧化物负载的铬催化剂的粒子的相互作用或聚集或团聚。在不存在改性剂的情况下,此类相互作用或聚集或团聚可由还原剂诱导,这继而可引起还原剂在负载的铬催化剂基质内的不良分散。这可导致含有凝胶状结构的粘性浆液。可通过添加如本文公开的改性剂降低或消除这种问题。平均粒度小于约5微米的至少一种颗粒材料可提高还原剂在负载的铬催化剂内的分散并且降低或消除凝胶形成。
所述改性剂还可为至少一种抗静电剂。至少一种抗静电剂可为颗粒材料或可呈液体形式。当抗静电剂呈液体形式时,它可为纯液体。抗静电剂还可溶解于合适的溶剂中。
至少一种抗静电剂可具有小于20微米,或小于10微米,或小于2微米,或小于1微米,或小于500nm,或小于250nm的平均初级粒度。
至少一种抗静电剂可为金属羧酸盐。
至少一种金属羧酸盐可呈颗粒形式或可部分或完全可溶于合适的液体媒剂,如非极性液体中。至少一种金属羧酸盐可具有小于20微米,或小于10微米,或小于2微米,或小于1微米,或小于500nm,或小于250nm的平均初级粒度。
至少一种金属羧酸盐可由下式表示:
M(Q)x(OOCR)y
其中M为第3族到第16族以及镧系和锕系的金属,Q为卤素、氢、羟基或氢氧化物、烷基、烷氧基、芳氧基、硅烷氧基、硅烷或磺酸酯基团,R为具有1到100个碳原子的烃基,并且x为0到3的整数,y为1到4的整数,并且x和y的总和等于金属的价态。
至少一种金属羧酸盐可由下式表示:
(R1CO2)2AlOH
其中R1为含有12到30个碳原子的烃基。
至少一种金属羧酸盐可包含羧酸铝。
金属羧酸盐可包含单硬脂酸铝、二硬脂酸铝、三硬脂酸铝或其组合。
抗静电剂可降低或消除无机氧化物负载的铬催化剂的粒子的相互作用或聚集或团聚。在不存在改性剂的情况下,此类相互作用或聚集或团聚可由还原剂诱导,这继而可引起还原剂在负载的铬催化剂基质内的不良分散。这可导致含有凝胶状结构的粘性浆液。可通过添加如本文公开的改性剂降低或消除这种问题。抗静电剂可提高还原剂在负载的铬催化剂内的分散并且降低或消除凝胶形成。
还原剂可包含一种或多种有机铝化合物。还原剂可包含烷基烷氧基铝,例如二乙基乙氧基铝(DEAlE)。
催化剂组合物可呈基本上干燥的粉末形式或可在液体媒剂中呈浆液形式。合适的液体媒剂包括非极性液体如烃。
在催化剂组合物中颗粒材料相对于无机氧化物负载的铬催化剂的量可以催化剂组合物的总干重计在0.01重量%和10重量%之间,或在0.1重量%和5重量%之间或在0.2重量%和3重量%之间。
在催化剂组合物中至少一种抗静电剂相对于无机氧化物负载的铬催化剂的量可以催化剂组合物的总干重计在0.01重量%和10重量%之间,或在0.01重量%和5重量%之间或在0.01重量%和3重量%之间或在0.01重量%和1重量%之间。
还提供了如上文公开的用于烯烃聚合的铬基催化剂组合物,其中催化剂组合物基本上不含凝胶。催化剂组合物可基本上不含粒子聚集体。
铬类铬基催化剂组合物可包含前述特征的任何组合。
还提供了用于烯烃聚合的还原铬基催化剂组合物,其包含:
(a)如上文公开的至少一种还原无机氧化物负载的铬催化剂;
(b)如上文公开的改性剂,其包含具有小于约5微米的平均粒度的至少一种颗粒材料和/或至少一种抗静电剂;以及
(c)任选地,一种或多种液体媒剂。
颗粒材料和/或抗静电剂可降低或消除还原无机负载的铬催化剂的粒子的相互作用或聚集或团聚。
本文公开的催化剂组合物和还原催化剂组合物的优点为最小化无机氧化物负载的铬催化剂的粒子之间的粒子间相互作用。这防止或基本上最小化负载的催化剂粒子聚集或团聚,所述负载的催化剂粒子聚集或团聚可出现在包含无机氧化物负载的铬催化剂和还原剂的催化剂组合物的浆液制备期间和/或当还原催化剂组合物在合适的液体媒剂中成浆液时。继而这可导致改善的催化剂批料的均匀性,尤其是对其中在制造期间混合可不太有效的较大规模。这可导致改善的催化剂批次间一致性。本文公开的组合物的另一个优点为改善的催化剂一致性可引起流动指数反应的变化降低。
不希望受理论所束缚,假定具有小于约5微米的平均粒度的颗粒材料和/或抗静电剂防止或基本上最小化负载的铬催化剂粒子相互作用或聚集或团聚。
这是出人意料的,因为在浆液催化剂体系中粒子聚集或团聚预期不会成为问题因为静电荷应基本上被耗散。
本文公开的催化剂组合物的另一个优点为可相对于如上文公开的在不存在改性剂的情况下由无机氧化物负载的铬催化剂和还原剂制备的催化剂组合物增加催化剂组合物的堆积密度,所述改性剂包含具有小于约5微米的平均粒度的颗粒材料和/或抗静电剂。这可促进使用现有设备制备较大的催化剂批量或使用现有运输容器运输较大的催化剂体积。
另外,在不存在还原剂的情况下无机氧化物负载的铬催化剂的堆积密度还可通过用如上文公开的改性剂处理而增加,所述改性剂包含具有小于约5微米的平均粒度的颗粒材料和/或抗静电剂。
另外,无机氧化物负载物,尤其是脱水无机氧化物负载物的堆积密度还可通过用如上文公开的改性剂处理而增加,所述改性剂包含具有小于约5微米的平均粒度的颗粒材料和/或抗静电剂。
另外,还原无机氧化物负载的铬催化剂的堆积密度还可通过用如上文公开的的改性剂处理而增加,所述改性剂包含具有小于约5微米的平均粒度的颗粒材料和/或抗静电剂。
已发现,可在催化剂制备的各个阶段有利地采用如本文公开的改性剂以便增加固相的堆积密度。
还提供了一种制造用于烯烃聚合的铬基催化剂组合物的方法,其包含将一种或多种无机氧化物负载的铬催化剂与具有小于约5微米的平均粒度的至少一种颗粒材料和/或一种或多种抗静电剂以及一种或多种还原剂组合。
所述方法可包含以下步骤:a)在液体媒剂中将一种或多种无机氧化物负载的铬催化剂与具有小于约5微米的平均粒度的至少一种颗粒材料和/或一种或多种抗静电剂组合和b)添加一种或多种还原剂。
所述方法还可包含以下步骤:a)在液体媒剂中将一种或多种无机氧化物负载的铬催化剂与一种或多种还原剂组合和b)添加具有小于约5微米的平均粒度的至少一种颗粒材料和/或一种或多种抗静电剂。
上述方法还可通过经插入管添加还原剂进行,所述插入管被引导到液体媒剂中的无机氧化物负载的铬催化剂的浆液的表面并且远离催化剂在其内制造的容器的壁。
所述方法还可包含去除液体媒剂的步骤以便提供基本上干燥的催化剂组合物。催化剂组合物可呈自由流动粉末的形式。
还提供了一种聚合烯烃的方法,其包含在聚合条件下使根据上文公开的实施例中任一实施例的催化剂组合物与一种或多种烯烃接触。
还提供了一种组合物,其包含:
a)热处理的颗粒材料;
b)疏水性的颗粒材料;以及
c)任选地一种或多种液体媒剂。
热处理的颗粒材料可包含无机氧化物如二氧化硅或氧化铝。
热处理的颗粒材料可在约150℃到约1000℃的温度下处理。
疏水性的颗粒材料可为处理尤其是化学处理的烟雾二氧化硅或热解二氧化硅。
此类组合物为有利的,因为已发现热处理的颗粒材料的堆积密度可通过添加疏水性的颗粒材料增加。相对于颗粒材料的总重量,少量例如0.05重量%到5重量%,或0.1重量%到3重量%的疏水性的颗粒材料有效地将堆积密度增加高达20%或更多。
还提供了一种增加热处理的颗粒材料的堆积密度的方法,其包含任选地在一种或多种液体媒剂存在下使热处理的颗粒材料与疏水性的颗粒材料组合。
具体实施方式
在公开和描述本发明化合物、组分、组合物和/或方法之前,应理解除非另外指明,否则本公开不限于特定化合物、组分、组合物、反应物、反应条件、配体、催化剂结构等,除非另外规定,否则可有所变化。还应理解,本文所使用的术语仅出于描述具体实施例的目的,并且并不打算作为限制。
如下文所论述,本公开的实施例包括铬基催化剂组合物和还原铬基催化剂组合物,其通过添加改性剂具有基本上最小化的粒子团聚,所述改性剂包含具有小于约5微米的平均粒度的至少一种颗粒材料和/或至少一种抗静电剂。
有利地,通过将如本文公开的改性剂添加到铬基催化剂或还原铬基催化剂,所得催化剂组合物可具有增强的均匀性、改善的批次间一致性和在烯烃聚合中降低的流动指数变化。增强的均匀性可为还原剂在整个负载的铬催化剂的粒子基质中增强分散的结果。
本公开的实施例可涉及通过添加改性剂控制在铬基催化剂或还原铬基催化剂中的粒子聚集或团聚。
一般来说,本文公开的实施例涉及降低负载的铬基催化剂的流动指数反应的变化。在铬基催化剂的生产中,催化剂可与还原剂和具有小于约5微米的平均粒度的至少一种颗粒材料和/或至少一种抗静电剂接触以得到还原铬基催化剂。这些还原铬基催化剂接着可用于将烯烃聚合成聚烯烃。
如本文所用,“流动指数反应”意指在某一组聚合反应条件下,催化剂产生在特定分子量范围内的聚合物。
在用如本文公开的催化剂组合物的后续聚合中,在催化剂组合物中还原剂/Cr的摩尔比或还原剂在催化剂组合物中的重量%(wt%)、聚合温度、催化剂组合物在聚合反应器中的滞留时间、引入到反应器或存在于反应器的微量氧气回加浓度,和对乙烯的共聚单体和氢气比率可各自影响用催化剂组合物制得的聚合物的分子量。当不断地制备催化剂组合物,并且后续聚合工艺变量保持恒定或通常恒定时,一定调配物的催化剂组合物应制备相同聚合物。即使制备和工艺变量中存在微小变化,如在给定控制容限内,也应形成类似聚合物。因此,可在催化剂组合物的生产中实施控制催化剂组合物的流动指数反应,以在根据本文公开的实施例的下游聚合中得到聚合物的一定分子量范围。
聚合物流动指数与聚合物分子量负相关。可在本文使用术语如“高”、“中”或“低”修饰流动指数反应以指示与在不存在本文公开的改性剂的情况下产生的类似铬基催化剂组合物相比,在给定一组聚合条件下制得的所得聚合物的流动指数的相对范围。举例来说,对于存在或不存在具有小于约5微米的平均粒度的至少一种颗粒材料和/或至少一种抗静电剂的情况下产生的给定铬基催化剂组合物,一种催化剂组合物可具有低的流动指数反应,产生较高分子量聚合物,同时另一催化剂组合物可具有高的流动指数反应,产生较低分子量聚合物。
聚合物熔融指数为聚合物分子量的另一指示。熔融指数是聚合物流动性的量度,并且还与分子量负相关。较高熔融指数可指示活性聚合物链相对于扩展的较高封端,并且因此指示较低分子量。
对于选择或指定还原剂/Cr比率,铬基催化剂组合物的流动指数反应的一致性可通过添加还原剂影响,包括进料速率和添加还原剂的时段。举例来说,流动指数反应一般随着还原剂的添加速率减慢而增加。另外,流动指数反应一般随着还原剂添加和反应期间的较快搅拌速率或较慢添加速率和较快搅拌速率的组合而增加。本文公开的改性剂可消除或改善工艺变量的影响,如在添加还原剂期间还原剂添加速率或搅拌速率。
铬基催化剂
尽管本文所公开的实施例包括氧化铬和甲硅烷基铬酸酯催化剂,但本公开的范围不应受其限制。本领域的技术人员应理解,可有利地采用其它铬基催化剂。
可用于本文所公开的实施例的催化剂包括铬基催化剂,如氧化铬和甲硅烷基铬酸酯基催化剂。选择用于聚合的催化剂体系通常决定聚合物特性,如分子量、分子量分布和流动指数。
氧化铬基催化剂,例如菲利浦型(Phillips-type)催化剂,可通过将Cr+3物质浸渍到多孔二氧化硅负载物,接着在氧化条件下在约300℃到900℃下,或在约400℃到860℃下煅烧负载的铬物质形成。在这些条件下,至少一些Cr+3转化成Cr+6。菲利浦催化剂在现有技术中一般还称为无机氧化物负载的Cr+6
甲硅烷基铬酸酯催化剂为另一类型的无机氧化物负载的Cr+6催化剂,它倾向于产生针对许多应用的具有改善特性的聚乙烯。甲硅烷基铬酸酯催化剂可通过在约400℃到850℃下在空气或氮气中使二氧化硅脱水,随后使甲硅烷基铬酸酯化合物(如双(三苯基甲硅烷基)铬酸酯)与在惰性烃溶剂中制成浆液的二氧化硅接触一段规定时间,接着例如与烷基烷氧基铝(如二乙基乙氧基铝(DEAlE))接触,并且接着干燥所得催化剂产物以自其去除溶剂来形成。
Cann等人在第2005/0272886号美国公开案中教示使用烷基铝活化剂和共催化剂提高铬基催化剂的效能。烷基铝的添加允许可变控制侧分支和需要的产率,并且这些化合物可被直接施加到至催化剂或独立地添加到反应器。直接添加烷基铝化合物导聚合反应器(原位)消除诱导时间。
如本文所述,流动指数通常为聚烯烃应用的重要参数。流动指数为热塑性聚合物熔体流动容易程度的量度。如本文所用的流动指数或I21定义为在190℃下经21.6kg负载施加的压力在10分钟内流过特定直径和长度的毛细管的聚合物的重量(以克为单位)并且通常根据ASTM D-1238测量。指数I2和I5进行类似地定义,其中所施加的压力分别为2.16kg或5kg的负载。I2和I5也称为熔融指数。
流动指数因此是流体在压力和温度下流动能力的量度。流动指数为分子量的间接量度,高流动指数对应于低分子量。同时,流动指数在测试条件下与熔体的粘度成反比,并且流动指数值和熔融指数值之间的比率(如一种材料的I21与I2比率)通常用作分子量分布宽度的量度。
因此,流动指数对聚烯烃而言是非常重要的参数。不同的流动指数可能适于不同的应用。对于如润滑剂、注射模制和薄膜的应用,可能需要较高流动指数的聚烯烃,而对于如管、大鼓、桶或机动车汽油槽的应用,可能需要较低流动指数的聚烯烃。用于给定应用的聚烯烃因此应具有足够高的流动指数从而使熔融状态的聚合物容易形成预期物品,而且还足够低从而使得最终制品的机械强度对于其预定用途而言将是足够的。
当使用现有技术铬基催化剂时,可调节反应器工艺变量以获得期望的聚合物流动指数和熔融指数。举例来说,已知增加聚合温度会提高终止速率,但对扩展速率的作用相当轻微,如M.P.McDaniel,《催化剂进展(Advances in Catalysis)》,第33卷(1985),第47页至第98页中所报道。这可能导致聚合物的链较短,并且熔融指数和流动指数增加。具有低流动指数反应的催化剂因此通常需要较高反应器温度,较高氧气回加以及较高氢气浓度来产生给定流动指数的聚合物。
然而,对反应器工艺变量(如例如反应器温度、氢气和氧气含量)可调整的范围存在限制,而不会对聚合方法或催化剂生产率产生不利影响。举例来说,过高的反应器温度可接近所形成的聚合物的软化点或熔点。这又可导致聚合物团聚和反应器积垢。可替代地,低反应器温度可导致相对于冷却水的较小温差、较低效率的热去除以及最终降低的生产能力。另外,高氧气回加浓度可导致催化剂生产率降低、较小的平均聚合物粒度以及可造成反应器积垢的较高细粒。另外,氢气浓度的变化可影响聚合物特性,如其继而可影响聚合物对其所要应用的适用性的离模膨胀。因此,根据方法操作限制调整反应器变量可导致操作问题,这些问题可导致由于大规模清理程序引起的反应器提前关机和停工时间,以及所得聚合物产物的非期望凝胶和其它非期望特性。
通过改性催化剂组合物降低催化剂流动指数反应的变化的能力因此可避免操作困难、反应器停工,和不太经济的聚合条件。降低催化剂流动指数反应的变化的此能力可促进使聚合物具有期望特性以更易于制得的催化剂的生产。实际上,与提高还原剂和催化剂组合物的分散相关的本文所述技术的实施例可提高催化剂组合物的一致性。
本文公开的铬基催化剂组合物可包括铬基催化剂、改性剂和还原剂。铬基催化剂可包括氧化铬催化剂、甲硅烷基铬酸酯催化剂,或氧化铬和甲硅烷基铬酸酯催化剂两者的组合。
用于制备氧化铬催化剂的铬化合物可包括CrO3或在所采用的活化条件下可转化为CrO3的任何化合物。可转化成CrO3的许多化合物公开在第2,825,721号、第3,023,203号、第3,622,251号和第4,011,382号美国专利中,并且包括乙酰基丙酮酸铬、卤化铬、硝酸铬、乙酸铬、硫酸铬、铬酸铵、重铬酸铵或其它可溶性含铬盐。可使用乙酸铬。
用于制备本文公开的甲硅烷基铬酸酯催化剂的甲硅烷基铬酸酯化合物可包括双-三乙基甲硅烷基铬酸酯、双-三丁基甲硅烷基铬酸酯、双-三异戊基甲硅烷基铬酸酯、双-三-2-乙基己基甲硅烷基铬酸酯、双-十三烷基甲硅烷基铬酸酯、双-三(十四基)甲硅烷基铬酸酯、双-三苯甲基甲硅烷基铬酸酯、双-三苯乙基甲硅烷基铬酸酯、双-三苯基甲硅烷基铬酸酯、双-三甲苯基甲硅烷基铬酸酯、双-三二甲苯基甲硅烷基铬酸酯、双-三萘基甲硅烷基铬酸酯、双-三乙基苯基甲硅烷基铬酸酯、双-三甲基萘基甲硅烷基铬酸酯、聚二苯基甲硅烷基铬酸酯以及聚二乙基甲硅烷基铬酸酯。此类催化剂的实例尤其公开在例如第3,324,101号、第3,704,287号和第4,100,105号美国专利中。双-三苯基甲硅烷基铬酸酯、双-三甲苯基甲硅烷基铬酸酯、双-三二甲苯基甲硅烷基铬酸酯和双-三萘基甲硅烷基铬酸酯可用于形式甲硅烷基铬酸酯催化剂。双-三苯基甲硅烷基铬酸酯可用于形成甲硅烷基铬酸酯催化剂。
甲硅烷基铬酸酯化合物可沉积到常规催化剂负载物或底物上,例如无机氧化物材料。用于产生氧化铬催化剂的铬化合物可沉积到常规催化剂负载物上。如本文所用,术语“负载物”是指任何负载物材料,例如多孔负载物材料,包括无机或有机负载物材料。例示性载体可为包括第2族、第3族、第4族、第5族、第13族和第14族氧化物的无机氧化物,并且更具体地说第13族和第14族原子的无机氧化物。在本说明书中的族元素符号如在根据国际理论化学和应用化学联合会(IUPAC)1988符号(无机化学的IUPAC命名法,1960,Blackwell出版,英国(IUPAC Nomenclature of Inorganic Chemistry 1960,Blackwell Publ.,London))的元素周期表中规定的。其中,第4族、第5族、第8族、第9族和第15族分别对应于Deming符号(《化学橡胶公司的化学和物理学手册(Chemical Rubber Company's Handbook ofChemistry&Physic)》,第48版)的第IVB族、第VB族、第IIIA族、第IVA族和第VA族,以及对应于IUPAC 1970符号(《柯克-奥思默化学技术百科全书(Kirk-Othmer Encyclopedia ofChemical Technology)》第2版,第8卷,第94页)的第IVA族、第VA族、第IIIB族、第IVB族和第VB族。负载物材料的非限制性实例包括无机氧化物,如二氧化硅、氧化铝、二氧化钛、氧化锆、氧化钍以及此类氧化物的混合物如例如二氧化硅-铬、二氧化硅-氧化铝、二氧化硅-二氧化钛等。
可用作在本公开的催化剂组合物中的负载物的无机氧化物材料可为具有可变表面积和粒度的多孔材料。负载物可具有在50平方米/克到1000平方米/克范围内的表面积和20微米到300微米的平均粒度。负载物可具有约0.5cm3/g到约6.0cm3/g的孔隙体积和约200m2/g到约600m2/g的表面积。负载物可具有约1.1cm3/g到约1.8cm3/g的孔隙体积和约245m2/g到约375m2/g的表面积。负载物可具有约2.4cm3/g到约3.7cm3/g的孔隙体积和约410m2/g到约620m2/g的表面积。负载物可具有约0.9cm3/g到约1.4cm3/g的孔隙体积和约390m2/g到约590m2/g的表面积。可使用如本领域中已知的常规技术测量以上特性中的每一者。
负载物材料可包含二氧化硅,尤其是非晶形二氧化硅,并且最尤其是高表面积非晶形二氧化硅。此类负载物材料可购自多个来源。这类来源包括格雷斯公司(W.R.Graceand Company),其出售以商品名Sylopol 952或Sylopol 955的二氧化硅负载物材料,和PQ公司,其出售以多个商品名(包括ES70)的二氧化硅负载物材料。二氧化硅呈球形粒子形式,其通过喷雾干燥法获得。可替代地,PQ公司出售以商品名如MS3050的二氧化硅负载物材料,其未经喷雾干燥。如所获得的,这些二氧化硅中的所有都是未经煅烧(即,未脱水)的。然而,在购买之前煅烧的二氧化硅可用于本公开的催化剂组合物。
还可使用可商购的负载的铬化合物,如乙酸铬。商业来源包括格雷斯公司,其出售以商品名如Sylopol 957、Sylopol 957HS或Sylopol 957BG的铬/二氧化硅负载物材料,和PQ公司,其出售以各种商品名如ES370的铬/二氧化硅负载物材料。铬/二氧化硅负载物呈球形粒子形式,其通过喷雾干燥法获得。可替代地,PQ公司出售以商品名如C35100MS和C35300MS的二氧化硅负载物材料,其未经喷雾干燥。如所产生的,这些二氧化硅中的所有都未经活化。然而,如果可以,那么在购买之前活化的在二氧化硅上负载的铬可用于本公开的催化剂中。
可几乎在约300℃到高达在此温度下发生大体上烧结负载物的温度的任何温度下实现负载的氧化铬催化剂的活化。举例来说,活化催化剂可在流化床中制备。在活化期间使干燥空气或氧气流通过负载型铬基催化剂的通道有助于任何水从负载物中转移,并且至少部分地将铬物质转化成Cr+6。
用于活化铬基催化剂的温度通常足够高以允许铬化合物在负载物材料上重排。对于大于1小时到高达48小时的周期,约300℃到约900℃峰值活化温度是可接受的。负载的氧化铬催化剂可在约400℃到约850℃、约500℃到约700℃和约550℃到约650℃的温度下活化。例示性活化温度为约600℃、约700℃和约800℃。活化温度的选择可考虑活化设备的温度限制。负载的氧化铬催化剂可在所选择的峰值活化温度下活化约1小时到到约36小时,或约3小时到约24小时或约4到约6小时的时段。例示性峰值活化时间可为约4小时或约6小时。活化可在氧化环境中进行;例如,使用干燥良好的空气或氧并且温度保持在发生大体上熔结负载的温度以下。在活化铬化合物之后,产生粉末状、自由流动粒状氧化铬催化剂。
因为用于制备本公开的催化剂和催化剂组合物的有机金属组分可与水反应,所以负载物材料可基本上是干燥的。举例来说,其中铬基催化剂为甲硅烷基铬酸酯,未处理的负载物可在与铬基催化剂接触之前脱水或煅烧。
负载物可在高温下煅烧去除水,或在负载物的表面上实现化学改变。可使用本领域普通技术人员已知的任何程序进行负载物材料的煅烧,并且本公开不受煅烧方法限制。一种此类煅烧方法由T.E.Nowlin等人,“用于乙烯聚合的二氧化硅上的齐格勒-纳塔催化剂(Ziegler-Natta Catalysts on Silica for Ethylene Polymerization),”《聚合物科学杂志,部分A:聚合物化学(J.Polym.Sci.,Part A:Polymer Chemistry)》,第29卷,1167-1173(1991)公开。
举例来说,煅烧的二氧化硅可在流化床中如下制备。二氧化硅负载物材料(例如Sylopol 955)逐步或稳定地从环境温度加热到所需煅烧温度(例如600℃),同时使干燥氮气或干燥空气穿过负载物材料或越过负载物材料。二氧化硅在约此温度下维持约1小时到约4小时,随后使其冷却到环境温度。煅烧温度主要影响负载物表面上的OH基数目;即,负载物表面上的OH基(在二氧化硅的情况下,硅烷醇基)的数目与干燥或脱水温度大致成反比:温度越高,羟基含量越低。
负载物材料可在约350℃到850℃,或约400℃到约700℃或约500℃到约650℃的峰值温度下煅烧。例示性煅烧温度为约400℃、约600℃和约800℃。煅烧时间为约2小时到约24小时,或约4小时到约16小时,或约8小时到约12小时。在峰值煅烧温度下的例示性时间为约1小时、约2小时或约4小时。
甲硅烷基铬酸酯化合物可与煅烧的负载物接触以形成“粘结催化剂”。甲硅烷基铬酸酯化合物接着可以本领域普通技术人员已知方式中的任一方式与煅烧的负载物材料接触。甲硅烷基铬酸酯化合物可通过任何合适方式(如以溶液、浆液或固体形式,或其的一些组合)与负载物接触,并且可加热到任何所需温度,持续一段足以实现所需化学/物理转化的规定时间。
这种接触和转化通常在非极性溶剂中进行。合适的非极性溶剂可为在接触和转化温度下为液体的材料,并且其中在催化剂制备期间使用的一些组分(即,甲硅烷基铬酸酯化合物和还原剂)至少部分可溶性。非极性溶剂可为烷烃,尤其是含有约5到约10个碳原子的那些,如戊烷、异戊烷、己烷、异己烷、正庚烷、异庚烷、辛烷、壬烷以及癸烷。还可使用环烷烃,尤其是含有约5到约10个碳原子的那些,如环己烷和甲基环己烷。非极性溶剂可为溶剂混合物。例示性非极性溶剂为异戊烷、异己烷和己烷。由于其低沸点可使用异戊烷,这使其去除方便并且快速非极性溶剂可在使用之前纯化:如通过在真空和/或加热下脱气或通过穿流经过硅胶和/或分子筛以去除痕量水、分子氧、极性化合物以及能够不利影响催化剂活性的其它材料。
混合物可混合一段足以负载二氧化硅负载物上的甲硅烷基铬酸酯化合物或使其反应的时间。还原剂和改性剂接着可与此浆液接触。可替代地,在将甲硅烷基铬酸酯化合物负载在负载物上之后并且在添加还原剂和改性剂之前,溶剂接着可通过蒸发而基本上去除,以在负载物上产生自由流动负载的甲硅烷基铬酸酯。因此,负载的甲硅烷基铬酸酯可在相同或不同非极性溶剂中重新制成浆液并且与还原剂和改性剂接触。
一旦将催化剂负载并且在氧化铬催化剂的情况下活化,铬基催化剂组合物接着可在添加还原剂和改性剂之前在非极性溶剂中制成浆液。负载的催化剂可为氧化铬负载的催化剂、甲硅烷基铬酸酯催化剂或两者的混合物。此浆液通过混合负载的催化剂与非极性溶剂制备。在一些实施例中,负载的甲硅烷基铬酸酯化合物在添加还原剂和改性剂之前未被干燥,而是出于如降低成本的原因在非极性溶剂中制成浆液。
铬基催化剂可包含具有约1.1cm3/g到约1.8cm3/g的孔隙体积和约245m2/g到约375m2/g的表面积的无机氧化物负载物。
铬基催化剂可包含具有约2.4cm3/g到约3.7cm3/g的孔隙体积和约410m2/g到约620m2/g的表面积的无机氧化物负载物。
铬基催化剂可包含具有约0.9cm3/g到约1.4cm3/g的孔隙体积和约390m2/g到约590m2/g的表面积的无机氧化物负载物。
铬基催化剂可包含无机负载物,所述无机负载物包含50平方米/克到1000平方米/克的表面积和20微米到300微米的平均粒度。
催化剂改性剂
本文公开的铬基催化剂组合物或还原铬基催化剂组合物包含改性剂,所述改性剂包含具有小于约5微米的平均粒度的至少一种颗粒材料和/或至少一种抗静电剂。无论采用哪一种改性剂,它应基本上不干扰无机氧化物负载的铬催化剂的还原。
颗粒材料
在包含一种或多种颗粒材料的催化剂组合物中,颗粒材料可具有小于约5微米的平均粒度。颗粒材料的平均粒度可小于3微米,或可小于2微米,或可小于1微米,或可小于500nm,或可小于250nm。颗粒材料的平均粒度可为1nm到1000nm,或1nm到500nm,或1nm到100nm,或1nm到50nm,或5nm到100nm,或5nm到50nm。颗粒材料的平均粒度可比无机氧化物负载的铬催化剂的平均粒度小至少一个数量级。颗粒材料的平均粒度可比无机氧化物负载的铬催化剂的平均粒度小至少两个数量级。
颗粒材料可为至少一种无机氧化物。例示性颗粒材料包括二氧化硅或氧化铝。颗粒材料可为煅制二氧化硅或热解二氧化硅。
颗粒材料可经历高温以便降低含水量和/或降低表面化学官能团的浓度。
颗粒材料可在约150℃到约850℃、或约200℃到约700℃或约300℃到约650℃的峰值温度下加热。例示性温度为约400℃、约600℃和约800℃。
颗粒材料可用试剂处理以便降低表面化学官能团。对于其中颗粒材料为无机氧化物的实例,其可经处理以降低其表面羟基官能团的浓度。表面羟基官能团可通过用硅烷或类似物质处理而降低。用试剂处理可发生在高温处理之后。
颗粒材料可为煅制二氧化硅,其已经用硅烷处理以完全或部分地降低表面羟基官能团。
颗粒材料可为疏水性的。
颗粒材料可降低或消除无机氧化物负载的铬催化剂的粒子的相互作用或团聚。
例示性无机氧化物包括煅制二氧化硅或热解二氧化硅。煅制二氧化硅的平均粒度可为1nm到200nm,或2到100nm或5nm至50nm。煅制二氧化硅可为基本上非多孔的。煅制二氧化硅可具有20m2/g至600m2/g的表面积。煅制二氧化硅可具有0.03g/cm3至0.2g/cm3的堆积密度。煅制二氧化硅可为疏水性的煅制二氧化硅。煅制二氧化硅可用硅烷或硅氧烷处理。
例示性颗粒材料为 TS-610,其为已用二甲基二氯硅烷处理的平均粒度5nm到50nm的煅制二氧化硅。它由卡博特(Cabot)公司生产。
可用作改性剂的其它颗粒材料包括二氧化硅,如(赢创(Evonik)),(胡贝尔(Huber)),HISIL223和SILENE732D(PPG工业(PPG Industries))。
在催化剂组合物中颗粒材料相对于无机氧化物负载的铬催化剂的量可以催化剂组合物的总重量计在0.01重量%和10重量%之间,或在0.1重量%和5重量%之间或在0.2重量%和3重量%之间。
抗静电剂
在包含一种或多种抗静电剂的催化剂组合物中,抗静电剂可呈颗粒或可溶形式。至少一种抗静电剂可为金属羧酸盐。
至少一种抗静电剂可呈颗粒形式或可溶于合适的液体媒剂,如非极性液体中。至少一种抗静电剂可具有小于20微米,或小于10微米,或小于2微米,或小于1微米,或小于500nm,或小于250nm的平均初级粒度。
至少一种金属羧酸盐可由下式表示:
M(Q)x(OOCR)y
其中M为第3族到第16族以及镧系和锕系的金属,Q为卤素、氢、羟基或氢氧化物、烷基、烷氧基、芳氧基、硅烷氧基、硅烷或磺酸酯基团,R为具有1到100个碳原子的烃基,并且x为0到3的整数,y为1到4的整数,并且x和y的总和等于金属的价态。
非限制性实例包括饱和、不饱和、脂族、芳香族或饱和环状羧酸盐,其中羧酸盐配体优选地具有2到24个碳原子,如乙酸盐、丙酸盐、丁酸盐、戊酸盐、特戊酸盐、己酸盐、异丁基乙酸盐、叔丁基乙酸盐、辛酸盐、庚酸盐、壬酸盐、十一烷酸盐、油酸盐、辛酸盐、棕榈酸盐、肉豆蔻酸盐、十七烷酸盐、硬脂酸盐、花生酸盐和二十三碳酸盐。
金属部分的非限制性实例包括来自元素周期表的选自以下各者的群组的金属:Al、Mg、Ca、Sr、Sn、Ti、V、Ba、Zn、Cd、Hg、Mn、Fe、Co、Ni、Pd、Li以及Na。
至少一种金属羧酸盐可由下式表示:
(R1CO2)2AlOH
其中R1为含有12到30个碳原子的烃基。
至少一种金属羧酸盐可包含羧酸铝。
金属羧酸盐可包含单硬脂酸铝、二硬脂酸铝、三硬脂酸铝或其组合。
在催化剂组合物中至少一种抗静电剂相对于无机氧化物负载的铬催化剂的量可以催化剂组合物的总重量计在0.01重量%和10重量%之间,或在0.01重量%和5重量%之间或在0.01重量%和3重量%之间或在0.01重量%和1重量%之间。
本文公开的催化剂组合物的另一优点为催化剂组合物的堆积密度相对于由如上文公开的在不存在改性剂的情况下由无机氧化物负载的铬催化剂和还原剂制备的催化剂组合物可较高。这可促进使用现有设备制备较大的催化剂批量或使用现有运输容器运输较大的催化剂体积。
还已经观察到,在不存在还原剂的情况下(即在还原之前)无机氧化物负载的铬催化剂的堆积密度可通过用如上文公开的改性剂处理而增加。
另外,无机氧化物负载物,尤其是脱水的无机氧化物负载物的堆积密度可通过用如上文公开的改性剂处理而增加。无机氧化物可为二氧化硅,尤其是脱水的二氧化硅。脱水的二氧化硅的堆积密度可通过添加具有小于约5微米的平均粒度的颗粒材料而增加。颗粒材料可根据如本文公开的实施例中的任一实施例。颗粒材料可为疏水性的煅制二氧化硅。颗粒材料可为已用硅烷处理的煅制二氧化硅。
另外,还原无机氧化物负载的铬催化剂的堆积密度还可通过用如上文公开的改性剂处理而增加。
应了解,可在催化剂制备的各个阶段有利地采用如本文公开的改性剂以便增加固相的堆积密度。
还原剂
所使用的还原剂可为有机铝化合物,如烷基铝和烷基烷氧基铝。通式为R2AlOR的烷基烷氧基铝可适合用于本公开的实施例中。上述通式的R或烷基可相同或不同,可具有约1到约12个碳原子,或约1到约10个碳原子,或约2到约8个碳原子,或约2到约4个碳原子。烷基烷氧基铝的实例包括但不限于二乙基甲氧基铝、二乙基乙氧基铝、二乙基丙氧基铝、二乙基异丙氧基铝、二乙基叔丁氧基铝、二甲基乙氧基铝、二异丙基乙氧基铝、二异丁基乙氧基铝、甲基乙基乙氧基铝以及其混合物。尽管实例使用二乙基乙氧基铝(DEAlE),但应理解本公开不限于此。在以下使用DEAlE的实例中,可使用其它烷基铝(例如三烷基铝、三乙基铝或TEAL等)或烷基烷氧基铝或其混合物。
液体媒剂
液体媒剂可为惰性液态烃并且可包括异丁烷、异戊烷、己烷、环己烷、庚烷、辛烷、苯、甲苯及其混合物和异构体。
铬基催化剂组合物可包含:
a)至少一种无机氧化物负载的铬催化剂;
b)硅烷处理的煅制二氧化硅;
c)二乙基乙氧基铝;以及
d)任选地,一种或多种液体媒剂。
铬基催化剂组合物可包含:
a)至少一种无机氧化物负载的铬催化剂;
b)具有小于20微米的平均粒度的颗粒金属羧酸盐;
c)二乙基乙氧基铝;以及
d)任选地,一种或多种液体媒剂。
铬基催化剂组合物可包含:
a)至少一种无机氧化物负载的铬催化剂;
b)改性剂,其包含具有小于约5微米的平均粒度的至少一种颗粒材料和/或具有小于20微米的平均粒度的至少一种颗粒抗静电剂;
c)二乙基乙氧基铝;以及
d)任选地,一种或多种液体媒剂。
制备铬基催化剂组合物的方法
铬基催化剂组合物可通过将一种或多种无机氧化物负载的铬催化剂与如上文公开的具有小于约5微米的平均粒度的至少一种颗粒材料和/或如上文公开的一种或多种抗静电剂以及一种或多种还原剂组合制备。
所述方法可包含以下步骤:a)在液体媒剂中将一种或多种无机氧化物负载的铬催化剂与具有小于约5微米的平均粒度的至少一种颗粒材料和/或一种或多种抗静电剂组合和b)添加一种或多种还原剂。
所述方法还可包含以下步骤:a)在液体媒剂中将一种或多种无机氧化物负载的铬催化剂与一种或多种还原剂组合和b)添加具有小于约5微米的平均粒度的至少一种颗粒材料和/或一种或多种抗静电剂。
所述方法还可包含去除液体媒剂的步骤以便提供基本上干燥的催化剂组合物。催化剂组合物可呈自由流动粉末的形式,所述自由流动粉末可按原样进料到聚合系统或在进料之前在合适的液体中制成浆液。
无机氧化物负载的铬催化剂可为干燥催化剂或催化剂和惰性溶剂或矿物油等的混合物。惰性溶剂可为烷烃,如异戊烷、己烷等。
还原剂可添加到负载的硅烷基铬酸酯催化剂的混合物,并且一种或多种改性剂在本文中与催化剂混合容器或其它催化剂制备容器中的非极性溶剂一起公开。还原剂可添加到活化氧化铬催化剂的混合物,并且一种或多种改性剂在本文中与催化剂混合容器中的非极性溶剂一起公开。还原剂可添加到甲硅烷基铬酸酯催化剂和活化氧化铬基催化剂的混合物,并且一种或多种改性剂在本文中公开在催化剂混合容器中的非极性溶剂中。当氧化铬基催化剂和甲硅烷基铬酸酯基催化剂一起用于本公开时,各催化剂通常沉积于独立负载物上并且在混合在一起之前接受不同的煅烧或活化处理。还原剂可包括有机铝化合物、烷基铝、烷基烷氧基铝(如二乙基乙氧基铝(DEAlE))、三烷基铝(如三乙基铝(TEAL))、DEAlE和TEAL的混合物以及其它有机铝化合物等。
可以在高温下和在惰性气氛(如高达7巴(100psig)氮气排出压力)下将还原剂添加到催化剂浆液中。举例来说,在还原剂混合期间,浆液可以维持在约30℃与80℃之间的温度。浆液可维持在约40℃和约60℃之间的温度。浆液可维持在约40℃和约50℃之间如约45℃的温度。
还原剂可经5秒到120分钟、1分钟到5分钟、5分钟到15分钟、10分钟到110分钟、30分钟到100分钟等的时间段范围添加。举例来说,在催化剂组合物包括甲硅烷基铬酸酯时,还原剂可以经约30秒到约10分钟范围的时间段添加。添加还原剂之后,可使还原剂与催化剂浆液反应持续一段规定的反应时间。在一些实施例中,可使还原剂与催化剂浆液反应持续约5分钟到约240分钟,或约30分钟到约180分钟等范围的反应时间。
在一些例示性实施例中,铬基催化剂可为二氧化硅负载的氧化铬催化剂。这种二氧化硅负载的氧化铬可由二氧化硅前体上的乙酸铬制备,其以如Sylopol 957HS的商品名可购自格里斯公司,以及以C35100MS或C35300MS的商品名可购自PQ公司。二氧化硅前体上的乙酸铬可在氧化条件下加热到约600℃的温度,持续约六个小时,以产生氧化铬催化剂。加热期间的温度匀变速率可规定例如在40℃/小时到120℃/小时的范围内,并且出于如使水分和其它表面物质从容器释放并且净化以提高Cr+3到Cr+6的较高转化率的目的,可在规定温度下进行几次。在实例中,流化气体最初通常为氮气,直到在300℃到500℃的温度下的保持结束,其中一些有机片段分解。接着,可发生将空气作为流化气体的切换,其中燃烧剩余的有机物并且发生一定温度的放热。在实施例中,在氧化步骤之后,活化的氧化铬催化剂被冷却并且转移到搅拌的催化剂混合容器。可添加一定量的非极性烃溶剂如异戊烷以形成固体在其中充分悬浮的浆液。
所选量的包含具有小于约5微米的平均粒度的至少一种颗粒材料和/或至少一种抗静电剂的改性剂接着可经在约1秒到约500分钟范围内的添加时间段添加到氧化铬催化剂。
所选量的还原剂如DEAlE接着可经在约30秒到约500分钟范围内的添加时间段添加到氧化铬催化剂和改性剂,同时以在约15rpm到约200rpm范围内的搅拌速率搅拌所得混合物。在其它实施例中,所选时间段可在约30分钟到约240分钟范围内;在其它实施例中约60分钟到约180分钟范围内;以及在又一实施例中约90到约120分钟范围内。在一些实施例中,所选量的烷基铝可经在约40分钟到约80范围内的时间段添加到氧化铬催化剂,同时以30rpm至40rpm的搅拌速率搅拌所得混合物。接着可使混合物反应一段在约30分钟到约180分钟范围内的反应时间。
在其它实施例中,铬基催化剂可为二氧化硅负载的甲硅烷基铬酸酯催化剂。这种二氧化硅负载的甲硅烷基铬酸酯催化剂可由二氧化硅负载物在约600℃的温度下煅烧持续约一小时至约四小时范围内的时间段,并且随后使其与双(三苯基甲硅烷基)铬酸酯例如在非极性烃溶剂如异戊烷中的浆液中反应来制备。所选量的包含具有小于约5微米的平均粒度的至少一种颗粒材料和/或至少一种抗静电剂的改性剂接着可经在约30秒到约500分钟范围内的添加时间段添加到甲硅烷基铬酸酯催化剂的浆液。
所选量的烷基铝如DEAlE接着可经在约0.5分钟到约10分钟范围内的添加时间段添加到甲硅烷基铬酸酯催化剂的浆液,同时以在约15rpm到约50rpm范围内的搅拌速率搅拌所得混合物。在具体实施例中,所选量的DEAlE可经在约1分钟到约3分钟范围内的时间段添加到甲硅烷基铬酸酯催化剂和改性剂,同时以在约30rpm至40rpm范围内的搅拌速率搅拌所得混合物。接着可使混合物反应一段在约30分钟到约180分钟范围内的反应时间。
在不同实施例中,所选搅拌速率可小于70rpm,且所选还原剂添加时间可小于20分钟。在其它实施例中,所选搅拌速率可大于70rpm,且所选还原剂添加时间可小于20分钟。在又一实施例中,所选搅拌速率可大于70rpm,且所选还原剂添加时间可大于20分钟。
在添加还原剂之后,接着使其反应一段合适的时段,如0到2小时,进一步加热催化剂浆液以去除非极性溶剂。干燥可导致浆液从粘稠浆液转变成部分干燥的浆液或从泥浆转变成自由流动粉末。因此,螺旋带搅拌器可用于立式圆筒形混合容器中以适应不同的混合物粘度和搅拌要求。搅拌器可具有单螺旋带或双螺旋带,且可任选地包括中心螺旋轴或其它更复杂的二级搅拌器。可在高于、低于或等于标准大气压的压力下进行干燥,只要一般严格地排除如氧气的污染物。例示性干燥温度可在0℃到高达100℃、约40℃到约85℃、约50℃到约75℃、约55℃到约65℃等的范围内。例示性干燥时间可在约1小时到约48小时、约3小时到约26小时、约5小时到约20小时等的范围内。在干燥过程之后,在使用之前催化剂可一直储存在惰性氛围下。
如上文所描述,添加如本文公开的改性剂可提高铬基催化剂的流动指数一致性。对于给定的铬基催化剂,负载的铬固体可制成浆液,与在经所选时间段以所选搅拌速率下以所选进料速率进料的所选量的改性剂和还原剂两者接触,产生所需的还原剂比铬比率或催化剂上所需的铝负载量。接着可如通过在可调节的干燥温度下干燥来去除用于将催化剂制成浆液的溶剂,以获得干燥自由流动的催化剂组合物。铬基催化剂具有一致的流动指数反应用于制备具有期望聚合物属性的聚合物。这一催化剂组合物接着可按原样进料到聚合反应器或在进料到聚合反应器之前在合适的液体中制成浆液。
尽管上文所述的通用程序一般可以应用于铬催化剂,但所述程序可根据所使用的铬基催化剂的特定类型而进行改变。举例来说,上述程序可以针对甲硅烷基铬酸酯基催化剂和氧化铬基催化剂进行操控,并且氧化铬基催化剂通常在还原之前需要活化步骤或氧化步骤来产生期望的Cr+6物质。另外,可根据是否进行整个催化剂制备或者是否根据本文所述的实施例购买并处理负载的铬化合物来调整所述方法。。
通过上述方法形成的铬基催化剂在负载物上的铬负载量可为如下:在一些实施例中在约0.15重量%到约3重量%范围内;在其它实施例中约0.2重量%到约0.3重量%范围内;在其它实施例中约0.4重量%到约0.6重量%范围内;以及在其它实施例中0.7重量%到约1.2重量%范围内。通过上述方法形成的铬基催化剂的还原剂与铬摩尔可为如下:比在一些实施例中在约0.5到约8范围内;在其它实施例中约2到约7范围内;以及在又一实施例中约3.0到约5.5范围内。
还原剂通常可为有机铝化合物并且可为纯的或在非极性溶剂中稀释。如上文所论述,可采用多种还原剂和惰性溶剂。在特定实例中,还原剂为DEAlE,并且可在合适的溶剂如在异戊烷中25重量%DEAlE中稀释。当然,DEAlE可稀释为其它浓度并且在其它溶剂中稀释。
在一个实例中,反应或还原反应在约45℃,或在约45℃的2℃内的温度下,和在约30磅/平方英寸表压(psig)的压力下进行。其它温度和压力也是适用的。
在某些实施例中,添加还原剂的时间长度可长至40分钟和更高。
实际上,在还原剂与催化剂的反应(在一个实例中,在45℃的反应温度下)之后,可调节催化剂干燥温度(例如55℃、60℃、65℃、70℃、75℃、80℃、85℃等)或干燥线外温度。
催化剂/改性剂混合物和还原剂通常在还原剂的添加期间反应。另外,催化剂/改性剂混合物和还原剂可在添加还原剂完成之后给出更多的滞留时间(即,维持时间)反应。在某些实施例中,维持时间可为0.5小时、1小时、1.5小时、2小时、2.5小时、3小时等。
可将反应压力维持(例如经由惰性气体或蒸气排出压力)在15psig、30psig、50psig、75psig、100psig等的例示性值。反应温度可维持在20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃等的例示性值。另外,可改变所需或调节的干燥温度值(例如60℃、65℃、70℃、75℃、80℃等)。
可抑制还原剂分散到反应混合物中。在通过产生接近凝胶状行为的粘性浆液的还原剂诱导的粒子聚集的情况下,此类分散的缺乏可更明显。这种现象可抑制还原剂在整个浆液中的良好分散。可通过添加如本文公开的改性剂降低或消除这种问题。
可得益于如本文中所公开的改性剂的铬基催化剂的实例至少包括在二氧化硅负载物上的氧化铬,如高温活化形成的:PQ公司C35300MS、C35300MSF(具有研磨的较大负载物粒子)、C36300MS和ES370;Grace Sylopol 957HS;KD公司KDC11C31和KDC120120;以及AGC科技公司D-70-120A(LV)具有铬的二氧化硅,和其它催化剂。当然,其它催化剂等级和类型也是相关并且可用的。另外,可实施附加改进以降低在混合物中的粒子聚集或团聚,并且因此增加还原剂在混合物中的分散,以及因此,增加还原剂与催化剂的均相接触和反应。举例来说,附加改进可包括通过改变还原剂的添加速率和添加方法,如通过装有向下延伸低于容器的顶盖的下表面的插入管的喷嘴添加还原剂。
具有增加堆积密度的组合物
本公开还提供了一种组合物,其包含:
a)热处理的颗粒材料;
b)疏水性的颗粒材料;以及
c)任选地一种或多种液体媒剂。
热处理的颗粒材料可包含无机氧化物如二氧化硅或氧化铝。
热处理的颗粒材料可在约150℃到约1000℃之间的温度下处理。
热处理的颗粒材料可具有在约20微米到约300微米之间的平均粒度。
热处理的颗粒材料可进一步包含一种或多种过渡金属化合物。
过渡金属化合物可包含铬、钛、锆和铪化合物中的一种或多种。热处理的颗粒材料可为活化负载的铬催化剂。
热处理的颗粒材料可进一步包含一种或多种烷基铝物质。
疏水性的颗粒材料可具有在约1nm到约3微米之间或在约1nm到约500nm之间的平均粒度。
疏水性的颗粒材料可为处理的煅制二氧化硅或热解二氧化硅。
煅制二氧化硅或热解二氧化硅可用硅烷处理以完全或部分地降低表面羟基官能团。
疏水性颗粒材料的存在量可为相对于颗粒材料的总重量在约0.05重量%和5重量%之间或相对于颗粒材料的总重量在0.1重量%和3重量%之间。液体媒剂可如上文公开。
相对于在不存在疏水性的颗粒材料的情况下组合物的固相的堆积密度,可增加组合物的固相的堆积密度。
相对于在不存在疏水性的颗粒材料的情况下组合物的固相的堆积密度,组合物的固相的堆积密度可增加至少5%,或至少10%,或至少15%,或至少20%。
还提供了增加热处理的颗粒材料的堆积密度的方法,所述方法包含任选地在一种或多种液体媒剂存在下将热处理的颗粒材料与疏水性的颗粒材料组合。
聚合方法
通过上述工艺形成的催化剂以及下文所述在线制备的催化剂可用于使用已知设备和反应条件(并且不限于任何特定类型的聚合系统)通过悬浮液、溶液、浆液和气相工艺的烯烃聚合中。一般来说,在大气压、亚大气压或超大气压下,烯烃聚合温度可在约0℃到约300℃的范围内。具体来说,浆液或溶液聚合系统可采用亚大气压,或可替代地超大气压,以及在约40℃到约300℃范围内的温度。
可使用液相聚合系统,如在第3,324,095号美国专利中描述的那些。液相聚合系统一般包含烯烃单体和催化剂组合物添加到其中的反应器。反应器含有可溶解或悬浮聚烯烃产物的液体反应介质。这种液体反应介质可包含在所采用的聚合条件下无反应性的惰性液态烃、本体液体单体或其混合物。尽管此类惰性液态烃可能不充当通过所述方法获得的催化剂组合物或聚合物的溶剂,但其通常用作在聚合中使用的单体的溶剂。适合于此目的的惰性液态烃可包括异丁烷、异戊烷、己烷、环己烷、庚烷、辛烷、苯、甲苯及其混合物和异构体。可通过持续的搅动或搅拌保持烯烃单体与催化剂组合物之间的反应性接触。从反应器中持续地抽取含有烯烃聚合物产物和未反应的烯烃单体的液体反应介质。分离烯烃聚合物产物,并且未反应的烯烃单体和液体反应介质通常被再循环和返回到反应器中。
本公开的一些实施例可尤其适用于在如下情况下的气相聚合系统:在0.07巴到68.9巴(1psig到1000psig)范围内,在一些实施例中3.45巴到27.6巴(50psig到400psig),在其它实施例中6.89巴到24.1巴(100psig到350psig)的超大气压下以及在30℃到130℃范围内,或在其它实施例中65℃到110℃、75℃到120℃,或在其它实施例中80℃到120℃的温度下。在一些实施例中,操作温度可低于112℃。本公开的实施例中可使用搅动或流体化床气相聚合系统。
一般来说,通过在反应条件下和在存在催化剂组合物的情况下在足以使固体粒子床保持在悬浮状态的速度下使含有一种或多种烯烃单体的物料流持续穿过流体化床反应器来进行常规的气相流体化床方法。将含未反应的单体的物料流不断从反应器中抽出、压缩、冷却、任选地部分或全部冷凝和再循环回到反应器。从反应器中抽出产物,且将替代单体添加到再循环流。对催化剂组合物和反应物惰性的气体还可存在于气流中。聚合系统可包括单个反应器或两个或更多个串联反应器。
进料流可包括烯烃单体、无烯烃气体如氮气和氢气,并且可进一步包括一种或多种非反应性烷烃,其可在聚合过程中冷凝用于去除反应热量。说明性非反应性烷烃包括但不限于丙烷、丁烷、异丁烷、戊烷、异戊烷、己烷、其异构体及其衍生物。进料可在单或多个位置和不同位置处进入反应器。
另外,聚合过程通常基本上在无催化剂毒物(如水分、氧气、一氧化碳和乙炔)的存在下进行。然而,氧气可以极低浓度加回到反应器以改变聚合物结构和它的产物性能特征。氧气可以相对于到反应器的乙烯进料速率的约10ppbv到600ppbv,且更优选地约10ppbv到500ppbv的浓度添加。有机金属化合物可用作清除剂以去除催化剂毒物,从而增加催化剂活性或出于其它目的。可添加的有机金属化合物的实例包括烷基金属,如烷基铝。常规的佐剂也可用于所述方法中,其条件是它们在形成期望聚烯烃中不干扰催化剂组合物的机理。在一些实施例中,可添加氢气。氢气的使用影响聚合物分子量和分布,并且最终影响聚合物特性。出于与本发明的铬基催化剂聚合的目的,在反应器中氢气比乙烯的气体摩尔比可在约0到0.5的范围内,0.01到0.4的范围内以及0.03到0.3的范围内。
适于将干燥催化剂粉末持续地进料到反应器中的说明性催化剂储槽在例如第3,779,712号美国专利中示出和描述。对催化剂惰性的气体(如氮气或氩气)优选地用于将催化剂带入到床中。在另一个实施例中,催化剂被提供为在矿物油或液态烃或此类混合物中的浆液,如例如丙烷、丁烷、异戊烷、己烷、庚烷或辛烷。说明性催化剂储槽在WO 2004094489中示出和描述。催化剂浆液可用载体流体(如例如氮气或氩气)或液体(如例如异戊烷或其它C3到C8烷烃)传递到反应器。
为了实现共聚物中的所需密度范围,必须共聚合足够的共聚单体与乙烯以实现共聚单体在共聚物中的约0重量%至5重量%到10重量%中任何值的含量。实现此结果所需的共聚单体的量将取决于所采用的具体(一种或多种)共聚单体、催化剂组合物以及具体来说铝与铬的摩尔比、催化剂制备条件以及反应器温度。控制共聚单体与乙烯的比率以获得所需的共聚物产物的树脂密度。
用于聚合的条件可根据单体、催化剂和设备可用性而变化。具体条件是本领域的技术人员已知或容易导出的。在本公开的一些实施例中,产生的聚烯烃可包括由烯烃单体如乙烯和含有3到约20个碳原子的直链或支化的更高级α-烯烃单体制备的那些。在其它实施例中,可制成乙烯和这些更高级α-烯烃单体的密度在约0.905g/cc到约0.97g/cc范围内,在其它实施例中密度在约0.915到约0.965范围内的均聚物或互聚物。例示性更高级α-烯烃单体可包括例如丙烯、1-丁烯、1-戊烯、1-己烯、4-甲基-1-戊烯、1-辛烯和3,5,5-三甲基-1-己烯。例示性聚烯烃可包括乙烯基聚合物(至少50摩尔%乙烯),包括乙烯-1-丁烯、乙烯-1-己烯和乙烯-1-辛烯共聚物,如高密度聚乙烯(HDPE)、中等密度聚乙烯(MDPE)(包括乙烯-丁烯共聚物和乙烯-己烯共聚物)、低密度聚乙烯(LDPE)、线性低密度聚乙烯(LLDPE)或均聚乙烯。
在某些实施例中,本公开的聚合物的流动指数(I21)的范围可为约0.1g/10min到约1000g/10min。在其它实施例中,本公开的聚合物的流动指数(I21)的范围可为约1g/10min到约300g/10min。在另又一实施例中,本公开的聚合物的流动指数(I21)的范围可为约0.5g/10min到约60g/10min。
在一些例示性实施例中,本文公开的方法和催化剂可用于在特定反应器条件下产生聚烯烃,如乙烯/1-己烯共聚物或乙烯均聚物。举例来说,H2/C2气体摩尔比可在约0.01到约0.5的范围内。回添的氧气相对于到反应器的乙烯进料速率可在约10ppbv到约600ppbv的范围内。反应器操作温度可在约75℃到约120℃的范围内。反应器可任选地在冷凝模式中运行。用于聚合的条件可根据单体、催化剂和设备可用性而变化。具体条件是本领域的技术人员已知或容易导出的。
应采用以下测试方法获得如所公开的特定特性和特征的数值,例如密度、生产率、铬含量或流动指数或熔融指数,但应理解那些值还指的是通过可不必在本文中公开的其它测试或测量方法获得的任何结果,只要此类其它测试或测量方法例如在至少一个专利、专利申请案或科学出版物中公布。并且,应理解在权利要求书中所述的值可具有与其测量相关的一定程度的误差,不论实验性、设备或操作误差;以及在权利要求书中的任何值仅是近似的,并且涵盖由测得值加或减(+/-)10%或甚至20%的值。
密度值是基于ASTM D1505。流动指数(I21)值是基于ASTM D1238,在190℃以及21.6kg重量下运行;对于所述测量的标准规定为190/21.60。熔融指数(I5)值是基于ASTMD1238,在190℃以及5.0kg重量下运行;对于所述测量的标准规定为190/5。熔融指数(I2)值是基于ASTM D1238,在190℃以及2.16kg重量运行;对于所述测量的标准规定为190/2.16。
如上文所描述,铬基负载的催化剂的分散可通过在添加还原剂之前或在其之后使铬基负载的催化剂与改性剂接触而改善。本文所述的铬基催化剂组合物的使用,其中催化剂包含如本文公开的改性剂,提供聚合工艺灵活性的能力,其在聚烯烃的聚合中具有显著商业应用。
另外,本公开的实施例提供一种用于产生具有一致流动指数反应的铬基催化剂组合物的方法。又一实施例提供一种用于产生聚烯烃的方法,所述方法包含形成如本文所述的具有一致流动指数反应的铬基催化剂组合物,并且在聚合条件下将铬基催化剂组合物与烯烃接触。
为了简单起见,本文仅明确地公开了某些范围。但是,来自任何下限的范围可与任何上限组合以列举出一个未明确列举出的范围,以及来自任何下限的范围可与任何其它下限组合以列举出一个未明确列举出的范围,以相同的方式,来自任何上限的范围可与任何其它上限组合以列举出一个未明确列举出的范围。另外地,尽管未明确地列举出,但在一个范围内包括每一点或其端点之间的单独的值。因此,结合任何其它点或单独的值或任何其它下限或上限,每一点或单独的值可充当其自身的下限或上限,以列举出未明确地列举出的范围。
所有的优先权文件通过对所有权限的引用完全并入本文中,在所述权限中,此并入被准许,并且在某种程度上此公开符合本发明的描述。另外,关于所有权限,本文中引用的所有文件以及参考文献,包括测试程序、公开案、专利、期刊论文等,通过引用完全并入本文中,在所述权限中,准许此并入并且在某种程度上此公开符合本公开的描述。
实例
应理解,虽然本公开已结合其具体实施例描述,但是前述描述旨在说明且不限制本公开的范围。其它方面、优点以及修改对于本公开所属的本领域技术人员来说将是显而易见的。
因此,提出以下实例以便向本领域的技术人员提供如何制造并且使用本发明的组合物的完整公开内容和描述,并且不打算限制本发明人认为是其发明的本发明的范围。
通过将2.5g的负载的铬催化剂与一定量的固体 TS-610组合接着辊压所述混合物制备来催化剂组合物。随后添加20mL的正己烷以使固体制成浆液。随后添加DEALE(大约1mL的1.37M溶液)并且将所得混合物摇晃10分钟至60分钟。混合物以肉眼检测粒子聚结并且估计固体催化剂相的高度。表1汇集结果。
可以看出,添加1重量%或更高的量的 TS-610防止粒子聚集或团聚,如通过消除凝胶形成证明。另外,在添加DEALE之后催化剂的堆积密度降低,如由通过固体催化剂相占据的较大体积证明,但是这可通过添加改性剂最小化。
通过将2.5g负载的铬催化剂与一定量的固体二硬脂酸铝组合,接着辊压所述混合物来制备催化剂组合物。随后添加20mL的正己烷以使固体制成浆液。随后添加DEALE(1mL的1.37M溶液)并且摇晃所得混合物10分钟至60分钟。混合物以肉眼检测粒子聚结并且估计固体催化剂相的高度。表2汇集结果。
可以看出,添加0.1重量%或更高的量的二硬脂酸铝防止粒子聚集或团聚,如通过消除凝胶形成证明。另外,在添加DEALE之后催化剂的堆积密度降低,如由通过固体催化剂相占据的较大体积证明,但是这可通过添加改性剂最小化。
如下准备较大规模催化剂组合物并且结果概括在表3中。
将合适量的多孔性二氧化硅负载物装入到流体化床加热容器中,所述负载物含有约5重量%乙酸铬(C35300MSF级铬/二氧化硅,由PQ公司生产),其相当于约1重量%Cr含量,粒度为约82微米并且表面积为约500平方米/克。此处,催化剂前体(铬/二氧化硅)在干燥氮气下以约50℃/小时的速率下缓慢加热到200℃并且在所述温度下保持约4小时。接下来,在铬/二氧化硅在干燥氮气下以约50℃/小时的速率缓慢加热到450℃并且在所述温度下保持约2小时。随后氮气流被置换成干燥空气流,并且以约50℃/小时的速率将铬/二氧化硅缓慢加热到600℃,在这种情况下它被活化约6小时。活化的催化剂随后用干燥空气(在环境温度下)下冷却到约300℃,并且进一步用干燥氮气(在环境温度下)从300℃冷却到室温。将所得冷却的催化剂粉末在氮气氛围下存储。
在典型氧化铬催化剂还原中,在惰性氛围下将催化剂放入具有双螺旋带状搅拌器的立式催化剂掺合器中。添加无水己烷或异戊烷溶剂以充分悬浮负载型催化剂。所有催化剂使用C35300MSF。改变催化剂批量,在比较实例中将458克氧化铬催化剂添加到混合容器,接着添加2241克的己烷。在搅动下将142克的在己烷中25wt%DEALE(阿克苏诺贝尔(AkzoNobel))经约40分钟时间段添加到此混合物的表面。在DEAlE添加期间使用插入管以防止溶液向下流到混合容器的壁。在添加时间期间,混合物在大约45℃的温度下以30RPM搅动。混合物以控制的速率进一步搅动约1小时。接着,通过在所选夹套温度下干燥约16到21小时来大体上去除溶剂。随后所得干燥自由流动的催化剂粉末在使用之前一直储存在氮气下。对于所有本发明实例,538克的氧化铬与2632克的己烷一起使用。在添加己烷之前,添加改性剂(Cabosil TS-610或二硬脂酸铝),接着搅动几分钟,之后添加DEALE。25wt%DEALE溶液(167克)随后经约40分钟时间段添加并且以与对于比较实例相同的方式进行干燥。
发现两种改性剂消除或抑制凝胶形成任一者。在较高水平下,两种改性剂消除在干燥之前在100分钟观测时段期间的凝胶形成。在低水平(0.1wt%)下,两种改性剂抑制凝胶形成的速率,直至添加所有DEALE之后,此时凝胶形成不是问题,因为DEALE添加完成。最终干燥催化剂的堆积密度测量显示出,用本发明 TS-610制得的催化剂的堆积密度显著高于用不含改性剂的比较催化剂发现的堆积密度。
在连续气相中试装置中测试根据本文公开的方法制备的催化剂组合物的乙烯聚合性能并且与在无改性剂的情况下制备的催化剂组合物相比。根据活性和反应器稳定性执行本发明催化剂组合物以及比较催化剂组合物。
通过将各种量的 TS-610添加到一系列颗粒材料来制备另外的组合物。表4的左边栏表明所检测的颗粒材料包括未脱水的和脱水的二氧化硅,和未活化、活化的和还原的负载的氧化铬催化剂。在第二列中标记有星号的活化负载的氧化铬催化剂的样品用 M-5代替 TS-610处理。 M-5为未处理的煅制二氧化硅。每种颗粒材料在己烷中制成浆液并且添加在表中指定的的量。在固体已沉淀之后,测量固相的高度。固体的高度的降低指示颗粒材料堆积密度的增加。细节汇集在表4中。
TS-610添加到脱水二氧化硅,活化的催化剂和还原的催化剂产生固相的堆积密度的增加。将TS-610添加到未脱水的二氧化硅对堆积密度无影响。将未处理的 M-5添加到活化的催化剂对堆积密度无影响。

Claims (26)

1.一种用于烯烃聚合的铬基催化剂组合物,其包含:
(a)至少一种无机氧化物负载的铬催化剂;
(b)具有小于约5微米的平均粒度的至少一种颗粒材料和/或至少一种抗静电剂;
(c)一种或多种还原剂;以及
(d)任选地,一种或多种液体媒剂。
2.根据权利要求1所述的催化剂组合物,其中所述颗粒材料为至少一种经处理的无机氧化物。
3.根据权利要求1或权利要求2所述的催化剂组合物,其中所述颗粒材料的所述平均粒度小于3微米。
4.根据权利要求1到3中任一权利要求所述的催化剂组合物,其中所述颗粒材料的所述平均粒度小于1微米。
5.根据权利要求2到4中任一权利要求所述的催化剂组合物,其中所述处理的无机氧化物为经处理的二氧化硅。
6.根据权利要求2到5中任一权利要求所述的催化剂组合物,其中所述无机氧化物用试剂处理以便降低表面羟基官能团。
7.根据权利要求6所述的催化剂组合物,其中降低表面羟基官能团的所述试剂为硅烷。
8.根据权利要求6所述的催化剂组合物,其中所述无机氧化物为煅制二氧化硅并且所述试剂为硅烷。
9.根据权利要求1所述的催化剂组合物,其中所述颗粒材料为疏水性的二氧化硅。
10.根据权利要求1所述的催化剂组合物,其中所述至少一种抗静电剂呈颗粒形式。
11.根据权利要求10所述的催化剂组合物,其中所述抗静电剂具有小于20微米的平均粒度。
12.根据权利要求1所述的催化剂组合物,其中所述抗静电剂为至少一种金属羧酸盐。
13.根据权利要求12所述的催化剂组合物,其中所述至少一种金属羧酸盐由下式表示:
M(Q)x(OOCR)y
其中M为第3族到第16族以及所述镧系和锕系的金属,Q为卤素、氢、羟基或氢氧化物、烷基、烷氧基、芳氧基、硅烷氧基、硅烷或磺酸酯基团,R为具有1到100个碳原子的烃基,并且x为0到3的整数,y为1到4的整数,并且x和y的总和等于所述金属的所述价态。
14.根据权利要求13所述的催化剂组合物,其中所述至少一种金属羧酸盐由下式表示:
(R1CO2)2AlOH
其中R1为含有12到30个碳原子的烃基。
15.根据权利要求14所述的催化剂组合物,其中所述至少一种金属羧酸盐包含羧酸铝。
16.根据权利要求15所述的催化剂组合物,其中所述金属羧酸盐包含单硬脂酸铝、二硬脂酸铝、三硬脂酸铝或其组合。
17.根据权利要求1到16中任一权利要求所述的催化剂组合物,其中所述还原剂包含有机铝化合物。
18.根据权利要求1到17中任一权利要求所述的催化剂组合物,其中所述铬催化剂包含氧化铬催化剂,并且其中所述还原剂包含烷基铝。
19.根据权利要求1到18中任一权利要求所述的催化剂组合物,其中所述还原剂包含烷基烷氧基铝。
20.根据权利要求1到19中任一权利要求所述的催化剂组合物,其中所述还原剂包含二乙基乙氧基铝(DEAlE)。
21.根据权利要求1到20中任一权利要求所述的催化剂组合物,其中所述组合物的所述固相的所述堆积密度相对于在不存在改性剂的情况下所述组合物的所述固相的所述堆积密度增加。
22.一种制造用于烯烃聚合的铬基催化剂组合物的方法,其包含将一种或多种无机氧化物负载的铬催化剂与具有小于约5微米的平均粒度的至少一种颗粒材料和/或一种或多种抗静电剂和一种或多种还原剂组合。
23.根据权利要求22所述的方法,其中所述方法包含以下步骤:a)在液体媒剂中将一种或多种无机氧化物负载的铬催化剂与具有小于约5微米的平均粒度的至少一种颗粒材料和/或一种或多种抗静电剂组合和b)添加一种或多种还原剂。
24.根据权利要求22所述的方法,其包含以下步骤:a)在液体媒剂中将一种或多种无机氧化物负载的铬催化剂与一种或多种还原剂组合和b)添加具有小于约5微米的平均粒度的至少一种颗粒材料和/或一种或多种抗静电剂。
25.根据权利要求22或权利要求23所述的方法,其中所述还原剂添加到在混合容器中无机氧化物负载的铬催化剂和具有小于约5微米的平均粒度的至少一种颗粒材料和/或一种或多种抗静电剂的浆液中,并且其中所述添加通过插入管进行,所述插入管被导引到所述浆液的所述表面并且远离所述混合容器的所述壁。
26.一种聚合烯烃的方法,其包含在聚合条件下使根据权利要求1到21中任一权利要求所述的催化剂组合物与一种或多种烯烃接触。
CN201580062217.8A 2014-11-24 2015-11-23 用于烯烃聚合的铬基催化剂组合物 Active CN107001516B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462083533P 2014-11-24 2014-11-24
US62/083,533 2014-11-24
PCT/US2015/062110 WO2016085842A2 (en) 2014-11-24 2015-11-23 Chromium-based catalyst compositions for olefin polymerization

Publications (2)

Publication Number Publication Date
CN107001516A true CN107001516A (zh) 2017-08-01
CN107001516B CN107001516B (zh) 2023-06-06

Family

ID=54834936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580062217.8A Active CN107001516B (zh) 2014-11-24 2015-11-23 用于烯烃聚合的铬基催化剂组合物

Country Status (7)

Country Link
US (1) US10266618B2 (zh)
EP (1) EP3223942A2 (zh)
CN (1) CN107001516B (zh)
BR (1) BR112017010521B1 (zh)
CA (1) CA2967398C (zh)
SG (1) SG11201703845PA (zh)
WO (1) WO2016085842A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113861317A (zh) * 2020-06-30 2021-12-31 中国石油化工股份有限公司 一种抗静电聚乙烯催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946914A (en) * 1987-05-28 1990-08-07 Mobile Oil Corporation Modified chromium-containing catalyst composition polymerization process with alpha-olefins
CN1252815A (zh) * 1997-04-18 2000-05-10 Basf公司 α-烯烃气相聚合方法
CN101384626A (zh) * 2006-01-31 2009-03-11 巴塞尔聚烯烃股份有限公司 制备用于吹塑薄膜的乙烯聚合物的方法
CN101802019A (zh) * 2007-08-16 2010-08-11 尤尼威蒂恩技术有限责任公司 连续性添加剂及其在聚合工艺中的用途
JP4759339B2 (ja) * 2005-08-05 2011-08-31 日本ポリエチレン株式会社 オレフィン重合用触媒組成物

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT513721A (zh) 1953-01-27 1900-01-01
US3023203A (en) 1957-08-16 1962-02-27 Phillips Petroleum Co Polymerization process
NL135065C (zh) 1965-05-14
US3622251A (en) 1969-11-12 1971-11-23 Battelle Development Corp Sealed piston compressor or pump
US3704287A (en) 1970-09-17 1972-11-28 Union Carbide Corp High temperature reduced catalyst and process
US3779712A (en) 1971-11-26 1973-12-18 Union Carbide Corp Particulate solids injector apparatus
US4011382A (en) 1975-03-10 1977-03-08 Union Carbide Corporation Preparation of low and medium density ethylene polymer in fluid bed reactor
US4100105A (en) 1977-01-21 1978-07-11 Union Carbide Corporation Titanium-modified silyl chromate catalysts for ethylene polymerization
FR2572082B1 (fr) 1984-10-24 1987-05-29 Bp Chimie Sa Procede de demarrage de polymerisation d'ethylene ou de copolymerisation d'ethylene et d'alpha-olefine en phase gazeuse en presence de catalyseur a base d'oxyde de chrome
US5179178A (en) 1992-05-15 1993-01-12 Phillips Petroleum Company Olefin polymerization
US6326443B1 (en) 1997-04-11 2001-12-04 Showa Denko K.K. Process for preparing ethylene polymer and catalyst used therefor
CN1095475C (zh) 1997-10-13 2002-12-04 中国石化齐鲁石油化工公司 一种适用于气相法乙烯聚合工艺的负载型催化剂及其制备方法
US7354880B2 (en) * 1998-07-10 2008-04-08 Univation Technologies, Llc Catalyst composition and methods for its preparation and use in a polymerization process
JP2001294612A (ja) 2000-04-10 2001-10-23 Asahi Kasei Corp オレフィン重合用触媒および重合方法。
JP4610051B2 (ja) 2000-07-07 2011-01-12 日本ポリオレフィン株式会社 エチレン系重合用触媒、エチレン系重合体およびその製造方法
US6646069B2 (en) 2000-07-07 2003-11-11 Japan Polyolefins Co., Ltd. Ethylene polymers and method for producing the same
US6869903B2 (en) * 2002-11-07 2005-03-22 Univation Technologies, Llc Synthesis of polymerization catalyst components
US6989344B2 (en) 2002-12-27 2006-01-24 Univation Technologies, Llc Supported chromium oxide catalyst for the production of broad molecular weight polyethylene
US20040167015A1 (en) * 2003-02-26 2004-08-26 Cann Kevin J. Production of broad molecular weight polyethylene
DE602004021787D1 (de) 2003-03-28 2009-08-13 Union Carbide Chem Plastic Katalysatoren basiert auf chrom in einem mineralöl und verfahren zur polymerisation von ethylen
ES2535821T3 (es) * 2004-08-09 2015-05-18 Union Carbide Chemicals & Plastics Technology Llc Procatalizador Ziegler-Natta secado por pulverización robusto y procedimiento de polimerización que utiliza el mismo
JP6018362B2 (ja) 2008-02-27 2016-11-02 ユニベーション・テクノロジーズ・エルエルシー 修飾クロム系触媒およびそれを用いる重合方法
US20110256632A1 (en) 2009-01-08 2011-10-20 Univation Technologies, Llc Additive for Polyolefin Polymerization Processes
US9617355B2 (en) 2010-10-07 2017-04-11 Saudi Basic Industries Corporation Process for polymerisation of ethylene
CA2886967C (en) * 2012-11-01 2021-06-01 Univation Technologies, Llc Mixed compatible ziegler-natta/chromium catalysts for improved polymer products

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946914A (en) * 1987-05-28 1990-08-07 Mobile Oil Corporation Modified chromium-containing catalyst composition polymerization process with alpha-olefins
CN1252815A (zh) * 1997-04-18 2000-05-10 Basf公司 α-烯烃气相聚合方法
JP4759339B2 (ja) * 2005-08-05 2011-08-31 日本ポリエチレン株式会社 オレフィン重合用触媒組成物
CN101384626A (zh) * 2006-01-31 2009-03-11 巴塞尔聚烯烃股份有限公司 制备用于吹塑薄膜的乙烯聚合物的方法
CN101802019A (zh) * 2007-08-16 2010-08-11 尤尼威蒂恩技术有限责任公司 连续性添加剂及其在聚合工艺中的用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周张健编著: "《无机非金属材料工艺学》", 31 January 2010, 中国轻工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113861317A (zh) * 2020-06-30 2021-12-31 中国石油化工股份有限公司 一种抗静电聚乙烯催化剂的制备方法
CN113861317B (zh) * 2020-06-30 2023-04-07 中国石油化工股份有限公司 一种抗静电聚乙烯催化剂的制备方法

Also Published As

Publication number Publication date
US20180327521A1 (en) 2018-11-15
SG11201703845PA (en) 2017-06-29
CN107001516B (zh) 2023-06-06
WO2016085842A3 (en) 2016-06-23
CA2967398C (en) 2023-01-24
EP3223942A2 (en) 2017-10-04
CA2967398A1 (en) 2016-06-02
BR112017010521B1 (pt) 2021-11-30
BR112017010521A2 (pt) 2018-04-03
WO2016085842A2 (en) 2016-06-02
US10266618B2 (en) 2019-04-23

Similar Documents

Publication Publication Date Title
CN107108800B (zh) 使用铬类催化剂的聚烯烃制造
JP6018362B2 (ja) 修飾クロム系触媒およびそれを用いる重合方法
CN104080823B (zh) 长链支化聚合物及其制造方法
CN106795240B (zh) 使用铬类催化剂的聚烯烃制造
CN111886262B (zh) 喷雾干燥的二茂锆催化剂体系
CN107001516A (zh) 用于烯烃聚合的铬基催化剂组合物
CN107001506A (zh) 包含颗粒的组合物
CN106795241B (zh) 使用铬类催化剂的聚烯烃制造
CN102356098A (zh) 制备聚合催化剂的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant