CN107001181A - 硫作为经由氧化物/硫属化物催化剂的氧化烃加工中的选择性氧化剂 - Google Patents

硫作为经由氧化物/硫属化物催化剂的氧化烃加工中的选择性氧化剂 Download PDF

Info

Publication number
CN107001181A
CN107001181A CN201680003182.5A CN201680003182A CN107001181A CN 107001181 A CN107001181 A CN 107001181A CN 201680003182 A CN201680003182 A CN 201680003182A CN 107001181 A CN107001181 A CN 107001181A
Authority
CN
China
Prior art keywords
metal oxide
methane
catalyst
component
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680003182.5A
Other languages
English (en)
Inventor
托宾·J·马克
M·彼得
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern University
Original Assignee
Northwestern University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern University filed Critical Northwestern University
Publication of CN107001181A publication Critical patent/CN107001181A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/82Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
    • C07C2/84Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling catalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/02Sulfur, selenium or tellurium; Compounds thereof
    • C07C2527/04Sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/02Sulfur, selenium or tellurium; Compounds thereof
    • C07C2527/04Sulfides
    • C07C2527/043Sulfides with iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/02Sulfur, selenium or tellurium; Compounds thereof
    • C07C2527/04Sulfides
    • C07C2527/047Sulfides with chromium, molybdenum, tungsten or polonium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/02Sulfur, selenium or tellurium; Compounds thereof
    • C07C2527/04Sulfides
    • C07C2527/047Sulfides with chromium, molybdenum, tungsten or polonium
    • C07C2527/051Molybdenum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Oil, Petroleum & Natural Gas (AREA)

Abstract

本发明涉及一种通过使用金属氧化物催化剂和硫氧化剂来氧化偶联甲烷的方法。

Description

硫作为经由氧化物/硫属化物催化剂的氧化烃加工中的选择 性氧化剂
本申请要求2015年2月19日提交的申请序列号62/176,486的优先权和权益,其全部内容通过引用并入本文作为参考。
发明背景
日益增长的对于作为化工原料的乙烯的需求和石油储量的有限可用性以及页岩气生产的出现重新燃起了开发用于将甲烷氧化偶联(OCM)为乙烯的直接和有效的催化序列的兴趣。很多研究集中于使用O2作为氧化剂的OCM以优化C2产率并阐明反应机理。发现碱土氧化物、前过渡金属氧化物和稀土氧化物是有前景的催化剂,并且可通过添加掺杂剂和/或助催化剂来实现增强的催化性能。然而,尚未实现使用O2的OCM的大规模应用,这主要是由于较大的过氧化的热力学推动力(图1),其损害C2选择性并且用于这种高放热过程的反应器工程具有困难。用于将CH4转化为有价值的原料的其他方法(例如CH4的非氧化偶联)具有吸引力但也具有显著局限性,并且迄今未见大规模使用。
上述方法的替代方案寻求通过采用诸如S2(SOMC)的“软”氧化剂来缓和用于甲烷过氧化的推动力。注意,通过S2的CH4的过氧化ΔG为-236kJ/mol,而通过O2的过氧化ΔG为-1294kJ/mol(图1),这表明使用较少侵蚀性的“软”氧化剂连同最佳催化剂来获得较高的乙烯选择性/产率是可能的。相对于使用O2而言较低的SOCM放热性也可在反应器设计中提供优点,并且可通过Claus法将H2S副产物有效地再转化为硫。早期工作认为,沿着貌似合理的基于硫的OCM反应坐标产生S-C键的最佳催化剂可能是断裂S-C键并且不被大量S2毒化的那些催化剂,例如加氢脱硫催化剂。
因此,在专门的反应器中针对SOCM研究了一系列过渡金属硫属化物(例如,TiS2、RuS2、MoS2、PdS等),其在950℃下分别提供6-9%和4-9%的CH4转化率和C2H4选择性。结合这些实验研究,计算研究表明M-S键的强度对CH4转化率和C2H4选择性具有重要影响,并且这两者是负相关的。然而,本领域仍然存在关于过渡金属和特定氧化物载体在该催化转化中的作用以及关于是否存在这种贵金属催化剂体系的替代物以更好地实现通过使用S2氧化剂可获得的益处和优点的争论。
发明概述
鉴于上述内容,本发明的一个目的是提供一种用于通过气态硫和可与其一起使用的各种金属氧化物/硫属化物催化剂来氧化偶联甲烷的体系,从而克服现有技术的各种缺陷和缺点(包括上面概述的那些)。
本发明的一个目的可以是提供一种用于甲烷的氧化偶联的热力学温和的反应系统。
本发明的一个目的还可以是提供一种用于甲烷的氧化偶联的可与气态硫氧化剂结合使用的非-过渡/贵金属催化剂。
单独地或与前述目的中的一个或多个结合地,本发明的一个目的还可以是提供一种用于相对于乙烷和乙炔而选择性生产乙烯的方法。
本发明的其他目的、特征、益处和优点将从该概述和以下对于某些实施方案的描述中显而易见,并且对于具有用于甲烷的氧化偶联的催化体系的知识的本领域技术人员而言,将是显而易见的。根据如上所述的内容并结合所附实施例、数据、附图和从中得出的所有合理推论,这样的目的、特征,益处和优点将是显而易见的。
部分地,本发明可涉及一种用于氧化偶联甲烷的方法。这种方法可包括提供金属氧化物组分;将这种金属氧化物组分在足以使所述金属氧化物组分至少部分或一定程度地硫化或硫化物转化的时间和温度中的至少一个下暴露于气态硫;以及使这种硫化或转化的组分在足以氧化偶联甲烷并产生乙烯的甲烷流速和时间中的至少一个下与甲烷接触。以下描述结合本发明的方法使用的代表性金属氧化物组分。还可考虑各种其他金属氧化物/硫属化物组分,如本领域技术人员理解并且本发明意识到的,这样的氧化物/硫属化物组分仅受使用S2作为氧化剂催化甲烷氧化偶联成乙烯的功能性能力的限制。
更具体地,这种方法可包括提供选自MgO、ZrO2、TiO2、CeO2、Sm2O3、ZnO、WO3、Cr2O3、La2O3和Fe3O4的金属氧化物组分;将这种金属氧化物组分在足以使所述金属氧化物组分至少部分或一定程度地硫化或硫化物转化的时间和温度中的至少一个下暴露于气态硫;以及使这种硫化或转化的组分在足以氧化偶联甲烷并相对于乙烷和乙炔而选择性生成乙烯的甲烷流速和时间中的至少一个下与甲烷接触。
部分地,本发明还可涉及一种使用金属氧化物来催化甲烷的氧化偶联的方法。这种方法可包括提供选自MgO、ZrO2、TiO2、CeO2、Sm2O3、ZnO、WO3、Cr2O3、La2O3和Fe3O4的金属氧化物组分,这种催化剂组分不存在贵金属;将这种金属氧化物组分在足以使这种金属氧化物组分至少部分或一定程度地硫化或硫化物转化的时间和温度中的至少一个下暴露于气态硫;以及使这种硫化或转化的组分在足以氧化偶联甲烷并生成乙烯的甲烷流速和时间中的至少一个下与甲烷接触。
附图简要说明
图1.通过S2(上图)和O2(下图)的CH4的氧化偶联所涉及的主要物质的自由能的比较。
图2A-B.在950℃下在SOCM期间形成的两种不同类型的硫化物的示意图。
图3A-D.在950℃下,CH4转化率(A)、(B)和C2H4选择性(C)、(D)相对于SOCM运行时间(TOS)的图,其中接触时间为1.33mg·min/mL且CH4/S比率为7.5。
图4.在本发明的催化剂上,用于SOCM的平均C2H4/C2H6比率(左侧条形)、C2H4/C2H2比率(中间条形)和C2H4/CS2比率(右侧条形)随接触时间的变化。
图5A-B.在950℃下,CH4转化率(A)和C2H4选择性(B)相对于SOCM运行时间(TOS)的图,其中接触时间为1.33mg·min/mL、1.66mg min/ml和2.22mg min/ml。保持11.9的CH4/S比率。
图6.在950℃下暴露于CH4/S2混合物16小时后,不同催化剂上的拉曼光谱,在该光谱范围内没有检测到Fe和Ti催化剂的特征峰。
图7A-B.在本文所述的条件下在OCM之后,Mg、Sm、Ce和Zr的硫属化物的S 2p(A)和O1s(B)光谱。
图8.在上述条件下(1)和在用能量为30keV的Ar+离子溅射30s(2)和90s(3)之后,在OCM之后的Mg和Zr的硫属化物的O 1s光谱。
图9A-B.在950℃下暴露于CH4/S2/H2S/Ar混合物16小时之后,Ce、Fe和Ti的硫属化物的O 1s和S 2p光谱(分别为图9A和9B)。
某些实施方案的详细描述
本发明的某些非限制性实施方案用于例示净金属氧化物用于SOMC的用途,以解决一个或多个前述目的。如所证实的,通过某些金属氧化物获得了显著的乙烯产率和选择性,其超过了用负载的Pd(现有技术的金属代表)所获得的那些产率和选择性。
如上所述,在设计使用气态S2作为烃氧化剂的流动床反应器中进行催化测量。(参见例如,(a)Moreau,P.;Ouvrard,G.;Gressier,P.;Ganal,P.;Rouxel,J.,J.Phys.Chem.Solids 1996,57,1117;(b)Gonbeau,D.;Guimon,C.;P-Guillouzo,G.;Levasseur,A.;Meunier,G.;Dormoy,R.,Surf.Sci.1991,254,81-89;(c)Franzen,H.F.;Umana,M.X.;McCreary,J.R.;Thorn,R.J.,J.Solid State Chem.1976,18,363;(d)Hernan,L.;Morales,J.;Sanches,L.;Tirado,J.L.;Espinos,J.P.,Chem.Mater.1995,7,1576;(e)Baltrusaitis,J.;Jayaweera,P.M.;Grassian,V.H.,J.Phys.Chem.C 2011,115,492-500;(f)Pratt,A.R.;Muir,J.J.;Nesbitt,H.W.,Geochim.Cosmochim.Acta 1993,58,827-841;和(g)Nesbitt,H.W.;Bancroft,G.M.;Pratt,A.R.;Scaini,M.J.,Am.Mineral.1998,83,1067-1076.)通过使用但不限于2.7%的在氩气中的CH4和具有7.5的CH4/S比率的混合物(同时加入0.06%的H2S以减少焦化)来进行催化实验。在不存在CH4的情况下将催化剂加热至950℃后,将这些“预催化剂”在950℃下暴露于S2 4小时。随后,将催化剂在950℃下暴露于反应物混合物至少16小时,并通过气相色谱连续监测流出物分布。
为了讨论催化结果以及反应期间氧化物结构和组成的演变,首先考虑后者。在与CH4/S2/Ar混合物反应之前,氧化物是具有≥10m2/g的表面积(除了WO3之外,其面积=9.3m2/g)的纳米粉末的形式。注意,在950℃下的SOCM之后,催化剂表面积显著降低(表1),类似于以前使用O2的OCM的观察结果。对于一半氧化物,反应后的表面积小于0.5m2/g。
表1.在950℃下,在催化条件下反应16小时之后,催化剂的结构性质。
*通过燃烧分析的S和C含量,以m2/g表示BET表面积
通常,通过XRD检测废催化剂中的金属硫化物、氧化物和氧硫化物(表1)。氧化物到硫化物的转化程度(即,转化度)具有强烈的氧化物依赖性:Bragg峰的强度和S含量表明,MgO大部分转化为MgS,只有小部分的TiO2和ZrO2转化为硫化物(例如,部分转化)。对于CeO2和Sm2O3,氧硫化物被鉴定为具有较低强度/宽度的衍射峰,表明催化剂在很大程度上是无定形的,反应之后的Fe3O4催化剂也是这种情况。燃烧分析和UV拉曼光谱还揭示在950℃下,通过SOCM在MgO、ZrO2、WO3、La2O3和Sm2O3上沉积了大量的石墨和有缺陷/无定形碳的混合物形式的焦炭。还用XPS研究SOCM期间表面组成的变化。在用3keV的Ar+离子溅射30s后,C 1s光谱分别显示:对于Mg-、Zr-、W-、La-和Sm-硫属化物,表面C覆盖率>80%,而对于基于Ti-、Cr-和Fe-的催化剂,表面C覆盖率≤15%。在SOCM之后,Ce和Zn催化剂的表面C覆盖率分别为约68%和约36%。(注意,之前对于基于Pd的SOCM催化剂没有观察到这种焦化程度。)
除了较低的表面C含量之外,废的Ti、Zn、Cr和Fe催化剂在O表面物质的性质方面也不同于其他催化剂。对于Ti和Fe硫属化物,XPS O 1s在约530eV的特征峰证明了存在金属氧化物,而对于Mg、Ce、Sm和Zr催化剂,在530eV-531eV处仅观察到可忽略的或非常弱的特征峰。对于这两种类型的硫属化物,在161eV-162eV处的S 2p跃迁证实了金属硫化物的存在。含有大量表面焦炭的废Sm、Ce、W、Zr和Mg催化剂也显示在约532eV处的单峰和在约164eV处的双峰,这两者在30s的Ar+溅射时都没有显著降低。这些特征峰表明存在C-O-C和C-S-C或Sn物质。
图2显示了两种不同类型的硫属化物的试验性模型。对于所有催化剂,在SOCM之后存在氧化物和硫化物的混合物。对于A型催化剂MgO、CeO2、Sm2O3、WO3、La2O3和ZrO2,反应后,发现大量的含有O和S的焦炭。在焦炭层下面,在SOCM期间形成金属硫化物(图2A)。对于B型催化剂,基于Ti-、Fe-、Zn-和Cr-的催化剂,除氧化物和硫化物二者外,仅存在少量的表面C(图2B)。基于其中在催化过程期间形成焦炭的其他反应系统的早期研究,可预期Mg、Zr和Sm催化剂在SOCM期间失活。
在上述条件下进行催化SOCM研究。在6小时后(其中接触时间为1.33min mg/mL),将流速调节至接触时间为1.67min mg/mL,并在5小时后,将接触时间进一步增加至2.22minmg/mL并持续5小时。本文报告的反应性数据是至少三次独立测量的平均值。测定了反应产物C2H4、C2H6、C2H2和CS2,其中对于硫醇的选择性远低于1%。取决于催化剂,C2H4/C2H6比率为8.9-12.4,对于2.22mg·min/mL的较大接触时间,C2H4/C2H2比率为7.3-16.6。因此,与使用O2的典型OCM的报道相比,目标分子C2H4是目前最丰富的C2产物。
对于接触时间为1.33mg min/mL的SOCM,所有十种催化剂的CH4转化率都在4%至11%的范围内,且C2H4选择性为5%至35%(图3)。早期研究的在950℃,经由贵金属硫化物的SOCM实现类似的转化,但对于C2H4的选择性是小于一半。显然,对于高的SOCM选择性,贵金属不是必需的。在约1小时的诱导时间后,对于Ce-、Fe-、Zn-、Mg-和Zr-硫属化物催化剂,CH4转化率(图3A)和C2H4选择性(图3B)的变化在5小时内是不显著的,而对于基于Ti、W、Cr和Sm的对应物,观察到更大的变化。C2H4产率随接触时间而增加:如果接触时间从1.33mg min/mL增加至1.67mg min/mL和2.22mg min/mL,则其分别平均提高5%和6%。
注意,在SOCM期间形成大量的C沉积物的Mg和Zr硫属化物表现出稳定的催化性质。因此,焦化不会导致逐渐的催化剂失活,如在其他催化体系中通常遇到的情况。即使在将接触时间从1.33mg min/mL增加至1.67mg min/mL并且在5小时后增加至2.22mg min/mL之后,在形成大量焦炭的Sm、Mg和Ce催化剂上未观察到CH4转化率的一致性减少。因此,在这些情况下,焦化不会导致失活。由于在反应之前表面上的CH4扩散应该是可以忽略的,因此得出结论:CH4在焦化表面上容易被活化。与CH4转化率相比,最高性能的基于Fe和Ce的催化剂的平均C2H4产率比使用2.22mg min/mL接触时间的其他催化剂高10%。在这两种氧化物上,形成比在Mg、Zr和Sm催化剂上更少量的C沉积物,表明需要一定程度的抗焦化性以实现最高的C2H4产率。
关于C2H4和C2H2形成的SOMC反应途径,在图4中比较了在三种不同接触时间下六种催化剂的平均C2H4/C2H6和C2H4/C2H2比率。随着接触时间增加,C2H4/C2H6比率明显增加,而C2H4/C2H2比率下降,认为随反应时间增加,对于C2H6的相对选择性下降,而对于C2H2的相对选择性增加。不局限于任何一种理论、操作模式或机理,这些发现在显著性程度上提供了强有力的证据表明,在本发明的催化剂上通过C2H6和C2H4的脱氢分别形成C2H4和C2H2。图4还显示基于Fe-和Ti-的催化剂对于C2H2的相对选择性最低,其两者都不形成大量焦炭。与之相比,基于Ti-的催化剂对于CS2的相对选择性最高且基于Fe-的催化剂对于CS2的相对选择性最低,表明焦炭可能从乙炔而不是从CS2形成,这与其中从不饱和烃形成焦炭的其他催化体系的研究相一致。
本发明的实施例.
以下非限制性实施例和数据说明与本发明的方法和/或催化剂相关的各个方面和特征,包括如通过本文所述的方法可获得的甲烷至乙烯的选择性氧化偶联。与现有技术相比,本发明的方法和催化剂组分提供了令人惊讶、意外和与之相反的结果和数据。尽管通过使用可与其一起使用的代表性金属氧化物组分说明本发明的实用性,但本领域技术人员应当理解,可用各种其他金属氧化物/硫属化物组分获得相当的结果,如与本发明的范围相应的。
反应器测量
1.实验装置.关于实验装置的详细信息在文献中提供。(参见例如,Zhu,Q.;Wegener,S.L.;Xie,C.;Uche,O.;Neurock,M.;Marks,T.J.,Nat Chem 2012,5(2),104-109.)简言之,反应器位于包含硫蒸气发生器、预热炉和反应器炉的烘箱中。通过将烘箱加热至470K的温度并使恒定的40ml/min的氩气流通过硫蒸气发生器来产生元素硫。为了将Sx转化为S2,将预热炉设定为923K的温度。随后,将CH4和痕量H2S加入到S2/Ar流出物中,并且将离析物混合物引导通过含有200mg催化剂的反应器炉。在离开反应器区域之后,将产物流引导通过S2冷凝器以捕集未反应的硫,并用GC(Agilent 7890GC)分析产物。
2.实验程序.在当前实验中使用的十种代表性氧化物纳米粉末购自SigmaAldrich、Strem Chemicals或Alfa Aesar,并且显示≥99.95%的纯度。根据制造商的说明,ZrO2、TiO2、Sm2O3、CeO2、Fe3O4和MgO的表面积分别为>25m2/g、130-190m2/g、<10m2/g、30m2/g、60m2/g和200m2/g。在将氧化物压制成球粒和研磨后,提取直径为180μm-300μm的颗粒并填充到反应器管中。
离析物由2.7%的在氩气中的CH4和比率为7.5的CH4/S以及0.06%的H2S组成。在校准CH4流之后,在S2/H2S/Ar的流中将烘箱、预热炉和反应器炉设置为它们各自所需的温度。在反应温度下4小时后,使用150ml/min的流出物流速(接触时间为1.33mg·min/ml)将CH4引入6小时。随后,将流速增加至120ml/min(接触时间为1.67mg·min/ml),并在5小时后进一步增加至150ml/min(接触时间为2.22mg·min/ml)。通过使用氩气作为平衡气体,离析物浓度保持恒定。
3.C2H4产率随接触时间的变化.在表2中,示出在我们的实验程序中使用的三个接触时间下的C2H4产率。
表2.在三个不同的接触时间下,在CH4/S2/Ar混合物中和7.5的CH4/S比率下,在950℃下运行5小时后,测量的C2H4产率C2产率。
C2H4产率随接触时间而增加:如果接触时间从1.33mg min/ml增加至1.67mg min/ml和2.22mg min/ml,则其分别提高5%和6%。显然,对于Fe和Ce催化剂,C2H4产率明显提高。对于接触时间2.22mg·min/ml,这两种催化剂的C2H4产率比其他催化剂平均高10%。这表明催化剂应表现出一定程度的抗焦化性,以便得到高的C2H4产率。有趣的是,尽管在TiO2上仅发生少量焦化,但TiO2显示相对低的C2H4产率。
图5A和5B显示在所有三个接触时间下,CH4转化率和C2H4选择性随运行时间的变化,所获得的所有示出的数据是至少3次独立测量的平均值。注意,在ZrO2的情况下,在7小时和12小时后,接触时间从1.33mg min/ml增加至1.66mg min/ml和2.22mg min/ml。对于其他催化剂,在6和11小时后,接触时间已经改变。
光谱研究
1.X-射线衍射.为了阐明不同催化剂在SOMC反应条件下的结构变化,使用具有CuKα辐射和Ni滤光器的Rigaku(Rigaku Ultima IV)粉末X射线衍射仪收集在950℃下反应后的催化剂的XRD数据。在40kV和20mA下运行XRD仪器。步长设定为0.05°,每步的计数时间为2s。减去背景的XRD光谱(未示出)(其是6个不同样品在具有痕量H2S的CH4/S2/Ar混合物中在950C下反应后取得的)表明多个相通常共存。
2.拉曼光谱.在上述条件下(Acton TriVista CRS),在950℃下反应后对催化剂进行拉曼光谱分析。使用514.5nm辐射、0.2mW的激光功率和5分钟的数据收集时间记录所有光谱。图6显示在反应之后Zr、Mg、Sm和Ce催化剂在1100-1850cm-1范围内的拉曼光谱。在该区域中没有观察到Ti和Fe催化剂的特征峰。在约1600cm-1处的带与石墨烯结构中的声子模式相关。因此,该模式表示结晶石墨。先前已将1350cm-1处的带与有缺陷和无序的碳结构、碳纳米颗粒、无定形碳或有缺陷的丝状碳关联。对于Zr、Mg、Sm和Ce的硫属化物观察到这两种模式二者,表明C以两种形式存在。Ce化合物的信号强度非常弱,并且在1350cm-1和1580cm-1处没有观察到Ti和Fe催化剂的特征峰,这与其中发现在这三种氧化物上存在显著更少的C的XPS数据是一致的。
3.X射线吸收光谱.使用配备有淹没式电子枪和扫描离子枪的Thermo ScientificESCALAB 250Xi并使用Al Kα辐射(1486.6eV)作为激发源进行X射线光电子能谱(XPS)实验。在减去背景之后,考虑到自旋轨道偶合,使用曲面Gaussian和Laurenzian函数将XPS特征建模。从建模的峰,提取不同特征的结合能。基于相对元素灵敏度和C 1s积分,Mg、Zr、Ce和Sm催化剂的C表面含量在反应后为>90%。图7A显示这些催化剂的S 2p光谱,其非常相似。可以区分在161eV-161.5eV和约164eV处的峰。基于早期研究,161eV-161.5eV处的特征峰归属于硫化物物质,164eV处的双峰可归属于Sn、C-S-C或C-S-H。
图7B中的O 1s光谱显示在约532eV处的弱的特征峰,而MgO显示在529.7eV处的小肩峰。由于只能区分对于Mg催化剂的弱的氧化物特征峰,因此在反应后在Zr、Ce和Sm的氧化物上不存在表面氧化物。约532eV处的特征峰可归属于在使催化剂暴露于大气期间形成的表面O-H或者归属于形成在焦炭上的C-O-C物质。在用具有能量30keV的Ar+离子溅射30s和90s之后收集XPS光谱,以区分在即时表面上形成的OH基团和也可能存在于表面下区域中的C-O-C物质。其次,这些实验可显示在焦炭层下是否存在氧化物。图8显示Mg和Zr催化剂在溅射30s和90s之前和之后在O 1s区域中的XPS光谱。对于两种硫属化物,532eV处的峰强度没有急剧衰减,这强烈地表明除了可能的表面M-OH之外还存在C-O-C物质。在Zr以及溅射后的Ce和Sm的O 1s光谱中(未示出),可观察到530eV处的特征峰没有显著增加,但是在Mg催化剂上观察到这种特征峰的略微增加。因此,在焦炭层下面不存在大量的氧化物。
基于相对元素灵敏度和C 1s积分,Fe和Ti催化剂在反应后的C表面含量为12-15%。图9A显示O 1s XPS光谱,其显示在约530.1eV和531-532eV处的特征峰。前者特征峰来自金属氧化物,而后者特征峰归属于表面氢氧化物,因为在用能量30keV的Ar+离子溅射30s后,它的强度显著衰减。对于两种硫属化物,161-161.7处的特征峰可归属于含有S2-和可能较少量的S2 2-的金属硫化物。
在Fe催化剂的S 2p光谱中出现的168.1eV处的峰是由于表面上存在SO4 2-所致(图9B)。注意,在溅射30s后,在168.1eV处的峰被完全抑制,因此,SO4 2-仅存在于催化剂表面上。
如上述证实的,金属氧化物上的OCM方法可与作为氧化剂的S2一起使用。与先前的SOMC工作(包括负载的Pd催化剂)相比,发现显著更高的C2H4选择性,并且获得比先前使用O2的OCM报道的显著更高的C2H4/C2H6比率。虽然Mg、Zr、W和Sm硫属化物在SOMC期间形成大量的焦炭,但在基于Fe-、Ti-和Cr-的催化剂上仅发生少量焦化,在运行16小时期间没有观察到前者催化剂的明显失活。Ce-和Fe硫属化物上提高的C2H4产率表明,可能需要一定程度的抗焦化性以实现CH4到C2H4产物的最佳转化。C2H6、C2H4和C2H2的相对选择性随接触时间的变化表明,可通过C2H6和C2H4的脱氢分别形成大量的C2H4和C2H2

Claims (17)

1.一种用于氧化偶联甲烷的方法,所述方法包括:
提供金属氧化物组分;
将所述金属氧化物组分在足以使所述金属氧化物组分至少部分硫化的时间和温度中的至少一个下暴露于气态S2;以及
使所述硫化组分在足以氧化偶联所述甲烷并产生乙烯的甲烷流速和时间中的至少一个下与甲烷接触。
2.如权利要求1所述的方法,其中所述金属氧化物组分选自MgO、ZrO2、TiO2、CeO2、Sm2O3、ZnO、WO3、Cr2O3、La2O3和Fe3O4
3.如权利要求1所述的方法,其中所述气态S2和甲烷中的每一个均由Ar携带。
4.如权利要求1所述的方法,其中使H2S与所述硫化的金属氧化物组分接触。
5.如权利要求1所述的方法,其中相对于乙烷和乙炔选择性地生成乙烯。
6.一种用于氧化偶联甲烷的方法,所述方法包括:
提供选自MgO、ZrO2、TiO2、CeO2、Sm2O3、ZnO、WO3、Cr2O3、La2O3和Fe3O4的金属氧化物组分;
将所述金属氧化物组分在足以使所述金属氧化物组分至少部分硫化的时间和温度中的至少一个下暴露于气态S2;以及
使所述硫化组分在足以氧化偶联所述甲烷并相对于乙烷和乙炔而选择性生成乙烯的甲烷流速和时间中的至少一个下与甲烷接触。
7.如权利要求6所述的方法,其中所述气态S2和甲烷中的每一个均由Ar携带。
8.如权利要求6所述的方法,其中使H2S与所述硫化的金属氧化物组分接触。
9.如权利要求6所述的方法,其中所述金属氧化物组分包括焦炭沉积物,所述焦炭沉积物增加乙烯产量。
10.如权利要求6所述的方法,其中增加所述接触时间增大乙烯/乙烷比率。
11.一种使用金属氧化物催化剂氧化偶联甲烷的方法,所述方法包括:
提供不存在贵金属的金属氧化物催化剂组分;
将所述金属氧化物催化剂组分在足以使所述金属氧化物催化剂组分至少部分硫化的时间和温度中的至少一个下暴露于气态S2;以及
使所述硫化催化剂组分在足以氧化偶联所述甲烷并产生乙烯的甲烷流速和时间中的至少一个下与甲烷接触。
12.如权利要求11所述的方法,其中所述气态S2和甲烷中的每一个均由Ar携带。
13.如权利要求11所述的方法,其中使H2S与所述硫化的金属氧化物组分接触。
14.如权利要求11所述的方法,其中所述金属氧化物组分包括焦炭沉积物,所述焦炭沉积物增加乙烯产量。
15.如权利要求11所述的方法,其中增加所述接触时间增大乙烯/乙烷比率。
16.如权利要求11所述的方法,其中所述金属氧化物组分选自MgO、ZrO2、TiO2、CeO2、Sm2O3、ZnO、WO3、Cr2O3、La2O3和Fe3O4
17.如权利要求15所述的方法,其中所述金属氧化物组分是直径尺寸为约180μm至约300μm的颗粒。
CN201680003182.5A 2015-02-19 2016-02-19 硫作为经由氧化物/硫属化物催化剂的氧化烃加工中的选择性氧化剂 Pending CN107001181A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562176486P 2015-02-19 2015-02-19
US62/176,486 2015-02-19
PCT/US2016/018756 WO2016134305A1 (en) 2015-02-19 2016-02-19 Sulfur as a selective oxidant in oxidative hydrocarbon processing over oxide/chalcogenide catalysts

Publications (1)

Publication Number Publication Date
CN107001181A true CN107001181A (zh) 2017-08-01

Family

ID=56689211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680003182.5A Pending CN107001181A (zh) 2015-02-19 2016-02-19 硫作为经由氧化物/硫属化物催化剂的氧化烃加工中的选择性氧化剂

Country Status (6)

Country Link
US (1) US10227268B2 (zh)
EP (1) EP3259242A4 (zh)
CN (1) CN107001181A (zh)
BR (1) BR112017006732A2 (zh)
CA (1) CA2961604A1 (zh)
WO (1) WO2016134305A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114605218A (zh) * 2020-12-08 2022-06-10 中国科学院大连化学物理研究所 一种甲烷氧化偶联的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018005456A1 (en) 2016-06-28 2018-01-04 Bio2Electric, Llc Enhanced oxygen transfer agent systems for oxidative dehydrogenation of hydrocarbons
WO2018078567A1 (en) * 2016-10-31 2018-05-03 Sabic Global Technologies B.V. Catalysts for soft oxidation coupling of methane to ethylene and ethane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86102958A (zh) * 1985-06-07 1986-12-03 菲利普石油公司 氧化转化方法
US5321185A (en) * 1992-07-08 1994-06-14 Virginia Tech Intellectual Properties Methane oxidative coupling

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620057A (en) * 1985-06-07 1986-10-28 Phillips Petroleum Company Methane conversion
US5068486A (en) * 1990-10-15 1991-11-26 Mobil Oil Corporation Process for direct oxidative conversion of methane to higher hydrocarbons at high pressure and moderate temperature
US5191138A (en) * 1990-10-15 1993-03-02 Mobil Oil Corp. Process for oxidative conversion of methane to higher hydrocarbons using metal sulfide oxidizing agent
CN101035881B (zh) * 2004-09-08 2010-10-13 国际壳牌研究有限公司 加氢裂化催化剂组合物
WO2013012883A1 (en) * 2011-07-18 2013-01-24 Northwestern University Forming ethylene

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86102958A (zh) * 1985-06-07 1986-12-03 菲利普石油公司 氧化转化方法
US5321185A (en) * 1992-07-08 1994-06-14 Virginia Tech Intellectual Properties Methane oxidative coupling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU,QINGJUN ETAL: "Sulfur as a selective soft oxidant for catalytic methane conversion probed by experiment and theory", 《NATURE CHEMISTRY 》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114605218A (zh) * 2020-12-08 2022-06-10 中国科学院大连化学物理研究所 一种甲烷氧化偶联的方法

Also Published As

Publication number Publication date
US10227268B2 (en) 2019-03-12
CA2961604A1 (en) 2016-08-25
US20170305813A1 (en) 2017-10-26
WO2016134305A1 (en) 2016-08-25
BR112017006732A2 (pt) 2017-12-26
EP3259242A4 (en) 2018-10-10
EP3259242A1 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
US9637382B2 (en) Methods for producing solid carbon by reducing carbon dioxide
US9783416B2 (en) Methods of producing hydrogen and solid carbon
JP6328611B2 (ja) 非鉄触媒で炭素酸化物を還元するための方法および構造
CN104321274B (zh) 用于在碳氧化物催化转化器中使用金属催化剂的方法
Dharanipragada et al. Deactivation study of Fe2O3–CeO2 during redox cycles for CO production from CO2
EP2729405B1 (de) Verfahren zur synthesegaserzeugung
Zhao et al. Hydrogen-rich syngas production from chemical looping gasification of lignite by using NiFe2O4 and CuFe2O4 as oxygen carriers
US20180065856A1 (en) Nanostructured metal oxide compositions for applied photocatalysis
EP2935517B1 (de) Verfahren zur verwertung von kuppelgasen, begleitgasen und/oder biogasen
WO2013004398A2 (de) Verfahren zur parallelen herstellung von wasserstoff und kohlenstoffhaltigen produkten
Allaedini et al. Methane decomposition for carbon nanotube production: Optimization of the reaction parameters using response surface methodology
CN107001181A (zh) 硫作为经由氧化物/硫属化物催化剂的氧化烃加工中的选择性氧化剂
US20160039677A1 (en) Direct combustion heating
WO2014151144A1 (en) Carbon oxide reduction with intermetallic and carbide catalysts
Guil-López et al. Evolution of the Ni-active centres into ex hydrotalcite oxide catalysts during the COx-free hydrogen production by methane decomposition
Maciel et al. Bio-hydrogen production based on catalytic reforming of volatiles generated by cellulose pyrolysis: An integrated process for ZnO reduction and zinc nanostructures fabrication
Savva et al. Low-temperature catalytic decomposition of ethylene into H2 and secondary carbon nanotubes over Ni/CNTs
JP7311596B2 (ja) 触媒組成物およびその用途
US11021420B1 (en) Oxygen transfer agent conditioning systems and methods
Wang et al. Carbon deposition behavior on biochar during chemical vapor deposition process
JP6399816B2 (ja) 高分散遷移金属触媒及びシリカ担体表面への遷移金属原子の高分散担持方法
de Lima Duarte et al. Brasil nut mesocarp (Bertholletia excels) as a Biomass Source for Activated Carbon Production: Correlation Between Thermal Treatment and Adsorption Performance
KR101974018B1 (ko) 합성 가스로부터 메탄올을 합성하기 위한 촉매의 제조방법
Liu et al. Review of Theoretical and Computational Studies of Bulk and Single Atom Catalysts for H2S Catalytic Conversion
CN115400751A (zh) 脱氢用催化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170801