CN106984289A - 一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法 - Google Patents

一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法 Download PDF

Info

Publication number
CN106984289A
CN106984289A CN201710380725.1A CN201710380725A CN106984289A CN 106984289 A CN106984289 A CN 106984289A CN 201710380725 A CN201710380725 A CN 201710380725A CN 106984289 A CN106984289 A CN 106984289A
Authority
CN
China
Prior art keywords
caprylic acid
perfluoro caprylic
ceramic surface
molecular imprinting
porous ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710380725.1A
Other languages
English (en)
Other versions
CN106984289B (zh
Inventor
李慧芝
李志英
许崇娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201710380725.1A priority Critical patent/CN106984289B/zh
Publication of CN106984289A publication Critical patent/CN106984289A/zh
Application granted granted Critical
Publication of CN106984289B publication Critical patent/CN106984289B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/02Acids; Metal salts or ammonium salts thereof, e.g. maleic acid or itaconic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0424Elimination of an organic solid phase containing halogen, nitrogen, sulphur or phosphorus atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法,特征在于,以多孔陶瓷粉为吸附剂的支持体。在反应器中,按如下组成质量百分浓度加入,去离子水:53~60%,马来酰亚胺:10~15%,衣康酸:13~18%,全氟辛酸:1.0~2.0%,环氧基化多孔陶瓷粉:10~15%,过硫酸铵:1.0~3.0%,通氮气体除氧10min,无氧氛围,45±2℃搅拌反应12h,将得到的产物用乙醇与氢氧化钠混合溶液搅拌洗涤10h,除去模板分子,干燥,即得多孔陶瓷表面全氟辛酸分子印迹吸附剂。该吸附材料对全氟辛酸具有特异的识别能力,选择性较高及良好的机械性能,有很好的化学稳定性,吸附速度快,容易洗脱,具有再生能力。

Description

一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法
技术领域
本发明涉及的是一种分子印迹吸附材料的制备方法与应用技术,特别涉及一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法,属于分离材料应用技术领域。
背景技术
全氟辛酸(PFOA),或者称为“C8”,为一种人工合成的化学品,通常是用于生产高效能氟聚合物时所不可或缺的加工助剂。这些高效能氟聚合物可被广泛应用于航空航天科技、运输、电子行业,以及厨具(如不粘锅)等民生用品。从20世纪80年代早期开始,这种非挥发性全氟有机化合物在工业及民用领域的应用增长迅速。该类产品的大量使用使得其以各种途径进入到全球范围内的各种环境介质如土壤、水体、大气中,通过食物链的传递放大,目前在许多动物组织和人体中发下了PFOA的存在。因此PFOA已经成为一种重要的全球性污染物,它对环境污染的广度和深度超出人们预想,目前对于该问题的研究已经成为环境科学的研究热点。
对于PFOA等全氟烷基类持久性污染物的治理技术目前已有研究,因其极好的稳定性造成采用传统废水处理方法无法将其降解,还可能在处理过程中造成其前体的分解产生新PFOA。处理含全氟类烷基化合物的有机废水,高级氧化技术也速手无策,强氧化性的羟基自由基也与PFOA等全氟类烷基化合物的反应速率极慢,另外,还有人采用光化学、活性炭吸附和纳滤膜等方法,处理效果都不是特别明显。赵德明等,研究了采用超声波降解全氟类烷基化合物(赵德明等,超声波降解全氟辛烷磺酸和全氟辛酸的动力学,化工学报,2011,62(2):829~832),超声降解适用于高浓度的全氟污染物,对于微量的全氟污染物处理达不到理想效果。吸附分离除去环境水中存在的有机、无机污染物,已被认为是一种十分有效和常用的处理方法,采用吸附分离法除去水中的PFOA成为本领域技术人员关注问题。采用吸附分离除去PFOA报道很少,尤其是对PFOA具有选择性吸附分离跟少。
具有分子识别功能的高选择性材料,一直受到人们的关注。分子印迹技术是当前制备高选择性材料的主要方法之一。依据此技术制备的分子印迹聚合物,由于对印迹分子的立体结构具有“记忆”功能而表现预定、专一的识别性能,在分离科学、生物模拟科学等领域有十分广阔的应用前景。印迹聚合物的传统制备方法是:将模板分子、功能单体、交联剂和引发剂按一定配比溶解在溶剂(致孔剂)中,在适当条件下引发聚合后得到块状的高度交联刚性聚合物;然后经粉碎、过筛而得到尺寸符合要求的粒子。此方法所需装置简单,普适性强,但通常存在以下问题:(1)在研磨过程中可控性差,不可避免地产生一些不规则颗粒,同时破坏部分印迹点。经筛分后获得的合格颗粒一般低于50%,造成明显浪费;(2)存在模板分子包埋过深、难以洗脱、模板渗漏和机械性能低;(3)印迹位点分布不均一,一部分处于颗粒孔避上,其传质速率较快,而另一些包埋在聚合物本体之中,受位阻影响,可接近性差,再结合模板分子的速率慢,从而降低了印迹位点的利用率。为了解决上述问题,表面印迹作为一种新的方法近年来成为研究的热点。所谓表面分子印迹就是采取一定的措施把所有的结合位点结合在具有良好可接近性的表面上,从而有利于模板分子的脱除和再结合。所以选择理想的支持体合成表面印迹吸附材料很重要,目前所用的支持体主要是碳微球和硅胶颗粒,申请号为201010242495.0的专利中公开都是以硅胶球为支持的印迹吸附材料;申请号为201010137822.6的专利中公开一种以碳微球为支持的印迹吸附材料,申请号为2012100978570的专利中公开一种以丝瓜络为支持的印迹吸附材料。
多孔陶瓷又被称为微孔陶瓷、泡沫陶瓷,是一种新型陶瓷,是由骨料、胶粘剂和增孔剂等组分高温烧成的,具有三维立体网状结构。多孔陶瓷内部均匀分布着互相贯通的微孔或空洞,因此其具有孔隙率高,体积密度小、比表面积大及独特的物理表面特性,加之陶瓷材料特有的耐高温、耐腐蚀、高的化学稳定性,使多孔陶瓷成为吸附剂理想支持体。本申请采用建筑废弃陶瓷制备多孔陶瓷,降低成本的同时还可以减少废弃陶瓷的污染,造福人类。
发明内容
本发明的目的之一是提供一种多孔陶瓷表面全氟酸锌分子印迹吸附剂的制备方法,主要是以多孔陶瓷为支持体,以全氟辛酸为模板分子,合成对全氟辛酸分子具有高选择性、有特异识别能力的吸附剂。
本发明的目的通过如下技术方案实现。
一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法,特征在于,该方法具有以下工艺步骤:
(1)原料预处理:将废弃的陶瓷,进行粉碎,过筛使粒径在120~140目之间,得到陶瓷粉;将粘土进行粉碎,过筛使粒径在120~140目之间,得到粘土粉;
(2)多孔陶瓷的制备:在研磨机,按如下组成质量百分浓度加入,陶瓷粉:40~44%,粘土粉:40~44%,碳粉:6~10%,固体环氧树脂:5~10%,各组分含量之和为百分之百,开启研磨机,研磨30 min,取出置于110℃烘箱,干燥10 h,然后置于950℃高温炉中焙烧5 h,取出,冷至室温,研磨至粉末状,得到多孔陶瓷粉,粒径在60~80目之间;
(3)环氧基化多孔陶瓷制备:在反应器中,按如下组成质量百分浓度加入,乙醇:56~60%, γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷:25~30%,多孔陶瓷粉:12~18%,各组分之和为百分之百,于58±2℃恒温、搅拌、回流反应5 h,反应完毕后,固液分离,用乙醇洗涤,干燥,得到环氧基化多孔陶瓷粉;
(4)多孔陶瓷表面全氟辛酸分子印迹吸附剂制备:在反应器中,按如下组成质量百分浓度加入,去离子水:53~60%,马来酰亚胺:10~15%,衣康酸:13~18%,全氟辛酸:1.0~2.0%,环氧基化多孔陶瓷粉:10~15%,过硫酸铵:1.0~3.0%,各组分含量之和为百分之百,通氮气体除氧10min,无氧氛围,45±2℃搅拌反应12h,将得到的产物用乙醇与氢氧化钠混合溶液搅拌洗涤10h,除去模板分子,干燥,即得多孔陶瓷表面全氟辛酸分子印迹吸附剂。
所述的陶瓷粉为废弃的建筑陶瓷或废弃日用陶瓷粉碎而得到的。
在步骤(2)中所述的陶瓷粉与粘土的质量比为1:1最优。
在步骤(4)中所述的乙醇与氢氧化钠混合溶为无水乙醇与2mol/L的氢氧化钠溶液按体积为6:4混合。
在步骤(4)中所述的无氧氛围为聚合反应过程一直通入氮气气体。
本发明的另一个目的是提供多孔陶瓷表面全氟辛酸分子印迹吸附剂对全氟辛酸有特异性的识别能力用于样品的分离富集。特征为:将制备好的多孔陶瓷表面全氟辛酸分子印迹吸附剂制作成吸附柱,按动态法吸附,流速为1.5~2.5mL/ min,吸附后用乙醇与氢氧化钠混合溶液洗脱,流速为1.0mL/ min,或者静态吸附。
本发明的优点及效果是:
(1)本发明获得高选择性吸附材料是多孔陶瓷表面全氟辛酸分子印迹吸附剂,具有特定的空穴,对全氟辛酸具有特异的识别能力,选择性较高,对其它共存物质不吸附,可以分离分子结构相近的物质。
(2)本发明制备多孔陶瓷表面全氟辛酸分子印迹吸附剂,由于是在多孔陶瓷表面修饰上分子印迹聚合物,其吸附位点都在吸附剂的表面,有利于模板分子吸附和洗脱,洗脱时间短,吸附能力强、效率高,由于多孔陶瓷的比表面积大,连接吸附位点多,其对全氟辛酸分子吸附容量大,其最大吸附容量为137.8 mg/g,最高吸附率可达96.8%。
(3)本发明制备多孔陶瓷表面全氟辛酸分子印迹吸附剂,由于多孔陶瓷具有孔隙率高,体积密度小、比表面积大及独特的物理表面特性,加之陶瓷材料特有的耐高温、耐腐蚀、高的化学稳定性,有良好的物理化学稳定性和优异的机械稳定性,对全氟辛酸分子吸附操作简单。制备过程简单,条件易于控制,生产成本低。
具体实施方式
实施例1
(1)多孔陶瓷的制备:在研磨机,分别加入,陶瓷粉:42g,粘土:42g,碳粉:8g,固体环氧树脂:8g,开启研磨机,研磨30 min,取出置于110℃烘箱,干燥10 h,然后置于950℃高温炉中焙烧5 h,冷至室温,研磨至粉末状,得到多孔陶瓷粉,粒径在60~80目之间;
(2)环氧基化多孔陶瓷制备:在反应器中分别加入,乙醇:75 mL,γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷:28g,多孔陶瓷粉:14g,于58±2℃恒温、搅拌、回流反应5 h,反应完毕后,固液分离,用乙醇洗涤,干燥,得到环氧基化多孔陶瓷粉;
(3)多孔陶瓷表面全氟辛酸分子印迹吸附剂制备:在反应器中,分别加入,去离子水:56mL,马来酰亚胺:12g,衣康酸:16g,全氟辛酸:1.0g,环氧基化多孔陶瓷粉:13g,过硫酸铵:2.0g,通氮气体除氧10min,无氧氛围,45±2℃搅拌反应12h,将得到的产物用乙醇与氢氧化钠混合溶液搅拌洗涤10h,除去模板分子,干燥,即得多孔陶瓷表面全氟辛酸分子印迹吸附剂。
实施例2
(1)多孔陶瓷的制备:在研磨机,分别加入,陶瓷粉:40g,粘土:44g,碳粉:6g,固体环氧树脂:10g,开启研磨机,研磨30 min,取出置于110℃烘箱,干燥10 h,然后置于950℃高温炉中焙烧5 h,冷至室温,研磨至粉末状,得到多孔陶瓷粉,粒径在60~80目之间;
(2)环氧基化多孔陶瓷制备:在反应器中分别加入,乙醇:76 mL,γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷:25g,多孔陶瓷粉:15g,于58±2℃恒温、搅拌、回流反应5 h,反应完毕后,固液分离,用乙醇洗涤,干燥,得到环氧基化多孔陶瓷粉;
(3)多孔陶瓷表面全氟辛酸分子印迹吸附剂制备:在反应器中,分别加入,去离子水:53mL,马来酰亚胺:15g,衣康酸:18g,全氟辛酸:1.0g,环氧基化多孔陶瓷粉:12g,过硫酸铵:1.0g,通氮气体除氧10min,无氧氛围,45±2℃搅拌反应12h,将得到的产物用乙醇与氢氧化钠混合溶液搅拌洗涤10h,除去模板分子,干燥,即得多孔陶瓷表面全氟辛酸分子印迹吸附剂。
实施例3
(1)多孔陶瓷的制备:在研磨机,分别加入,陶瓷粉:44g,粘土:40g,碳粉:10g,固体环氧树脂:6g,开启研磨机,研磨30 min,取出置于110℃烘箱,干燥10 h,然后置于950℃高温炉中焙烧5 h,冷至室温,研磨至粉末状,得到多孔陶瓷粉,粒径在60~80目之间;
(2)环氧基化多孔陶瓷制备:在反应器中分别加入,乙醇:70 mL,γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷:26g,多孔陶瓷粉:18g,于58±2℃恒温、搅拌、回流反应5 h,反应完毕后,固液分离,用乙醇洗涤,干燥,得到环氧基化多孔陶瓷粉;
(3)多孔陶瓷表面全氟辛酸分子印迹吸附剂制备:在反应器中,分别加入,去离子水:60mL,马来酰亚胺:10g,衣康酸:13g,全氟辛酸:1.5g,环氧基化多孔陶瓷粉:14g,过硫酸铵:1.5g,通氮气体除氧10min,无氧氛围,45±2℃搅拌反应12h,将得到的产物用乙醇与氢氧化钠混合溶液搅拌洗涤10h,除去模板分子,干燥,即得多孔陶瓷表面全氟辛酸分子印迹吸附剂。
实施例4
(1)多孔陶瓷的制备:在研磨机,分别加入,陶瓷粉:43g,粘土:43g,碳粉:5g,固体环氧树脂:9g,开启研磨机,研磨30 min,取出置于110℃烘箱,干燥10 h,然后置于950℃高温炉中焙烧5 h,冷至室温,研磨至粉末状,得到多孔陶瓷粉,粒径在60~80目之间;
(2)环氧基化多孔陶瓷制备:在反应器中分别加入,乙醇:74 mL,γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷:30g,多孔陶瓷粉:12g,于58±2℃恒温、搅拌、回流反应5 h,反应完毕后,固液分离,用乙醇洗涤,干燥,得到环氧基化多孔陶瓷粉;
(3)多孔陶瓷表面全氟辛酸分子印迹吸附剂制备:在反应器中,分别加入,去离子水:54mL,马来酰亚胺:11g,衣康酸:14g,全氟辛酸:2.0g,环氧基化多孔陶瓷粉:18g,过硫酸铵:2.0g,通氮气体除氧10min,无氧氛围,45±2℃搅拌反应12h,将得到的产物用乙醇与氢氧化钠混合溶液搅拌洗涤10h,除去模板分子,干燥,即得多孔陶瓷表面全氟辛酸分子印迹吸附剂。
本发明制备多孔陶瓷表面全氟辛酸分子印迹吸附剂,对全氟辛酸其最大吸附容量为137.8 mg/g,最高吸附率可达96.8%。

Claims (7)

1.一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法,特征在于,该方法具有以下工艺步骤:
(1)原料预处理:将废弃的陶瓷,进行粉碎,过筛使粒径在120~140目之间,得到陶瓷粉;将粘土进行粉碎,过筛使粒径在120~140目之间,得到粘土粉;
(2)多孔陶瓷的制备:在研磨机,按如下组成质量百分浓度加入,陶瓷粉:40~44%,粘土粉:40~44%,碳粉:6~10%,固体环氧树脂:5~10%,各组分含量之和为百分之百,开启研磨机,研磨30 min,取出置于110℃烘箱,干燥10 h,然后置于950℃高温炉中焙烧5 h,取出,冷至室温,研磨至粉末状,得到多孔陶瓷粉,粒径在60~80目之间;
(3)环氧基化多孔陶瓷制备:在反应器中,按如下组成质量百分浓度加入,乙醇:56~60%, γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷:25~30%,多孔陶瓷粉:12~18%,各组分之和为百分之百,于58±2℃恒温、搅拌、回流反应5 h,反应完毕后,固液分离,用乙醇洗涤,干燥,得到环氧基化多孔陶瓷粉;
(4)多孔陶瓷表面全氟辛酸分子印迹吸附剂制备:在反应器中,按如下组成质量百分浓度加入,去离子水:53~60%,马来酰亚胺:10~15%,衣康酸:13~18%,全氟辛酸:1.0~2.0%,环氧基化多孔陶瓷粉:10~15%,过硫酸铵:1.0~3.0%,各组分含量之和为百分之百,通氮气体除氧10min,无氧氛围,45±2℃搅拌反应12h,将得到的产物用乙醇与氢氧化钠混合溶液搅拌洗涤10h,除去模板分子,干燥,即得多孔陶瓷表面全氟辛酸分子印迹吸附剂。
2.根据权利要求1所述的一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法,特征在于,所述的陶瓷粉为废弃的建筑陶瓷或废弃日用陶瓷粉碎而得到的。
3.根据权利要求1所述的一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法,特征在于,步骤(2)中所述的陶瓷粉与粘土的质量比为1:1最优。
4.根据权利要求1所述的一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法,特征在于,步骤(4)中所述的乙醇与氢氧化钠混合溶为无水乙醇与2mol/L的氢氧化钠溶液按体积为6:4混合。
5.根据权利要求1所述的一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法,特征在于,步骤(4)中所述的无氧氛围为聚合反应过程一直通入氮气气体。
6.根据权利要求1所述的一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法所制备的多孔陶瓷表面全氟辛酸分子印迹吸附剂,特征在于,多孔陶瓷表面全氟辛酸分子印迹吸附剂用于水体中全氟辛酸的吸附分离。
7.根据权利要求1所述的一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法所制备的多孔陶瓷表面全氟辛酸分子印迹吸附剂。
CN201710380725.1A 2017-05-25 2017-05-25 一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法 Expired - Fee Related CN106984289B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710380725.1A CN106984289B (zh) 2017-05-25 2017-05-25 一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710380725.1A CN106984289B (zh) 2017-05-25 2017-05-25 一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法

Publications (2)

Publication Number Publication Date
CN106984289A true CN106984289A (zh) 2017-07-28
CN106984289B CN106984289B (zh) 2019-03-15

Family

ID=59420759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710380725.1A Expired - Fee Related CN106984289B (zh) 2017-05-25 2017-05-25 一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法

Country Status (1)

Country Link
CN (1) CN106984289B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354445A (zh) * 2021-05-24 2021-09-07 常州大学 填充材料及制备方法、高延展性低轮廓电解铜箔制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617813A (zh) * 2012-04-06 2012-08-01 济南大学 一种葡聚糖凝胶表面芹菜素分子印迹吸附材料的制备及应用
CN103954675A (zh) * 2014-05-06 2014-07-30 济南大学 一种s-腺苷甲硫氨酸分子印迹传感器的制备方法及应用
CN104944962A (zh) * 2015-03-23 2015-09-30 济南大学 一种激光烧结快速成型氮化硅陶瓷粉末的制备
CN106082823A (zh) * 2016-06-20 2016-11-09 安徽金丰新型建材有限公司 一种改性沥青混凝土
CN106283275A (zh) * 2016-08-16 2017-01-04 江门市夸福纳米仪器研究院有限公司 一种功能高分子材料制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617813A (zh) * 2012-04-06 2012-08-01 济南大学 一种葡聚糖凝胶表面芹菜素分子印迹吸附材料的制备及应用
CN103954675A (zh) * 2014-05-06 2014-07-30 济南大学 一种s-腺苷甲硫氨酸分子印迹传感器的制备方法及应用
CN104944962A (zh) * 2015-03-23 2015-09-30 济南大学 一种激光烧结快速成型氮化硅陶瓷粉末的制备
CN106082823A (zh) * 2016-06-20 2016-11-09 安徽金丰新型建材有限公司 一种改性沥青混凝土
CN106283275A (zh) * 2016-08-16 2017-01-04 江门市夸福纳米仪器研究院有限公司 一种功能高分子材料制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354445A (zh) * 2021-05-24 2021-09-07 常州大学 填充材料及制备方法、高延展性低轮廓电解铜箔制造方法

Also Published As

Publication number Publication date
CN106984289B (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
Deng et al. Polyacrylonitrile-based fiber modified with thiosemicarbazide by microwave irradiation and its adsorption behavior for Cd (II) and Pb (II)
CN106000311B (zh) 负载铁/锌纳米粒子的生物炭及其制备方法和应用
CN105396552B (zh) 一种成型生物碳及其制备方法
Liang et al. Ordered macroporous molecularly imprinted polymers prepared by a surface imprinting method and their applications to the direct extraction of flavonoids from Gingko leaves
CN107029668A (zh) 一种蜂窝型分子筛‑活性炭复合吸附剂、制备方法及其应用
Huang et al. 2-Methylol-12-crown-4 ether immobilized PolyHIPEs toward recovery of lithium (i)
CN107913677B (zh) 一种纳米重金属废水离子吸附微球及其制备方法
CN103933929A (zh) 一种吸附疏水性有机物的介孔氧化硅吸附剂及其制备方法和应用
CN106082211A (zh) 一种木质素基多级孔碳材料的制备方法及其用途
CN111889077A (zh) 改性磁性沸石咪唑骨架材料制备及吸附水中痕量头孢他啶
CN103159891A (zh) 一种磁性胺基修饰超高交联树脂及其制备方法
CN107126939B (zh) 多孔陶瓷表面全氟辛烷磺酸分子印迹吸附剂的制备方法
CN110292912A (zh) 一种mof衍生的簇状铈基除磷吸附剂及其制备方法
CN104785217B (zh) 一种粉煤灰/氧化石墨烯复合吸附材料的制备方法
CN103908955A (zh) 一种乙酰胺基修饰的超高交联型吸附树脂的制备方法及其应用
Guo et al. Characteristics and adsorption study of the activated carbon derived from municipal sewage sludge
CN110523398A (zh) 一种碳纳米片层负载TiO2分子印迹材料及其制备方法和应用
CN106984289A (zh) 一种多孔陶瓷表面全氟辛酸分子印迹吸附剂的制备方法
CN105921113A (zh) 一种用于脱除水中邻苯二甲酸的吸附剂及其制备方法
Wang et al. Functionalization of loofah fibers via surface-initiated AGET ATRP for synergic adsorption of multiple pollutants from water
CN105836821A (zh) 一种化纤工业专用的污水处理剂及其制备方法
CN102430284B (zh) 去除水中二苯甲酮的过滤介质及其制备方法以及滤芯和净水装置
CN104645937A (zh) 一种硅藻土和活性炭复合颗粒的制备方法
CN105478079B (zh) 高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法与应用
He et al. Poly (ethyleneimine) functionalized organic-inorganic hybrid silica by hydrothermalassisted surface grafting method for removal of nickel (II)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190315

Termination date: 20210525