CN106957955A - 处理红土镍矿的方法和系统 - Google Patents

处理红土镍矿的方法和系统 Download PDF

Info

Publication number
CN106957955A
CN106957955A CN201710289882.1A CN201710289882A CN106957955A CN 106957955 A CN106957955 A CN 106957955A CN 201710289882 A CN201710289882 A CN 201710289882A CN 106957955 A CN106957955 A CN 106957955A
Authority
CN
China
Prior art keywords
cobalt
nickel
ore
product
entrance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710289882.1A
Other languages
English (en)
Inventor
宋文臣
王静静
李红科
曹志成
汪勤亚
吴道洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Province Metallurgical Design Institute Co Ltd
Original Assignee
Jiangsu Province Metallurgical Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Province Metallurgical Design Institute Co Ltd filed Critical Jiangsu Province Metallurgical Design Institute Co Ltd
Priority to CN201710289882.1A priority Critical patent/CN106957955A/zh
Publication of CN106957955A publication Critical patent/CN106957955A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/005Preliminary treatment of ores, e.g. by roasting or by the Krupp-Renn process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/021Obtaining nickel or cobalt by dry processes by reduction in solid state, e.g. by segregation processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0476Separation of nickel from cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了处理红土镍矿的方法和系统,其中,方法包括:将红土镍矿、还原煤和添加剂进行混合成型处理,以便得到混合球团;将所述混合球团进行直接还原处理,以便得到金属化球团;将所述金属化球团进行磨矿磁选处理,以便得到含钴镍铁粉和尾渣;将所述含钴镍铁粉进行氧化硫化焙烧处理,以便得到硫化焙烧产物;将所述硫化焙烧产物进行水浸处理和固液分离,以便得到钴镍浸出液和浸出渣;将所述钴镍浸出液进行提钴提镍处理,以便得到钴产品和镍产品。采用该方法和系统可以对红土镍矿中的钴进行有效回收,同时还可以进一步提高镍的回收率和富集。

Description

处理红土镍矿的方法和系统
技术领域
本发明属于冶金领域,具体而言,本发明涉及处理红土镍矿的方法和系统。
背景技术
镍作为一种重要的战略金属,具有良好的机械强度、延展性和化学稳定性。世界上可开采的镍资源有两类,一类是硫化矿床,另一类是红土镍矿。由于硫化矿提取工艺成熟,60%的镍产量来源于硫化矿。而世界近期可供开发的硫化矿资源已经不多,加之硫化矿资源勘探周期和建设周期均较长,开发和利用相对比较困难,而红土镍矿资源丰富,采矿成本低,选冶工艺趋于成熟,可生产氧化镍、硫镍、镍铁等多种中间产品,矿源靠海,便于运输,因此开发利用红土镍矿具有重要的现实意义。
火法处理红土镍矿是目前的主流工艺,其中还原焙烧-磨矿磁选已经成为研究的热点。以红土镍矿为原料,煤粉为还原剂,采用直接还原设备在高温条件下将矿石中的镍全部还原成金属镍,铁根据配碳量部分还原成金属铁,再经磁选分离使镍富集到镍铁粉中。而目前对镍铁粉还没有大规模的工业应用,对其研究也仅仅停留在将其压块作为转炉炼钢的原料或再经过熔分处理得到镍铁合金后作为冶炼不锈钢的原料的层面上,产品的附加值不高。而且红土镍矿中的钴元素在整个过程中没有得到利用,造成了浪费。
因此,现有直接还原焙烧-磨矿磁选技术处理红土镍矿还有待进一步发展。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出处理红土镍矿的方法和系统,采用该方法和系统可以对红土镍矿中的钴进行有效回收,同时还可以进一步提高镍的回收率和富集。
根据本发明的一个方面,本发明提出了一种处理红土镍矿的方法,包括:
(1)将红土镍矿、还原煤和添加剂进行混合成型处理,以便得到混合球团;
(2)将所述混合球团进行直接还原处理,以便得到金属化球团;
(3)将所述金属化球团进行磨矿磁选处理,以便得到含钴镍铁粉和尾渣;
(4)将所述含钴镍铁粉进行氧化硫化焙烧处理,以便得到硫化焙烧产物;
(5)将所述硫化焙烧产物进行水浸处理和固液分离,以便得到钴镍浸出液和浸出渣;
(6)将所述钴镍浸出液进行提钴提镍处理,以便得到钴产品和镍产品。
本发明实施例的处理红土镍矿的方法,首先将红土镍矿经过直接还原处理和磨矿磁选处理后除去部分尾渣,使得镍和钴得到初步纯化和富集;其次将含钴镍铁粉进行氧化硫化焙烧处理,得到硫化焙烧产物;接着对硫化焙烧产物进行水浸处理除去浸出渣,使得镍和钴与铁分离,再次得到纯化和富集,最后对钴镍浸出液进行提钴提镍处理,最终得到钴产品和镍产品。由此采用本发明上述实施例的处理红土镍矿的方法不仅可以对其中的钴进行回收利用,还可以有效对镍和钴进行纯化和富集,提高其纯度,有效解决了现有红土镍矿直接还原-磨选工艺得到的镍铁粉利用价值低以及红土镍矿中钴没有回收利用的难题。
另外,根据本发明上述实施例的处理红土镍矿的方法还可以具有如下附加的技术特征:
在本发明的一些实施例中,在步骤(1)中,所述红土镍矿中钴的质量分数为0.04~0.2%。由此可以进一步提高本发明方法的适用范围。
在本发明的一些实施例中,在步骤(1)中,所述添加剂为选自碱金属氧化物、碱金属盐、碱土金属氧化物和碱土金属盐中的至少一种。由此可以进一步提高铁、镍和钴的回收率,尤其提高镍和钴的回收率。
在本发明的一些实施例中,在步骤(2)中,所述直接还原处理是在1250~1350℃的温度下进行20~40min完成的。由此,可以保证红土镍矿中的镍全部还原为金属态,铁大部分还原为金属态,同时金属态的镍铁能够聚集长大到一定尺寸,有利于提高后续磨矿磁选处理时镍的回收率。
在本发明的一些实施例中,在步骤(3)中,所述含钴镍铁粉中钴的质量分数为0.10~0.35%,镍的质量分数为4~10%,铁的质量分数为50~70%。
在本发明的一些实施例中,在步骤(4)中,所述氧化硫化焙烧处理是在富含二氧化硫和氧气的气氛下于500~700℃的温度下进行20~90min完成的。由此可以实现后续钴镍和铁的有效分离,并有效提高氧化硫化焙烧处理效率,提高镍和钴回收率。
在本发明的一些实施例中,在步骤(4)中,所述富含二氧化硫和氧气的气氛中二氧化硫的体积分数为1~10%,氧气的体积分数为1~10%。由此可以进一步提高氧化硫化焙烧处理效率,提高镍和钴回收率。
在本发明的一些实施例中,在步骤(6)中,所述提钴提镍处理为包括:对所述钴镍浸出液进行萃取处理,以便分离得到含钴溶液和含镍溶液;采用化学沉淀方法分别从所述含钴溶液和含镍溶液中提取钴和镍,得到钴产品和镍产品,具体地,向所述含钴溶液和含镍溶液中加入硫化钠使含钴溶液和含镍溶液中钴离子和镍离子形成硫化钴和硫化镍沉淀,过滤后得到硫化钴和硫化镍产品。
根据本发明的第二方面,本发明提出了一种用于实施前面实施例的处理红土镍矿的方法的系统,该系统包括:
混合成型装置,所述混合成型装置具有红土镍矿入口、还原煤入口、添加剂入口和混合球团出口,所述混合成型装置适于对所述红土镍矿、还原煤和添加剂进行混合成型处理,以便得到混合球团;
直接还原装置,所述直接还原装置具有混合球团入口和金属化球团出口,所述混合球团入口与所述混合球团出口相连,所述直接还原装置适于对所述混合球团进行直接还原处理,以便得到金属化球团;
磨矿磁选装置,所述磨矿磁选装置具有金属化球团入口、含钴镍铁粉出口和尾渣出口,所述金属化球团入口与所述金属化球团出口相连,所述磨矿磁选装置适于对所述金属化球团进行磨矿磁选处理,以便得到含钴镍铁粉和尾渣;
氧化硫化焙烧装置,所述氧化硫化焙烧装置具有含钴镍铁粉入口、二氧化硫入口、氧气入口和硫化焙烧产物出口,所述含钴镍铁粉入口与所述含钴镍铁粉出口相连,所述氧化硫化焙烧装置适于对所述含钴镍铁粉进行氧化硫化焙烧处理,以便得到硫化焙烧产物;
水浸装置,所述水浸装置具有硫化焙烧产物入口、水入口和浸出浆液出口,所述硫化焙烧产物入口与所述硫化焙烧产物出口相连,所述水浸装置适于对所述硫化焙烧产物进行水浸处理,以便得到浸出浆液;
固液分离装置,所述固液分离装置具有浸出浆液入口、钴镍浸出液出口和浸出渣出口,所述浸出浆液入口与所述浸出浆液出口相连,所述固液分离装置适于对所述浸出浆液进行固液分离,以便得到钴镍浸出液和浸出渣;
钴镍分离提取装置,所述钴镍分离提取装置具有钴镍浸出液入口、钴产品出口和镍产品出口,所述钴镍浸出液入口和所述钴镍浸出液出口相连,所述钴镍分离提取装置适于对所述钴镍浸出液进行钴镍分离与提取处理,以便得到钴产品和镍产品。
本发明实施例的处理红土镍矿的系统,首先利用直接还原装置和磨矿磁选装置对红土镍矿进行过直接还原处理和磨矿磁选处理后除去部分尾渣,使得镍和钴得到初步纯化和富集;其次在氧化硫化焙烧装置对钴镍铁粉进行氧化硫化焙烧处理,得到硫化焙烧产物;接着利用水浸装置和固液分离装置对硫化焙烧产物进行水浸处理和固液分离除去浸出渣,使得镍和钴再次得到纯化和富集。最后利用钴镍分离提取装置对钴镍浸出液进行提钴提镍处理,最终得到钴产品和镍产品。由此采用本发明上述实施例的处理红土镍矿的系统不仅可以对其中的钴进行回收利用,还可以有效对镍和钴进行纯化和富集,提高其纯度,有效解决了现有红土镍矿直接还原-磨选工艺得到的镍铁粉利用价值低以及红土镍矿中钴没有回收利用的难题。
另外,根据本发明上述实施例的处理红土镍矿的系统还可以具有如下附加的技术特征:
在本发明的一些实施例中,所述直接还原装置为转底炉;所述氧化硫化焙烧装置为沸腾炉;所述固液分离装置为过滤机,所述钴镍分离提取装置包括萃取设备、沉淀设备与过滤设备。由此可以进一步提高处理红土镍矿的效率。
附图说明
图1是根据本发明一个实施例的处理红土镍矿的方法的流程图。
图2是根据本发明一个实施例的处理红土镍矿的系统的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
根据本发明的一个方面,本发明提出了一种处理红土镍矿的方法,包括:(1)将红土镍矿、还原煤和添加剂进行混合成型处理,以便得到混合球团;(2)将混合球团进行直接还原处理,以便得到金属化球团;(3)将金属化球团进行磨矿磁选处理,以便得到含钴镍铁粉和尾渣;(4)将含钴镍铁粉进行氧化硫化焙烧处理,以便得到硫化焙烧产物;(5)将硫化焙烧产物进行水浸处理和固液分离,以便得到钴镍浸出液和浸出渣;(6)将钴镍浸出液进行提钴提镍处理,以便得到钴产品和镍产品。
本发明实施例的处理红土镍矿的方法,首先将红土镍矿经过直接还原处理和磨矿磁选处理后除去部分尾渣,使得镍和钴得到初步纯化和富集;其次将含钴镍铁粉进行氧化硫化焙烧处理,得到硫化焙烧产物;接着对硫化焙烧产物进行水浸处理除去浸出渣,使得镍和钴与铁分离,再次得到纯化和富集,最后对钴镍浸出液进行提钴提镍处理,最终得到钴产品和镍产品。由此采用本发明上述实施例的处理红土镍矿的方法不仅可以对其中的钴进行回收利用,还可以有效对镍和钴进行纯化和富集,提高其纯度,有效解决了现有红土镍矿直接还原-磨选工艺得到的镍铁粉利用价值低以及红土镍矿中钴没有回收利用的难题。
下面参考图1对本发明上述实施例的处理红土镍矿的方法进行详细描述。
S100:混合成型处理
根据本发明的实施例,将红土镍矿、还原煤和添加剂进行混合成型处理,以便得到混合球团。
根据本发明的实施例,红土镍矿中含钴质量分数为0.04~0.2%,现有红土镍矿直接还原-磁选工艺得到的镍铁粉利用价值低,镍含量低,杂质含量高,镍铁粉不能直接用作不锈钢冶炼的原料,经济价值较低;而且红土镍矿中钴没有回收利用。因此,现有的处理红土镍矿的手段还有待进一步改进。
根据本发明的实施例,用于混合成型的红土镍矿、还原煤和添加剂的配比并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,可以将红土镍矿、还原煤和添加剂按照质量比100:(5~25):(3~15)进行混合成型。由此,可以显著提高还原处理得到的金属化球团的金属化率,从而显著提高镍铁粉产品中镍的品位。
根据本发明的实施例,添加剂的种类并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,添加剂可以包括选自碱金属氧化物、碱金属盐、碱土金属氧化物和碱土金属盐中的至少之一。发明人发现,通过添加这些碱性添加剂,可以提高红土镍矿中钴镍氧化物的活度,促进钴镍的还原。
S200:直接还原处理
根据本发明的实施例,将混合球团进行直接还原处理,以便得到金属化球团。具体地,可以利用混合球团中的还原煤对红土镍矿进行直接还原,以便将红土镍矿中的镍、铁化合物还原为单质,得到金属化球团。
根据本发明的实施例,直接还原处理的条件并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,直接还原处理可以在1250~1350摄氏度下进行20~40min完成。由此,可以保证红土镍矿中的镍全部还原为金属态,铁大部分还原为金属态,同时金属态的镍铁能够聚集长大到一定尺寸,有利于提高后续磨矿磁选处理时镍的回收率。
S300:磨矿磁选处理
根据本发明的实施例,将金属化球团进行磨矿磁选处理,以便得到含钴镍铁粉和尾渣。具体地,在得到含有镍、铁和钴单质的金属化球团后,可以通过磨矿磁选处理除去部分尾渣,使得镍和钴得到初步纯化和富集。
根据本发明的具体实施例,磨矿磁选处理后得到的含钴镍铁粉中钴的质量分数为0.10~0.35%,镍的质量分数为4~10%,铁的质量分数为50~70%。根据本发明的具体实施例,红土镍矿中钴的质量分数为0.04~0.2%。通过直接还原和磨矿磁选处理后,钴的质量分数由0.04~0.2%提高至0.10~0.35%,镍质量分数提高至4~10%。可见,通过直接还原和磨矿磁选处理可以使得钴和镍得到有效富集,显著提高了钴和镍的品位。
S400:氧化硫化焙烧处理
根据本发明的实施例,将含钴镍铁粉进行氧化硫化焙烧处理,以便得到硫化焙烧产物。具体地,氧化硫化焙烧处理过程中,含钴镍铁粉中镍和钴转化为水溶性硫酸镍NiSO4和硫酸钴CoSO4,后续可以通过水浸将镍和钴选择性浸出到溶液中,得到钴镍浸出液。
根据本发明具体实施例,可以通过在富含二氧化硫和氧气的气氛中并控制500~700摄氏度的温度,使得含钴镍铁粉中镍和钴转化为水溶性硫酸镍NiSO4和硫酸钴CoSO4,后续可以通过水浸处理将镍和钴选择性浸出到溶液中,得到钴镍浸出液。而含钴镍铁粉中的铁会被氧化为氧化铁(非水溶),即使有铁转化成水溶性的硫酸铁Fe2(SO4)3,也会在温度500~700℃条件下分解转化为Fe2O3,从而不会进入到钴镍浸出液中。由此通过在上述条件下进行氧化硫化焙烧处理可以有效地实现铁与钴镍的分离,进而显著提高钴镍的品位。
根据本发明的具体实施例,氧化硫化焙烧处理是在富含二氧化硫和氧气的气氛中,于500~700℃的温度下进行20~90min完成的。其中,富含二氧化硫和氧气的气氛中二氧化硫的体积浓度为3~15%,氧气的体积浓度为3~15%。发明人发现,在上述富含二氧化硫和氧气的气氛条件下,当焙烧温度过高,即焙烧温度超过700℃时,硫酸镍会分解成为氧化镍,不能被水浸出;而当焙烧温度低于500℃时,一方面氧化硫化焙烧反应效率较低,另一方面含钴镍铁粉中铁经过氧化硫化焙烧可能产生的水溶性的硫酸铁Fe2(SO4)3,由于硫酸铁Fe2(SO4)3在低于500℃的条件下不能分解生成非水溶性的氧化铁Fe2O3,在后续水浸处理时会和硫酸镍NiSO4一同进入钴镍浸出液中,无法实现钴镍和铁的有效分离。由此本发明中通过在富含二氧化硫和氧气的气氛中控制氧化硫化焙烧处理的温度为500~700℃可以实现后续钴镍和铁的有效分离,并有效提高氧化硫化焙烧处理效率,提高镍和钴回收率。
S500:水浸处理和固液分离
根据本发明的实施例,将硫化焙烧产物进行水浸处理和固液分离,以便得到钴镍浸出液和浸出渣。由此通过进一步将上述经过氧化硫化焙烧处理得到的硫化焙烧产物进行水浸处理和固液分离,可以得到钴镍浸出液,并产生浸出渣。浸出渣含铁至少50%可以作为高炉炼铁的原料。
由于氧化硫化焙烧处理过程中,含钴镍铁粉中镍和钴转化为水溶性硫酸镍NiSO4和硫酸钴CoSO4,铁会被氧化成非水溶性的氧化铁,即使有铁转化成水溶性的硫酸铁Fe2(SO4)3,也会在温度500~700℃氧化硫化焙烧条件下分解转化为Fe2O3,从而不会进入到钴镍浸出液中。由此,通过采用氧化硫化焙烧处理和水浸处理可以有效地实现铁与钴镍的分离,进而显著提高钴镍的品位。
S600:提钴提镍处理
根据本发明的实施例,将钴镍浸出液进行提钴提镍处理,以便得到钴产品和镍产品。由此可以有效分离得到钴产品和镍产品。
根据本发明的具体实施例,提钴提镍处理可以包括:对钴镍浸出液进行萃取处理,以便分离得到含钴溶液和含镍溶液;。采用化学沉淀方法分别从所述含钴溶液和含镍溶液中提取钴和镍,得到钴产品和镍产品,具体地,向所述含钴溶液和含镍溶液中加入硫化钠使含钴溶液和含镍溶液中钴离子和镍离子形成硫化钴和硫化镍沉淀,过滤后得到硫化钴和硫化镍产品。
通过采用本发明实施例的处理红土镍矿的方法,最终钴和镍的回收率均可以达到90%以上,由此可以有效回收红土镍矿中的钴和镍,进而显著提高了红土镍矿的再利用价值。
本发明实施例的处理红土镍矿的方法,首先将红土镍矿进行直接还原-磨矿磁选处理得到含钴镍铁粉,再对含钴镍铁粉在富含二氧化硫后和氧气的气氛中进行氧化硫化焙烧处理,控制焙烧温度为500~700℃,进而将含钴镍铁粉中的镍和钴转化为水溶性硫酸镍NiSO4和硫酸钴CoSO4,通过水浸处理将镍和钴选择性浸出到溶液中,得到钴镍浸出液。钴镍浸出液最后采用提钴提镍处理得到钴产品和镍产品,整个流程钴回收率90%以上,镍回收率90%以上。
根据本发明的第二方面,本发明提出了一种用于实施前面实施例的处理红土镍矿的方法的系统,如图2所示,该系统包括:混合成型装置100、直接还原装置200、磨矿磁选装置300、氧化硫化焙烧装置400、水浸装置500、固液分离装置600和钴镍分离提取装置700。
其中,混合成型装置100具有红土镍矿入口110、还原煤入口120、添加剂入口130和混合球团出口140;直接还原装置200具有混合球团入口210和金属化球团出口220,混合球团入口210与混合球团出口140相连;磨矿磁选装置300具有金属化球团入口310、含钴镍铁粉出口320和尾渣出口330,金属化球团入口310与金属化球团出口220相连;氧化硫化焙烧装置400具有含钴镍铁粉入口410、二氧化硫入口420、氧气入口430和硫化焙烧产物出口440,含钴镍铁粉入口410与含钴镍铁粉出口320相连;水浸装置500具有硫化焙烧产物入口510、水入口520和浸出浆液出口530,硫化焙烧产物入口510与硫化焙烧产物出口440相连;固液分离装置600具有浸出浆液入口610、钴镍浸出液出口620和浸出渣出口630,浸出浆液入口610与浸出浆液出口530相连;钴镍分离提取装置700具有钴镍浸出液入口710、钴产品出口720和镍产品出口730,钴镍浸出液入口710和钴镍浸出液出口620相连。
下面参考图2对本发明上述实施例的处理红土镍矿的系统进行详细描述。
混合成型装置100
根据本发明的实施例,混合成型装置100具有红土镍矿入口110、还原煤入口120、添加剂入口130和混合球团出口140,混合成型装置100适于对红土镍矿、还原煤和添加剂进行混合成型处理,以便得到混合球团。
根据本发明的实施例,红土镍矿中含钴质量分数为0.04~0.2%,现有红土镍矿直接还原-磁选工艺得到的镍铁粉利用价值低,镍含量低,杂质含量高,镍铁粉不能直接用作不锈钢冶炼的原料,经济价值较低;而且红土镍矿中钴没有回收利用。因此,现有的处理红土镍矿的手段还有待进一步改进。
根据本发明实施例的处理红土镍矿的系统,首先利用混合装置100将红土镍矿、还原煤和添加剂进行混合成型处理,以便得到混合球团。具体地,用于混合成型的红土镍矿、还原煤和添加剂的配比并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,可以将红土镍矿、还原煤和添加剂按照质量比100:(5~25):(3~15)进行混合成型。由此,可以显著提高还原处理得到的金属化球团的金属化率,从而显著提高产品中镍和钴的品位。
根据本发明的实施例,添加剂的种类并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,添加剂可以包括选自碱金属氧化物、碱金属盐、碱土金属氧化物和碱土金属盐中的至少之一。发明人发现,通过添加这些碱性添加剂,可以提高红土镍矿中钴镍氧化物的活度,促进钴镍的还原。
直接还原装置200
根据本发明的实施例,直接还原装置200具有混合球团入口210和金属化球团出口220,混合球团入口210与混合球团出口140相连,直接还原装置200适于对混合球团进行直接还原处理,以便得到金属化球团。具体地,在直接还原装置200内,混合球团中的还原煤对红土镍矿进行直接还原,以便将红土镍矿中的镍、铁化合物还原为单质,得到金属化球团。
根据本发明的实施例,直接还原装置200内进行的直接还原处理的条件并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,直接还原处理可以在1250~1350摄氏度下进行20~40min完成。由此,可以保证红土镍矿中的镍全部还原为金属态,铁大部分还原为金属态,同时金属态的镍铁能够聚集长大到一定尺寸,有利于提高后续磨矿磁选处理时镍的回收率。
根据本发明的实施例,直接还原装置200可以为转底炉,由此可以进一步提高直接还原处理效率。
磨矿磁选装置300
根据本发明的实施例,磨矿磁选装置300具有金属化球团入口310、含钴镍铁粉出口320和尾渣出口330,金属化球团入口310与金属化球团出口220相连,磨矿磁选装置300适于对金属化球团进行磨矿磁选处理,以便得到含钴镍铁粉和尾渣。具体地,在得到含有镍、铁和钴单质的金属化球团后,可以通过磨矿磁选装置300对该金属化球团进行磨矿磁选处理,除去部分尾渣,使得镍和钴得到初步纯化和富集。
根据本发明的具体实施例,磨矿磁选处理后得到的含钴镍铁粉中钴的质量分数为0.10~0.35%,镍的质量分数为4~10%,铁的质量分数为50~70%。根据本发明的具体实施例,红土镍矿中钴的质量分数为0.04~0.2%。通过直接还原和磨矿磁选处理后,钴的质量分数由0.04~0.2%提高至0.10~0.35%,镍质量分数提高至4~10%。可见,通过直接还原和磨矿磁选处理可以使得钴和镍得到有效富集,显著提高了钴和镍的品位。
氧化硫化焙烧装置400
根据本发明的实施例,氧化硫化焙烧装置400具有含钴镍铁粉入口410、二氧化硫入口420、氧气入口430和硫化焙烧产物出口440,含钴镍铁粉入口410与含钴镍铁粉出口320相连,氧化硫化焙烧装置400适于对含钴镍铁粉进行氧化硫化焙烧处理,以便得到硫化焙烧产物。具体地,在氧化硫化焙烧处理过程中,含钴镍铁粉中镍和钴转化为水溶性硫酸镍NiSO4和硫酸钴CoSO4,后续可以通过水浸将镍和钴选择性浸出到溶液中,得到钴镍浸出液。
根据本发明具体实施例,可以通过在富含二氧化硫和氧气的气氛中并控制500~700摄氏度的温度,使得含钴镍铁粉中镍和钴转化为水溶性硫酸镍NiSO4和硫酸钴CoSO4,后续可以通过水浸处理将镍和钴选择性浸出到溶液中,得到钴镍浸出液。而含钴镍铁粉中的铁会被氧化到氧化铁(非水溶),即使有铁转化成水溶性的硫酸铁Fe2(SO4)3,也会在温度500~700℃条件下分解转化为Fe2O3,从而不会进入到钴镍浸出液中。由此通过在上述条件下进行氧化硫化焙烧处理可以有效地实现铁与钴镍的分离,进而显著提高钴镍的品位。
根据本发明的具体实施例,氧化硫化焙烧处理是在富含二氧化硫和氧气的气氛中,于500~700℃的温度下进行20~90min完成的,其中,富含二氧化硫和氧气的气氛中二氧化硫的体积浓度为3~15%,氧气的体积浓度为3~15%。发明人发现,在上述富含二氧化硫和氧气的气氛条件下,当焙烧温度过高,即焙烧温度超过700℃时,硫酸镍会分解成为氧化镍,不能被水浸出;而当焙烧温度低于500℃时,一方面氧化硫化焙烧反应效率较低,另一方面含钴镍铁粉中铁经过氧化硫化焙烧可能产生的水溶性的硫酸铁Fe2(SO4)3,由于硫酸铁Fe2(SO4)3在低于500℃的条件下不能分解生成非水溶性的氧化铁Fe2O3,在后续水浸处理时会和硫酸镍NiSO4一同进入钴镍浸出液中,无法实现钴镍和铁的有效分离。由此本发明中通过在富含二氧化硫和氧气的气氛中,控制氧化硫化焙烧处理的温度为500~700℃可以实现后续钴镍和铁的有效分离,并有效提高氧化硫化焙烧处理效率,提高镍和钴回收率。
根据本发明的具体实施例,氧化硫化焙烧装置400可以为沸腾炉,由此可以进一步提高氧化硫化焙烧处理的效率。
水浸装置500
根据本发明的实施例,水浸装置500具有硫化焙烧产物入口510、水入口520和浸出浆液出口530,硫化焙烧产物入口510与硫化焙烧产物出口440相连,水浸装置500适于对硫化焙烧产物进行水浸处理,以便得到浸出浆液。
固液分离装置600
根据本发明的实施例,固液分离装置600具有浸出浆液入口610、钴镍浸出液出口620和浸出渣出口630,浸出浆液入口610与浸出浆液出口530相连,固液分离装置600适于对浸出浆液进行固液分离,以便得到钴镍浸出液和浸出渣。
根据本发明的具体实施例,固液分离装置600可以为过滤机,由此,可以进一步提高固液分离的效率。
根据本发明的实施例,利用水浸装置500和固液分离装置600对上述经过氧化硫化焙烧处理得到的硫化焙烧产物进行水浸处理和固液分离,以便得到钴镍浸出液,并产生浸出渣。
由于在氧化硫化焙烧400内进行的氧化硫化焙烧处理过程中,含钴镍铁粉中镍和钴转化为水溶性硫酸镍NiSO4和硫酸钴CoSO4,铁会被氧化成非水溶性的氧化铁,即使有铁转化成水溶性的硫酸铁Fe2(SO4)3,也会在温度500~700℃氧化硫化焙烧条件下分解转化为Fe2O3,从而不会进入到钴镍浸出液中。由此,通过采用氧化硫化焙烧处理和水浸处理可以有效地实现铁与钴镍的分离,进而显著提高钴镍的品位。
钴镍分离提取装置700
根据本发明的实施例,钴镍分离提取装置700具有钴镍浸出液入口710、钴产品出口720和镍产品出口730,钴镍浸出液入口710和钴镍浸出液出口620相连,钴镍分离提取装置700适于对钴镍浸出液进行钴镍分离与提取处理,以便得到钴产品和镍产品。
根据本发明的具体实施例,在钴镍分离提取装置700中进行提钴提镍处理,具体可以包括:对钴镍浸出液进行萃取处理,以便分离得到含钴溶液和含镍溶液;采用化学沉淀方法分别从所述含钴溶液和含镍溶液中提取钴和镍,得到钴产品和镍产品,具体地,向所述含钴溶液和含镍溶液中加入硫化钠使含钴溶液和含镍溶液中钴离子和镍离子形成硫化钴和硫化镍沉淀,过滤后得到硫化钴和硫化镍产品。整个流程钴回收率90%以上,镍回收率90%以上。由此采用本发明上述实施例的处理红土镍矿的方法和系统可以有效地对其中的镍和钴进行回收,且回收率均可以到达90%以上,进而显著提高了红土镍矿的再利用价值。
根据本发明的具体实施例,钴镍分离提取装置700可以进一步包括萃取设备、沉淀设备与过滤设备。由此可以进一步提高提取钴镍的效率。
下面参考具体实施例,对本发明进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本发明。
实施例1
将红土镍矿(Co质量分数0.04%,Ni质量分数2.0%,Fe质量分数20%)、还原煤、石灰石和碳酸钠按重量比例100:15:10:3进行混合成型处理得到混合球团,将混合球团在转底炉内进行直接还原处理,还原条件:还原温度1250℃,还原时间35min。还原结束后得到金属化球团,金属化球团水淬后进行磨矿磁选得到含钴镍铁粉(Co质量分数0.20%,Ni质量分数6.3%,Fe质量分数70%)和尾渣。将含钴镍铁粉进行氧化硫化焙烧,焙烧条件:SO2体积浓度5%,O2体积浓度5%,焙烧温度为500℃,焙烧时间20min。焙烧结束后将硫化焙烧产物进行水浸处理,水浸结束后固液分离得到钴镍浸出液和水浸渣。钴镍浸出液首先经过溶剂萃取分离钴镍,分别得到含钴溶液和含镍溶液,分别向含钴溶液和含镍溶液加入硫化钠,得到硫化钴沉淀和硫化镍沉淀,过滤分离后得到硫化钴产品和硫化镍产品,镍回收率90%,钴回收率90%,水浸渣中含铁52%可以作为高炉炼铁的原料。
实施例2
将红土镍矿(Co质量分数0.1%,Ni质量分数1.6%,Fe质量分数25%)、还原煤和石灰按重量比例100:20:3进行混合成型处理得到混合球团,将混合球团在转底炉内进行直接还原处理,还原条件:还原温度1320℃,还原时间40min。还原结束后得到金属化球团,金属化球团水淬后进行磨矿磁选得到镍铁粉(Co质量分数0.35%,Ni质量分数9.3%,Fe质量分数75%)和尾渣。将含钴镍铁粉进行氧化硫化焙烧,焙烧条件:SO2体积浓度8%,O2体积浓度8%,焙烧温度为600℃,焙烧时间40min。焙烧结束后将硫化焙烧产物进行水浸处理,水浸结束后固液分离得到钴镍浸出液和水浸渣。钴镍浸出液首先经过溶剂萃取分离钴镍,分别得到含钴溶液和含镍溶液,分别向含钴溶液和含镍溶液加入硫化钠,得到硫化钴沉淀和硫化镍沉淀,过滤分离后得到硫化钴产品和硫化镍产品,镍回收率92%,钴回收率92%,水浸渣中含铁55%可以作为高炉炼铁的原料。
实施例3
将红土镍矿(Co质量分数0.15%,Ni质量分数1.2%,Fe质量分数40%)、还原煤、消石灰和硫酸钠按重量比例100:25:10:5进行混合成型处理得到混合球团,将混合球团在转底炉内进行直接还原处理,还原条件:还原温度1350℃,还原时间20min。还原结束后得到金属化球团,金属化球团水淬后进行磨矿磁选得到镍铁粉(Co质量分数0.15%,Ni质量分数3.3%,Fe质量分数80%)和尾渣。将含钴镍铁粉进行氧化硫化焙烧,焙烧条件:SO2体积浓度10%,O2体积浓度10%,焙烧温度为700℃,焙烧时间60min。焙烧结束后将硫化焙烧产物进行水浸处理,水浸结束后固液分离得到钴镍浸出液和水浸渣。钴镍浸出液首先经过溶剂萃取分离钴镍,分别得到含钴溶液和含镍溶液,分别向含钴溶液和含镍溶液加入硫化钠,得到硫化钴沉淀和硫化镍沉淀,过滤分离后得到硫化钴产品和硫化镍产品,镍回收率95%,钴回收率95%,水浸渣中含铁59%可以作为高炉炼铁的原料。
实施例4
将红土镍矿(Co质量分数0.20%,Ni质量分数0.8%,Fe质量分数50%)、还原煤、消石灰和硫酸钠按重量比例100:25:10:5进行混合成型处理得到混合球团,将混合球团在转底炉内进行直接还原处理,还原条件:还原温度1325℃,还原时间25min。还原结束后得到金属化球团,金属化球团水淬后进行磨矿磁选得到镍铁粉(Co质量分数0.10%,Ni质量分数2.5%,Fe质量分数83%)和尾渣。将含钴镍铁粉进行氧化硫化焙烧,焙烧条件:SO2体积浓度1%,O2体积浓度1%,焙烧温度为700℃,焙烧时间90min。焙烧结束后将硫化焙烧产物进行水浸处理,水浸结束后固液分离得到钴镍浸出液和水浸渣。钴镍浸出液首先经过溶剂萃取分离钴镍,分别得到含钴溶液和含镍溶液,分别向含钴溶液和含镍溶液加入硫化钠,得到硫化钴沉淀和硫化镍沉淀,过滤分离后得到硫化钴产品和硫化镍产品,镍回收率97%,钴回收率97%,水浸渣中含铁62%可以作为高炉炼铁的原料。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种处理红土镍矿的方法,其特征在于,包括:
(1)将红土镍矿、还原煤和添加剂进行混合成型处理,以便得到混合球团;
(2)将所述混合球团进行直接还原处理,以便得到金属化球团;
(3)将所述金属化球团进行磨矿磁选处理,以便得到含钴镍铁粉和尾渣;
(4)将所述含钴镍铁粉进行氧化硫化焙烧处理,以便得到硫化焙烧产物;
(5)将所述硫化焙烧产物进行水浸处理和固液分离,以便得到钴镍浸出液和浸出渣;
(6)将所述钴镍浸出液进行提钴提镍处理,以便得到钴产品和镍产品。
2.根据权利要求1所述处理红土镍矿的方法,其特征在于,在步骤(1)中,所述红土镍矿中钴的质量分数为0.04~0.2%。
3.根据权利要求1或2所述处理红土镍矿的方法,其特征在于,在步骤(1)中,所述添加剂为选自碱金属氧化物、碱金属盐、碱土金属氧化物和碱土金属盐中的至少一种。
4.根据权利要求1所述处理红土镍矿的方法,其特征在于,在步骤(2)中,所述直接还原处理是在1250~1350℃的温度下进行20~40min完成的。
5.根据权利要求1所述处理红土镍矿的方法,其特征在于,在步骤(3)中,所述含钴镍铁粉中钴的质量分数为0.10~0.35%,镍的质量分数为4~10%,铁的质量分数为50~70%。
6.根据权利要求1所述处理红土镍矿的方法,其特征在于,在步骤(4)中,所述氧化硫化焙烧处理是在富含二氧化硫和氧气的气氛下于500~700℃的温度下进行20~90min完成的。
7.根据权利要求1所述处理红土镍矿的方法,其特征在于,在步骤(4)中,所述富含二氧化硫和氧气的气氛中二氧化硫的体积分数为1~10%,氧气的体积分数为1~10%。
8.根据权利要求1所述处理红土镍矿的方法,其特征在于,在步骤(6)中,所述提钴提镍处理为包括:
对所述钴镍浸出液进行萃取处理,以便分离得到含钴溶液和含镍溶液;
采用化学沉淀方法分别提取所述含钴溶液和含镍溶液的钴和镍,得到钴产品和镍产品。
9.一种实施权利要求1-8任一项所述处理红土镍矿的方法的系统,其特征在于,包括:
混合成型装置,所述混合成型装置具有红土镍矿入口、还原煤入口、添加剂入口和混合球团出口,所述混合成型装置适于对所述红土镍矿、还原煤和添加剂进行混合成型处理,以便得到混合球团;
直接还原装置,所述直接还原装置具有混合球团入口和金属化球团出口,所述混合球团入口与所述混合球团出口相连,所述直接还原装置适于对所述混合球团进行直接还原处理,以便得到金属化球团;
磨矿磁选装置,所述磨矿磁选装置具有金属化球团入口、含钴镍铁粉出口和尾渣出口,所述金属化球团入口与所述金属化球团出口相连,所述磨矿磁选装置适于对所述金属化球团进行磨矿磁选处理,以便得到含钴镍铁粉和尾渣;
氧化硫化焙烧装置,所述氧化硫化焙烧装置具有含钴镍铁粉入口、二氧化硫入口、氧气入口和硫化焙烧产物出口,所述含钴镍铁粉入口与所述含钴镍铁粉出口相连,所述氧化硫化焙烧装置适于对所述含钴镍铁粉进行氧化硫化焙烧处理,以便得到硫化焙烧产物;
水浸装置,所述水浸装置具有硫化焙烧产物入口、水入口和浸出浆液出口,所述硫化焙烧产物入口与所述硫化焙烧产物出口相连,所述水浸装置适于对所述硫化焙烧产物进行水浸处理,以便得到浸出浆液;
固液分离装置,所述固液分离装置具有浸出浆液入口、钴镍浸出液出口和浸出渣出口,所述浸出浆液入口与所述浸出浆液出口相连,所述固液分离装置适于对所述浸出浆液进行固液分离,以便得到钴镍浸出液和浸出渣;
钴镍分离提取装置,所述钴镍分离提取装置具有钴镍浸出液入口、钴产品出口和镍产品出口,所述钴镍浸出液入口和所述钴镍浸出液出口相连,所述钴镍分离提取装置适于对所述钴镍浸出液进行钴镍分离与提取处理,以便得到钴产品和镍产品。
10.根据权利要求9所述的系统,其特征在于,所述直接还原装置为转底炉;所述氧化硫化焙烧装置为沸腾炉;所述固液分离装置为过滤机,所述钴镍分离提取装置包括萃取设备、沉淀设备与过滤设备。
CN201710289882.1A 2017-04-27 2017-04-27 处理红土镍矿的方法和系统 Pending CN106957955A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710289882.1A CN106957955A (zh) 2017-04-27 2017-04-27 处理红土镍矿的方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710289882.1A CN106957955A (zh) 2017-04-27 2017-04-27 处理红土镍矿的方法和系统

Publications (1)

Publication Number Publication Date
CN106957955A true CN106957955A (zh) 2017-07-18

Family

ID=59484720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710289882.1A Pending CN106957955A (zh) 2017-04-27 2017-04-27 处理红土镍矿的方法和系统

Country Status (1)

Country Link
CN (1) CN106957955A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112593080A (zh) * 2020-12-21 2021-04-02 北京博萃循环科技有限公司 一种火法-湿法联合处理红土镍矿的方法
AU2019331801B2 (en) * 2018-08-30 2021-07-01 Jgc Corporation Method for producing nickel sulfate compound
CN115679030A (zh) * 2022-11-04 2023-02-03 成都盛威兴科新材料研究院合伙企业(有限合伙) 利用加压釜在镍铁混合液中原位除镍的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452762A (en) * 1980-06-19 1984-06-05 Outokumpu Oy Hydrometallurgical process for the recovery of valuable metals from metallic alloys
CN101230422A (zh) * 2008-02-02 2008-07-30 贵研铂业股份有限公司 一种从红土镍矿中富集镍及联产铁红的方法
CN101509073A (zh) * 2009-03-20 2009-08-19 云南锡业集团(控股)有限责任公司 一种镍铁粉的浸出及废液的处理方法
CN106086467A (zh) * 2016-08-09 2016-11-09 江苏省冶金设计院有限公司 一种利用红土镍矿提取氧化镍的方法及系统
CN206828600U (zh) * 2017-04-27 2018-01-02 江苏省冶金设计院有限公司 处理红土镍矿的系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452762A (en) * 1980-06-19 1984-06-05 Outokumpu Oy Hydrometallurgical process for the recovery of valuable metals from metallic alloys
CN101230422A (zh) * 2008-02-02 2008-07-30 贵研铂业股份有限公司 一种从红土镍矿中富集镍及联产铁红的方法
CN101509073A (zh) * 2009-03-20 2009-08-19 云南锡业集团(控股)有限责任公司 一种镍铁粉的浸出及废液的处理方法
CN106086467A (zh) * 2016-08-09 2016-11-09 江苏省冶金设计院有限公司 一种利用红土镍矿提取氧化镍的方法及系统
CN206828600U (zh) * 2017-04-27 2018-01-02 江苏省冶金设计院有限公司 处理红土镍矿的系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周骏宏等: "常压硫酸焙烧法提取镍磷铁中的镍", 《有色金属(冶炼部分)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019331801B2 (en) * 2018-08-30 2021-07-01 Jgc Corporation Method for producing nickel sulfate compound
CN112593080A (zh) * 2020-12-21 2021-04-02 北京博萃循环科技有限公司 一种火法-湿法联合处理红土镍矿的方法
CN115679030A (zh) * 2022-11-04 2023-02-03 成都盛威兴科新材料研究院合伙企业(有限合伙) 利用加压釜在镍铁混合液中原位除镍的方法

Similar Documents

Publication Publication Date Title
CN108396157B (zh) 一种红土镍矿硫酸浸出液和硅胶螯合树脂提纯生产硫酸镍钴的方法
CN104404261B (zh) 一种金精矿氰化尾渣氯化焙烧同步还原回收金、铁的方法
WO2017185946A1 (zh) 一种处理低品位红土镍矿的方法及其选矿方法
CN103243221B (zh) 一种含砷锑难处理金矿熔池熔炼直接富集金的方法
CN106086469B (zh) 一种利用红土镍矿提取氧化镍的方法及系统
CN102312083A (zh) 一种从高铁高铟锌精矿中提取锌铟及回收铁的方法
JP2008533294A (ja) ニッケル及びコバルトを含有する鉱石の連続浸出または同時浸出
CN101643858A (zh) 红土镍矿的高温氯化处理方法
Sahoo et al. Sulphation-roasting of low-grade manganese ores—optimisation by factorial design
CN106086467A (zh) 一种利用红土镍矿提取氧化镍的方法及系统
CN102912147A (zh) 锌氧压浸出渣浮选硫磺后尾渣中回收铅锌、银、铁的工艺
CN107267776B (zh) 一种红土镍矿直接还原-选矿富集生产镍铁的方法
CN103146911A (zh) 一种结合氧化铜矿石及回收伴生有价金属的选矿方法
WO2018161651A1 (zh) 一种低氧化率高结合率混合铜矿的选矿方法
CN101245407B (zh) 处理复杂难选低品位硫化铅锌矿选-冶联合的方法
CN102851496A (zh) 一种高铟高铁锌精矿的处理方法
CN106957955A (zh) 处理红土镍矿的方法和系统
CN107971123B (zh) 一种铁质包裹型混合铜矿的选冶方法
CN109609768A (zh) 一种低品位含铜钴硫酸渣的综合利用方法
CN103484694A (zh) 一种从铜铋精矿中提取铋的方法
CN102776357A (zh) 一种微波-氨浸处理红土镍矿的方法
CN206828599U (zh) 处理红土镍矿的系统
CN102409161A (zh) 一种提高金银浸出率的方法
CN103374656A (zh) 一种从氧化镍矿中回收镍钴铁的工艺
CN206828600U (zh) 处理红土镍矿的系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination