CN106944029A - 一种碳量子点/凹凸棒纳米复合材料及其制备方法和应用 - Google Patents

一种碳量子点/凹凸棒纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN106944029A
CN106944029A CN201710270136.8A CN201710270136A CN106944029A CN 106944029 A CN106944029 A CN 106944029A CN 201710270136 A CN201710270136 A CN 201710270136A CN 106944029 A CN106944029 A CN 106944029A
Authority
CN
China
Prior art keywords
convex rod
concave convex
quantum dot
carbon quantum
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710270136.8A
Other languages
English (en)
Other versions
CN106944029B (zh
Inventor
李霞章
马素娟
陆晓旺
姚超
左士祥
刘文杰
魏科年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changjin Precision Instrument Changzhou Co ltd
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201710270136.8A priority Critical patent/CN106944029B/zh
Publication of CN106944029A publication Critical patent/CN106944029A/zh
Application granted granted Critical
Publication of CN106944029B publication Critical patent/CN106944029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • C10G27/12Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen with oxygen-generating compounds, e.g. per-compounds, chromic acid, chromates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于化工新材料领域,特别涉及一种碳量子点/凹凸棒纳米复合材料及其制备方法和应用。本发明将柠檬酸、双氧水和凹凸棒混合进行水热反应,再经过离心、洗涤、烘干得到碳量子点/凹凸棒纳米复合材料,再将此复合材料用于光催化脱硫。

Description

一种碳量子点/凹凸棒纳米复合材料及其制备方法和应用
技术领域
本发明属于化工新材料领域,特别涉及一种碳量子点/凹凸棒纳米复合材料及其制备方法和应用。
背景技术
燃料中的含硫化合物转化为SOx逐渐导致空气污染和酸雨形成。为了减少对人类健康和环境的危害性影响,因此迫切需要降低燃料中的硫含量。
传统加氢脱硫虽已广泛应用,但是其需要高温高压和昂贵的氢气。另外,由于二苯并噻吩及其衍生物如4,6-二甲基二苯并噻吩在加氢条件下是强稳定性的,因此难以满足深度脱硫的要求,包括氧化脱硫,萃取脱硫,生物脱硫和吸附脱硫等的替代方法已被用于从燃料油中去除含硫物质,其中氧化脱硫由于其低成本和高效率而备受关注。因此,光催化氧化脱硫新材料由于其成本低,操作简单,无需氢耗,脱硫效率高的优点而受到广泛的关注。
发明内容
本发明旨在提供一种碳量子点/凹凸棒纳米复合材料及其制备方法和应用,该复合材料是以凹凸棒为载体,将凹凸棒与碳量子点复合后得到的纳米复合材料,本发明复合材料的组成通式表示为:CQDs/ATP。
本发明的制备方法为:将柠檬酸、双氧水和凹凸棒混合进行水热反应,再经过离心、洗涤、烘干得到碳量子点/凹凸棒纳米复合材料,
控制柠檬酸的用量,使碳量子点相对于凹凸棒的质量分数为10%-40%,
双氧水中过氧化氢的浓度为0.9mol·L-1,控制双氧水中过氧化氢和柠檬酸的摩尔比为0.3~0.6:1,
水热温度为120-180℃,水热时间为6-24h。
本发明还提供了一种上述复合材料的应用,即将该复合材料用于光催化脱硫。
现有的制备工艺所得到的碳量子点往往粒径过大,对此,本发明在柠檬酸碳源水热过程中加入双氧水,发现以此为水热体系提供了羟基环境后,有效控制了所生成的碳量子点的粒径小于5nm。同时,本发明中碳量子点被可见光激发后产生光生电子与空穴,电子被注入凹凸棒导带,大大降低了与碳量子点上余留的空穴重新复合的几率,提高了光响应范围,此时该电子与O2、H2O2生成·O2 、·OH,用以氧化二苯并噻吩实现脱硫。
附图说明
图1为实施例1所制备的CQDs/ATP的XRD图。
图2为实施例1中原料ATP的TEM图。
图3为实施例1所制备的CQDs/ATP的TEM图。
图4为对比例1所制备的CQDs/ATP的TEM图。
具体实施方式
实施例1:
称取柠檬酸0.32g、0.9mol·L-1的双氧水1mL和凹凸棒1g加入10ml去离子水中超声充分搅拌,然后将混合溶液转移至水热反应釜中,在160℃下反应8h,用水和无水乙醇充分洗涤之后,在80℃的烘箱中烘干,再经过研磨即可得到CQDs/ATP纳米复合材料。
对所得CQDs/ATP纳米复合材料进行X射线粉末衍射,如图1所示,复合材料的XRD中分别出现了碳量子点、凹凸棒的特征峰,说明碳量子点与凹凸棒成功复合;
利用透射电子显微镜观察CQDs/ATP纳米复合材料的形貌:ATP的TEM图如图2所示,凹凸棒呈现纳米棒状结构;本实施例中所得CQDs/ATP的TEM图如图3所示,碳量子点颗粒均一,粒径小于5nm,均匀地负载在凹凸棒上,与XRD结果一致。
本发明还提供了将上述复合材料用于光催化脱硫的方法:称取二苯并噻吩0.40g溶解于500ml正辛烷中用来制备200ppm的模拟汽油,在光催化反应装置中加入该复合材料和模拟油(质量比1:1000),暗吸附30min后以300W的氙灯作为模拟光源进行照射,滤去420nm以下的紫外光,确保仅有可见光存在,每隔半小时收集一次样品,加入N-N,二甲基甲酰胺萃取上层清液,用紫外荧光定硫仪测定硫含量,脱硫率(%)根据下列公式计算:
D=(1-Ct/C0)*100%
其中:C0为初始溶液的硫含量,Ct为反应t时间后的硫含量。
本实施例制备的CQDs/ATP在3h光照后的脱硫率达到了94%。
对比例1
将0.9mol·L-1的双氧水1mL和凹凸棒1g加入10ml去离子水中超声充分搅拌后,再向其中加入柠檬酸0.32g并分散均匀,然后将混合溶液转移至水热反应釜中,在160℃下反应8h,用水和无水乙醇充分洗涤之后,在80℃的烘箱中烘干,再经过研磨即可得到CQDs/ATP纳米复合材料。
本对比例中所得CQDs/ATP的TEM图如图3所示:碳量子点颗粒粒径明显大于实施例1的产物,且粒径分布均匀度下降。这是由于本对比例中过氧化氢先对凹凸棒发生了改性反应,从而水中的羟基数量大大减少了,在后续的水热反应中不足以控制所生成碳量子点的粒径大小。
光催化脱硫检测如实施例1,对比例1中制备的CQDs/ATP在3h光照后的脱硫率仅达到78%。
实施例2:
称取柠檬酸0.12g、0.9mol·L-1的双氧水0.375mL和凹凸棒1g加入10ml去离子水中超声充分搅拌,然后将混合溶液转移至水热反应釜中,在120℃下反应24h,用水和无水乙醇充分洗涤之后,在80℃的烘箱中烘干,再经过研磨即可得到CQDs/ATP纳米复合材料。后续检测如实施例1。
实施例3:
称取柠檬酸0.21g、0.9mol·L-1的双氧水0.66mL和凹凸棒1g加入10ml去离子水中超声充分搅拌,然后将混合溶液转移至水热反应釜中,在140℃下反应20h,用水和无水乙醇充分洗涤之后,在80℃的烘箱中烘干,再经过研磨即可得到CQDs/ATP纳米复合材料。后续检测如实施例1。
实施例4:
称取柠檬酸0.43g、0.9mol·L-1的双氧水1.34mL和凹凸棒1g加入10ml去离子水中超声充分搅拌,然后将混合溶液转移至水热反应釜中,在180℃下反应6h,用水和无水乙醇充分洗涤之后,在80℃的烘箱中烘干,再经过研磨即可得到CQDs/ATP纳米复合材料。后续检测如实施例1。

Claims (6)

1.一种碳量子点/凹凸棒纳米复合材料,其特征在于:所述的复合材料是以凹凸棒为载体,将凹凸棒与碳量子点复合后得到的纳米复合材料。
2.一种如权利要求1所述的碳量子点/凹凸棒纳米复合材料的制备方法,其特征在于:所述的制备方法为,将柠檬酸、双氧水和凹凸棒混合进行水热反应,再经过离心、洗涤、烘干得到碳量子点/凹凸棒纳米复合材料。
3.如权利要求2所述的碳量子点/凹凸棒纳米复合材料的制备方法,其特征在于:所述的双氧水中过氧化氢的浓度为0.9mol·L-1,控制双氧水中过氧化氢和柠檬酸的摩尔比为0.3~0.6:1。
4.如权利要求2所述的碳量子点/凹凸棒纳米复合材料的制备方法,其特征在于:控制柠檬酸的用量,使碳量子点相对于凹凸棒的质量分数为10%-40%。
5.如权利要求2所述的碳量子点/凹凸棒纳米复合材料的制备方法,其特征在于:水热温度为120-180℃,水热时间为6-24h。
6.一种如权利要求1所述的碳量子点/凹凸棒纳米复合材料的应用,其特征在于:将所述的复合材料用于光催化脱硫。
CN201710270136.8A 2017-04-24 2017-04-24 一种碳量子点/凹凸棒纳米复合材料及其制备方法和应用 Active CN106944029B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710270136.8A CN106944029B (zh) 2017-04-24 2017-04-24 一种碳量子点/凹凸棒纳米复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710270136.8A CN106944029B (zh) 2017-04-24 2017-04-24 一种碳量子点/凹凸棒纳米复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106944029A true CN106944029A (zh) 2017-07-14
CN106944029B CN106944029B (zh) 2019-05-28

Family

ID=59476657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710270136.8A Active CN106944029B (zh) 2017-04-24 2017-04-24 一种碳量子点/凹凸棒纳米复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106944029B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107413358A (zh) * 2017-07-19 2017-12-01 盱眙县中材凹凸棒石粘土有限公司 一种黑磷量子点/凹凸棒纳米复合材料及其制备方法和应用
CN107661745A (zh) * 2017-10-20 2018-02-06 常州大学盱眙凹土研发中心 一种凹凸棒石/碳分子筛复合脱硫吸附材料的制备方法
CN110882713A (zh) * 2019-11-22 2020-03-17 常州纳欧新材料科技有限公司 一种导电凹凸棒石/氧化钛/氮化碳量子点复合材料及其制备方法和在光催化脱硫中的应用
CN110961092A (zh) * 2019-12-23 2020-04-07 常州纳欧新材料科技有限公司 一种碳量子点/氧化钛/导电云母复合降解盐酸四环素光催化材料及其制备方法
CN112062493A (zh) * 2020-09-18 2020-12-11 费县沂州水泥有限公司 一种液体水泥助磨剂及其制备方法
CN112062484A (zh) * 2020-09-18 2020-12-11 费县沂州水泥有限公司 一种水泥及其制备方法
CN114854394A (zh) * 2022-05-25 2022-08-05 甘肃政法大学 一种荧光碳点纳米复合材料的制备及在潜指纹显现中应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160014188A (ko) * 2014-07-28 2016-02-11 건양대학교산학협력단 열반응에 의한 고효율 탄소 양자점 제조방법
CN106552595A (zh) * 2016-12-07 2017-04-05 天津市金鳞水处理科技有限公司 一种重金属离子吸附和检测型复合水凝胶纤维及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160014188A (ko) * 2014-07-28 2016-02-11 건양대학교산학협력단 열반응에 의한 고효율 탄소 양자점 제조방법
CN106552595A (zh) * 2016-12-07 2017-04-05 天津市金鳞水处理科技有限公司 一种重金属离子吸附和检测型复合水凝胶纤维及其制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107413358A (zh) * 2017-07-19 2017-12-01 盱眙县中材凹凸棒石粘土有限公司 一种黑磷量子点/凹凸棒纳米复合材料及其制备方法和应用
CN107413358B (zh) * 2017-07-19 2020-05-26 盱眙县中材凹凸棒石粘土有限公司 一种黑磷量子点/凹凸棒纳米复合材料及其制备方法和应用
CN107661745A (zh) * 2017-10-20 2018-02-06 常州大学盱眙凹土研发中心 一种凹凸棒石/碳分子筛复合脱硫吸附材料的制备方法
CN110882713A (zh) * 2019-11-22 2020-03-17 常州纳欧新材料科技有限公司 一种导电凹凸棒石/氧化钛/氮化碳量子点复合材料及其制备方法和在光催化脱硫中的应用
CN110882713B (zh) * 2019-11-22 2022-04-26 常州纳欧新材料科技有限公司 一种导电凹凸棒石/氧化钛/氮化碳量子点复合材料及其制备方法和在光催化脱硫中的应用
CN110961092A (zh) * 2019-12-23 2020-04-07 常州纳欧新材料科技有限公司 一种碳量子点/氧化钛/导电云母复合降解盐酸四环素光催化材料及其制备方法
CN112062493A (zh) * 2020-09-18 2020-12-11 费县沂州水泥有限公司 一种液体水泥助磨剂及其制备方法
CN112062484A (zh) * 2020-09-18 2020-12-11 费县沂州水泥有限公司 一种水泥及其制备方法
CN112062493B (zh) * 2020-09-18 2022-05-27 费县沂州水泥有限公司 一种液体水泥助磨剂及其制备方法
CN112062484B (zh) * 2020-09-18 2022-05-31 费县沂州水泥有限公司 一种水泥及其制备方法
CN114854394A (zh) * 2022-05-25 2022-08-05 甘肃政法大学 一种荧光碳点纳米复合材料的制备及在潜指纹显现中应用
CN114854394B (zh) * 2022-05-25 2023-11-21 甘肃政法大学 一种荧光碳点纳米复合材料的制备及在潜指纹显现中应用

Also Published As

Publication number Publication date
CN106944029B (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
CN106944029B (zh) 一种碳量子点/凹凸棒纳米复合材料及其制备方法和应用
Tahir La-modified TiO2/carbon nanotubes assembly nanocomposite for efficient photocatalytic hydrogen evolution from glycerol-water mixture
CN105668632B (zh) 一种变价金属催化及掺杂的钨青铜纳米短棒粒子及其制备方法
KR102100522B1 (ko) 수소의 제조를 위한 금속성 황화물에 기반한 복합 광촉매
Gai et al. An alternative scheme of biological removal of ammonia nitrogen from wastewater–highly dispersed Ru cluster@ mesoporous TiO2 for the catalytic wet air oxidation of low-concentration ammonia
Palas et al. Bioinspired metal oxide particles as efficient wet air oxidation and photocatalytic oxidation catalysts for the degradation of acetaminophen in aqueous phase
CN108579786A (zh) Fe3O4@g-C3N4/RGO复合光催化剂及制备方法
Zhao et al. Polyoxometalates-doped TiO 2/Ag hybrid heterojunction: removal of multiple pollutants and mechanism investigation
CN105080553B (zh) 一种含锡双钙钛矿型光催化降解苯酚催化剂的制备方法
Getahun et al. Photocatalytic conversion of gaseous carbon dioxide to methanol on CuO/ZnO-embedded carbohydrate polymer films
Fu et al. A polydiacetylene-based smart cellulose aerogel functionalized by ZnO/MoS2 heterojunction for simultaneous visual detection and photocatalytic degradation of gaseous VOCs
CN105148944A (zh) 一种可见光催化剂及制备方法
Hu et al. Biodiesel production using MgO–CaO catalysts via transesterification of soybean oil: effect of MgO addition and Insights of CATALYST DEACTIVATION
CN107899594B (zh) 一种碳点修饰羟基磷酸铜光催化材料及其制备方法
Akçay et al. Treatment of wastewater containing organic pollutants in the presence of N-doped graphitic carbon and Co3O4/peroxymonosulfate
Zhu et al. Hydrothermal preparation of NiO/La–NaTaO3 composite photocatalyst for degradation of ammonium dibutyl dithiophosphate wastewater
CN110801853A (zh) 一种复合光催化剂及其制备方法和应用
Liu et al. Synergic effect of CuS and MgO for boosting adsorption-photocatalytic activity of S-doped biochar
CN107961800B (zh) 碘化银纳米粒修饰溴氧化铋复合光催化剂及其制备方法和应用
CN111036240A (zh) 一种MoS2/CuO异质结光催化剂及其制备方法和应用
CN111054400A (zh) 一种CuInS2量子点/BiOI复合光催化剂及其制备方法与应用
CN114471707B (zh) 含催化剂水凝胶球、其制备方法及其在光催化处理有机污染物方面的应用
CN105749945A (zh) 一种Fe(Ш)/Bi2O2CO3光催化剂的制备方法
Chi et al. A novel peony-shaped ZnO/biochar nanocomposites with dominant {100} facets for efficient adsorption and photocatalytic removal of refractory contaminants
Jin et al. Synthesis of novel Cu2WS4/Bi2WO6 heterojunctions and evaluation of their photocatalytic activity for removal of tetracycline under visible light irradiation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240610

Address after: 213200, 5th Floor, South Building, Building 5, No. 1668 Huacheng Road, Development Zone, Jintan District, Changzhou City, Jiangsu Province

Patentee after: Changjin Precision Instrument (Changzhou) Co.,Ltd.

Country or region after: China

Address before: Gehu Lake Road Wujin District 213164 Jiangsu city of Changzhou province No. 1

Patentee before: CHANGZHOU University

Country or region before: China