CN106927500B - 多级纳米片构筑的三维分等级二氟氧钛微米球及其制备方法和应用 - Google Patents

多级纳米片构筑的三维分等级二氟氧钛微米球及其制备方法和应用 Download PDF

Info

Publication number
CN106927500B
CN106927500B CN201710071074.8A CN201710071074A CN106927500B CN 106927500 B CN106927500 B CN 106927500B CN 201710071074 A CN201710071074 A CN 201710071074A CN 106927500 B CN106927500 B CN 106927500B
Authority
CN
China
Prior art keywords
oxygen titanium
difluoro oxygen
constructed
difluoro
micron ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710071074.8A
Other languages
English (en)
Other versions
CN106927500A (zh
Inventor
侯晨涛
柳文莉
李妍洁
朱佳明
宋乔乔
吴彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Science and Technology
Original Assignee
Xian University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Science and Technology filed Critical Xian University of Science and Technology
Priority to CN201710071074.8A priority Critical patent/CN106927500B/zh
Publication of CN106927500A publication Critical patent/CN106927500A/zh
Application granted granted Critical
Publication of CN106927500B publication Critical patent/CN106927500B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/135Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Catalysts (AREA)

Abstract

本发明属于钛基材料研究技术领域,具体涉及一种多级纳米片构筑的三维分等级二氟氧钛微米球及其制备方法和应用,该多级纳米片构筑的三维分等级二氟氧钛微米球是由内核、中间层和外层构成三维分等级微米球结构,其中内核直径为1~1.5μm,其是由直径为5~20nm的二氟氧钛纳米颗粒组成,中间层包裹在内核外,是由沿着内核径向向外辐射排列的二氟氧钛纳米片组成,外层由包裹在中间层外表面的层状二氟氧钛纳米片组成,其形貌独特,并在自然光下对亚甲基蓝有很好的降解效果,在制取时原料易得,成本较低,反应条件温和,工艺简单,扩大了二氟氧钛的应用范围,解决了亚甲基蓝降解难度大的问题。

Description

多级纳米片构筑的三维分等级二氟氧钛微米球及其制备方法 和应用
技术领域
本发明属于钛基材料研究技术领域,特别涉及一种多级纳米片构筑的三维分等级二氟氧钛微米球及其制备方法和应用。
背景技术
二氟氧钛(TiOF2)是近年来逐渐被关注的一种新的钛基材料,它具有一定的化学、电化学、光学和光电学特性,因此在催化剂、油漆以及玻璃、锂离子电池等方面均有应用。一般认为TiOF2的催化性能要低于常用催化剂TiO2,但近年来越来越多的研究表明,TiOF2对于某些难降解偶氮染料的降解性能要优于TiO2,尤其是在TiO2不擅长的可见光或自然光下优势更明显。
TiOF2的制备方法并不多,早期主要通过TiF4、TiF3Cl水解或TiO2与水反应制备,也有方法以钛酸丁酯和氢氟酸为原料,通过水热法制备出了结晶度好的TiOF2,但制备出的TiOF2大多以立方晶型为主,也有少量的六方晶型和管束状形态,晶型决定了其在染料降解方面的应用受限,资料显示TiOF2催化效果较差,在可见光甚至是自然光下对除罗丹明-B以外的污染物基本没有催化降解效果。
发明内容
为了解决现有技术所存在的不足,本发明提供了一种构型独特且能对亚甲基蓝有很好降解效果的多级纳米片构筑的三维分等级二氟氧钛微米球。
同时本发明还提供了上述多级纳米片构筑的三维分等级二氟氧钛微米球的制备方法,其工艺简单、原料易得、成本较低。
本发明还提供了上述多级纳米片构筑的三维分等级二氟氧钛微米球在自然光下降解亚甲基蓝方面的应用。
本发明实现上述目的所采用的技术方案是:
该种多级纳米片构筑的三维分等级二氟氧钛微米球,是由内核、中间层和外层构成三维分等级微米球结构,其中内核直径为1~1.5μm,其是由直径为5~20nm的二氟氧钛纳米颗粒组成,中间层包裹在内核外,是由沿着内核径向向外辐射排列的二氟氧钛纳米片组成,外层由包裹在中间层外表面的层状二氟氧钛纳米片组成。
进一步,上述中间层的厚度为300~500nm,中间层的纳米片长、宽为300~500nm、厚度为5~20nm。
进一步,所述外层的厚度为5~20nm,外层的层状二氟氧钛纳米片长、宽均为300~500nm。
上述的多级纳米片构筑的三维分等级二氟氧钛微米球的制备方法由以下步骤组成:
(1)将钛酸丁酯与无水乙醇混合配制的A混合液滴加至由HF与去离子水混合配制的B混合液中,使A混合液中的钛酸丁酯与B混合液中的HF的摩尔比为1:100~150,滴速控制在每秒2~3滴,混合搅拌1~2小时,得到TiOF2溶胶,室温下陈化24~48h;
(2)将陈化的TiOF2溶胶离心沉降,用蒸馏水、无水乙醇洗涤,80~100℃烘干,研磨,即可得到多级纳米片构筑的三维分等级二氟氧钛微米球粉末。
进一步限定,上述A混合液是由钛酸丁酯与无水乙醇按照摩尔比为1:5~10混合配制。
进一步限定,上述B混合液是由HF与去离子水按照摩尔比为1:20~25的比例配制。
进一步优选,上述步骤(1)为:将钛酸丁酯与无水乙醇按照摩尔比为1:6混合配制成A混合液,将HF与去离子水按照摩尔比为1:22的比例配制成B混合液,之后将A混合液滴加至B混合液中,使A混合液中的钛酸丁酯与B混合液中的HF的摩尔比为1:120,滴速控制在每秒2~3滴,混合搅拌1.5小时,得到TiOF2溶胶。
上述的多级纳米片构筑的三维分等级二氟氧钛微米球在自然光下降解亚甲基蓝方面的应用,在自然光下对亚甲基蓝有很好的降解效果,并大大缩短降解时间。
本发明的多级纳米片构筑的三维分等级二氟氧钛微米球是由二氟氧钛纳米颗粒组成的内核以及向外辐射型二氟氧钛纳米片组成的中间层和包裹在中间层外部的外层构筑的三维分等级微米球构形,其形貌独特,并在自然光下对亚甲基蓝有很好的降解效果,且降解时间短,本发明的二氟氧钛微米球在制取时原料易得,成本较低,反应条件温和,工艺简单,扩大了二氟氧钛的应用范围,解决了亚甲基蓝降解难度大的问题。
附图说明
图1为实施例1所得产品与二氧化钛、市售催化剂P25的X射线衍射对比图。
图2为实施例1所得产品放大20万倍的扫描电镜图。
图3为实施例1所得产品放大50万倍的扫描电镜图。
图4为实施例1所得产品与市售催化剂P25的傅里叶红外对比图。
图5为实施例1所得产品与市售催化剂P25在可见光下对亚甲基蓝的降解效果对比图。
具体实施方式
现结合实验数据和实施例对本发明的技术方案进行进一步说明,但是本发明不仅限于下述的实施情形。
实施例1
(1)30mL钛酸丁酯与38mL无水乙醇按照摩尔比为1:6混合配制成A混合液,将3.8mL的HF与78.5mL的去离子水按照摩尔比为1:22的比例配制成B混合液,之后将A混合液滴加至B混合液中,使A混合液中的钛酸丁酯与B混合液中的HF的摩尔比为1:120,滴速控制在每秒2~3滴,混合搅拌1.5小时,得到TiOF2溶胶,室温下陈化30h;
(2)将陈化的TiOF2溶胶离心沉降,依次用蒸馏水、无水乙醇各洗涤3次,100℃烘干,研磨,即可得到多级纳米片构筑的三维分等级二氟氧钛微米球粉末。
将上述所得产品与二氧化钛、市售催化剂P25进行X射线检测对比,结果如图1所示。
从图1可以看出,本发明所得样品区别于常规的二氧化钛,既不是锐钛矿二氧化钛,也不像催化剂P25一样是锐钛矿和金红石相的混合,而是一种新的钛基催化剂TiOF2
将所得TiOF2产物用扫描电镜放大后观察,结果如图2和3所示。
从图2和3中可以看出,该产品呈多级纳米片构筑的三维分等级微米球结构,由内核、中间层和外层构成,其中心是直径为1~1.5μm的内核,并是由直径为5~20nm的二氟氧钛纳米颗粒组成;中间层包裹在内核外部,其是由中心向外辐射排列的二氟氧钛纳米片组成,中间层的厚度就是纳米片的长度,约为300~500nm,中间层的纳米片长、宽均约为300~500nm、厚度为5~20nm左右;外层的厚度是5~20nm,其是由包裹在中间层外部的平铺排列的层状二氟氧钛纳米片组成,纳米片长约为300~500nm。
实施例2
(1)将30mL钛酸丁酯与32mL无水乙醇按照摩尔比为1:5混合配制成A混合液,将3.2mL的HF与60mL的去离子水按照摩尔比为1:20的比例配制成B混合液,之后将A混合液滴加至B混合液中,使A混合液中的钛酸丁酯与B混合液中的HF的摩尔比为1:100,滴速控制在每秒2~3滴,混合搅拌2小时,得到TiOF2溶胶,室温下陈化48h;
(2)将陈化的TiOF2溶胶离心沉降,依次用蒸馏水、无水乙醇各洗涤2次,80℃烘干,研磨,即可得到多级纳米片构筑的三维分等级二氟氧钛微米球粉末。
实施例3
(1)将30mL钛酸丁酯与64mL无水乙醇按照摩尔比为1:10混合配制成A混合液,将4.8mL的HF与112mL的去离子水按照摩尔比为1:25的比例配制成B混合液,之后将A混合液滴加至B混合液中,使A混合液中的钛酸丁酯与B混合液中的HF的摩尔比为1:150,滴速控制在每秒2~3滴,混合搅拌2小时,得到TiOF2溶胶,室温下陈化24h;
(2)将陈化的TiOF2溶胶离心沉降,依次用蒸馏水、无水乙醇各洗涤2次,90℃烘干,研磨,即可得到多级纳米片构筑的三维分等级二氟氧钛微米球粉末。
将上述实施例1所得产品进行傅里叶红外检测,并与市售催化剂P25进行对比,如图4所示。由图4可以看出,本发明的产品在1645cm-1附近有较强的吸收峰,甚至还要大于市售催化剂P25,说明本发明的材料表面有较多的羟基存在以保证其有较好的降解潜力。
以可见光光催化降解初始浓度为5mg/L的亚甲基蓝溶液来评价催化剂的光催化活性,具体步骤为:称取0.1g光催化剂粉体加入到100mL亚甲基蓝溶液中,暗处静置30min,以达到吸附平衡;以500W氙灯为光源,利用JB420滤光片滤去紫外光,在暗箱中将静置后的亚甲基蓝溶液在可见光照下磁力搅拌,液面距离光源20cm,每隔30min取样一次;样品溶液离心沉降后,取上清液测各自吸光度。图5为本发明实施例1制备的样品与P25在可见光下对亚甲基蓝的降解效果对比图。
从图5可以看出,在反应90min以后,本发明产品对亚甲基蓝的降解效果超过了市售催化剂P25,在4h后可达到90%,说明本多级纳米片构筑的三维分等级二氟氧钛微米球材料具有自然光下降解亚甲基蓝的能力,而且能够大大缩短降解时间。

Claims (6)

1.一种多级纳米片构筑的三维分等级二氟氧钛微米球,其特征在于:该多级纳米片构筑的三维分等级二氟氧钛微米球能够降解亚甲基蓝,其是由内核、中间层和外层构成三维分等级微米球结构,其中内核直径为1~1.5μm,其是由直径为5~20nm的二氟氧钛纳米颗粒组成,中间层包裹在内核外,是由沿着内核径向向外辐射排列的二氟氧钛纳米片组成,外层由包裹在中间层外表面的层状二氟氧钛纳米片组成。
2.根据权利要求1所述的多级纳米片构筑的三维分等级二氟氧钛微米球,其特征在于:所述中间层的厚度为300~500nm,中间层的纳米片长、宽为300~500nm、厚度为5~20nm。
3.根据权利要求1或2所述的多级纳米片构筑的三维分等级二氟氧钛微米球,其特征在于:所述外层的厚度为5~20nm,外层的层状二氟氧钛纳米片长、宽均为300~500nm。
4.一种权利要求1所述的多级纳米片构筑的三维分等级二氟氧钛微米球的制备方法,其特征在于由以下步骤组成:
(1)将钛酸丁酯与无水乙醇按照按照摩尔比为1:5~10混合配制的A混合液滴加至由HF与去离子水按照摩尔比为1:20~25混合配制的B混合液中,使A混合液中的钛酸丁酯与B混合液中的HF的摩尔比为1:100~150,滴速控制在每秒2~3滴,混合搅拌1~2小时,得到TiOF2溶胶,室温下陈化24~48h;
(2)将陈化的TiOF2溶胶离心沉降,用蒸馏水、无水乙醇洗涤,80~100℃烘干,研磨,即可得到能够降解亚甲基蓝的多级纳米片构筑的三维分等级二氟氧钛微米球粉末。
5.根据权利要求4所述的制备方法,其特征在于所述步骤(1)具体为:将钛酸丁酯与无水乙醇按照摩尔比为1:6混合配制成A混合液,将HF与去离子水按照摩尔比为1:22的比例配制成B混合液,之后将A混合液滴加至B混合液中,使A混合液中的钛酸丁酯与B混合液中的HF的摩尔比为1:120,滴速控制在每秒2~3滴,混合搅拌1.5小时,得到TiOF2溶胶。
6.权利要求1所述的多级纳米片构筑的三维分等级二氟氧钛微米球在自然光下降解亚甲基蓝方面的应用。
CN201710071074.8A 2017-02-09 2017-02-09 多级纳米片构筑的三维分等级二氟氧钛微米球及其制备方法和应用 Active CN106927500B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710071074.8A CN106927500B (zh) 2017-02-09 2017-02-09 多级纳米片构筑的三维分等级二氟氧钛微米球及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710071074.8A CN106927500B (zh) 2017-02-09 2017-02-09 多级纳米片构筑的三维分等级二氟氧钛微米球及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106927500A CN106927500A (zh) 2017-07-07
CN106927500B true CN106927500B (zh) 2018-08-28

Family

ID=59424309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710071074.8A Active CN106927500B (zh) 2017-02-09 2017-02-09 多级纳米片构筑的三维分等级二氟氧钛微米球及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106927500B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633303A (zh) * 2012-04-06 2012-08-15 山东大学 一种三维分等级二氧化钛空心纳米盒子及其制备方法
CN105148953A (zh) * 2015-08-28 2015-12-16 西安科技大学 一种管束状TiOF2的低温制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633303A (zh) * 2012-04-06 2012-08-15 山东大学 一种三维分等级二氧化钛空心纳米盒子及其制备方法
CN105148953A (zh) * 2015-08-28 2015-12-16 西安科技大学 一种管束状TiOF2的低温制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Covalent attachment and growth of nanocrystalline films of photocatalytic TiOF2";Jian Zhu et al.;《Nanoscale》;20141017;第6卷;第14650页第2段以及图4 *

Also Published As

Publication number Publication date
CN106927500A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
Wu et al. Synthesis of highly monodispersed teardrop-shaped core–shell SiO2/TiO2 nanoparticles and their photocatalytic activities
CN106268734B (zh) 一种水分散性三元混晶纳米二氧化钛光催化剂的制备方法
Lee et al. Fabrication of TiO2 tubules by template synthesis and hydrolysis with water vapor
Demirörs et al. A general method to coat colloidal particles with titania
CN102614933B (zh) 一种贵金属银沉积-聚吡咯敏化的中空状二氧化钛纳米光催化剂及其制备方法
JP2007176753A (ja) 粒子形状の制御された高結晶性アナターゼ型酸化チタン超微粒子、及びその製造方法
Lim et al. Simple Route to monodispersed silica− titania core− shell photocatalysts
CN107163294A (zh) 一种远红外复合粉体
EP1857181A1 (en) Photocatalyst, method for producing same, liquid dispersion containing photocatalyst and photocatalyst coating composition
Kenanakis et al. Chemically grown TiO2 on glass with superior photocatalytic properties
US20220089881A1 (en) Methods for forming and uses of titania-coated inorganic particles
CN104475082B (zh) 可见光响应的WO3/{001}TiO2复合光催化剂的制备方法
CN106311100B (zh) 一种光催化复合微球的制作方法
Wang et al. A new approach to preparation of TiO2@ void@ SiO2 rattle type core shell structure nanoparticles via titanyl oxalate complex
CN113896231B (zh) 一种二氧化钛材料的制备方法
CN106927500B (zh) 多级纳米片构筑的三维分等级二氟氧钛微米球及其制备方法和应用
CN104891566B (zh) 脉冲电磁场制备锐钛矿型纳米二氧化钛的方法
CN107159185B (zh) 一种用于降解罗丹明b的三氧化钼催化剂及其制备方法
US20150246350A1 (en) Coatable Composition, Photocatalytic Articles, and Methods of Making the Same
CN108927126A (zh) 一种可见光响应的二氧化钛光催化剂及其制备方法
JP4382612B2 (ja) 化粧料
CN102079886B (zh) 金属离子掺杂型二氧化钛溶胶的制备方法
JP2011116646A (ja) 粒子形状の制御された高結晶性アナターゼ型酸化チタン超微粒子分散液
JP5644877B2 (ja) 光触媒粒子の分散液の製法
CN111675240A (zh) 一种黑色二氧化钛及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant