CN106927063B - 惯组输出数据的模拟方法及装置 - Google Patents

惯组输出数据的模拟方法及装置 Download PDF

Info

Publication number
CN106927063B
CN106927063B CN201710115352.5A CN201710115352A CN106927063B CN 106927063 B CN106927063 B CN 106927063B CN 201710115352 A CN201710115352 A CN 201710115352A CN 106927063 B CN106927063 B CN 106927063B
Authority
CN
China
Prior art keywords
formula
coordinate system
angular speed
earth
latitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710115352.5A
Other languages
English (en)
Other versions
CN106927063A (zh
Inventor
徐帆
尚腾
李学锋
曹洁
王辉
张宇
王会霞
吴骁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Beijing Aerospace Automatic Control Research Institute
Original Assignee
China Academy of Launch Vehicle Technology CALT
Beijing Aerospace Automatic Control Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT, Beijing Aerospace Automatic Control Research Institute filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN201710115352.5A priority Critical patent/CN106927063B/zh
Publication of CN106927063A publication Critical patent/CN106927063A/zh
Application granted granted Critical
Publication of CN106927063B publication Critical patent/CN106927063B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种惯组输出数据的模拟方法及装置。该方法包括:在运载器发射前,根据运载器的射向和发射点的纬度,获取地心矢径及牵连角速度;根据所述牵连角速度和所述地心矢径,计算牵连加速度;根据所述牵连加速度和所述发射点的纬度,计算重力相对坐标系视加速度;利用重力相对坐标系向载体坐标系的滚动角、俯仰角及偏航角,获取坐标转换矩阵;根据所述坐标转换矩阵和所述重力相对坐标系视加速度,模拟惯组输出的视加速度;根据所述运载器的射向和发射点的纬度,模拟惯组输出的角速度。本发明实现了模拟运载器起飞前惯组输出数据的目的。

Description

惯组输出数据的模拟方法及装置
技术领域
本发明涉及惯组数据模拟技术,尤其涉及一种惯组输出数据的模拟方法及装置。
背景技术
运载器需要在飞行前对飞行过程中采用的各项控制技术和单机产品进行地面模拟飞行的验证。因此,需要采用模拟飞行试验对运载器飞行过程、制导控制流程和硬件系统进行全面考核。
运载器的飞行全过程包括起飞前阶段和起飞后阶段。现有的模拟飞行过程是从起飞以后开始对飞行状态进行模拟,而并没有对运载器起飞前的飞行状态进行模拟。为了获取运载器飞行的全部飞行状态,需模拟运载器起飞前的惯组输出数据,进而利用起飞前的惯组输出数据,对运载器起飞前的飞行状态进行模拟。通过获取运载器飞行的全部飞行状态,考核运载器在飞行控制情况下能否准确入轨。
发明内容
本发明解决的技术问题是:相比于现有技术,提供了一种惯组输出数据的模拟方法及装置,实现了模拟运载器起飞前惯组输出数据的目的。
本发明目的通过以下技术方案予以实现:
第一方面,本发明提供了一种惯组输出数据的模拟方法,包括:
在运载器发射前,根据运载器的射向和发射点的纬度,获取地心矢径及牵连角速度;
根据所述牵连角速度和所述地心矢径,计算牵连加速度;
根据所述牵连加速度和所述发射点的纬度,计算重力相对坐标系视加速度;
利用重力相对坐标系向载体坐标系的滚动角、俯仰角及偏航角,获取坐标转换矩阵;
根据所述坐标转换矩阵和所述重力相对坐标系视加速度,模拟惯组输出的视加速度;
根据所述运载器的射向和发射点的纬度,模拟惯组输出的角速度。
进一步地,所述地心矢径的计算公式为:
μ=B0-tg-1{[1-αE(2-αE)]·tgB0} (2)
公式(1)中,为地心矢径,R0为地球半径,μ为纬度变量,A0为运载器的射向;公式(2)中,B0为发射点的纬度,αE为地球扁率。
进一步地,所述牵连角速度的计算公式为:
公式(3)中,为牵连角速度,ωe为地球自转角速率,A0为运载器的射向,B0为发射点的纬度。
进一步地,所述牵连加速度的计算公式为:
公式(4)中,为牵连加速度,为地心矢径,ωex、ωey和ωez为牵连角速度,ωe为地球自转角速率。
进一步地,所述重力相对坐标系视加速度的计算公式为:
公式(5)中,为重力相对坐标系视加速度,为牵连加速度,B0为发射点的纬度。
进一步地,所述坐标转换矩阵的计算公式为:
公式(6)中,为重力相对坐标系向载体坐标系的坐标转换矩阵,γ0为滚动角,为俯仰角,ψ0为偏航角。
进一步地,所述惯组输出的视加速度的模拟公式为:
公式(7)中,为惯组输出的视加速度,为重力相对坐标系视加速度,为重力相对坐标系向载体坐标系的坐标转换矩阵。
进一步地,所述惯组输出的角速度的模拟公式为:
公式(8)中,为惯组输出的角速度,ωe为地球自转角速率,A0为运载器的射向,B0为发射点的纬度。
第二方面,本发明还提供了一种惯组输出数据的模拟装置,该模拟装置包括:
第一获取模块,用于在运载器发射前,根据运载器的射向和发射点的纬度,获取地心矢径及牵连角速度;
第一计算模块,用于根据所述牵连角速度和所述地心矢径,计算牵连加速度;
第二计算模块,用于根据所述牵连加速度和所述发射点的纬度,计算重力相对坐标系视加速度;
第二获取模块,用于利用重力相对坐标系向载体坐标系的滚动角、俯仰角及偏航角,获取坐标转换矩阵;
第一模拟模块,用于根据所述坐标转换矩阵和所述重力相对坐标系视加速度,模拟惯组输出的视加速度;
第二模拟模块,用于根据所述运载器的射向和发射点的纬度,模拟惯组输出的角速度。
进一步地,所述地心矢径的计算公式为:
μ=B0-tg-1{[1-αE(2-αE)]·tgB0} (2)
公式(1)中,为地心矢径,R0为地球半径,μ为纬度变量,A0为运载器的射向;公式(2)中,B0为发射点的纬度,αE为地球扁率。
进一步地,所述牵连角速度的计算公式为:
公式(3)中,为牵连角速度,ωe为地球自转角速率,A0为运载器的射向,B0为发射点的纬度。
进一步地,所述牵连加速度的计算公式为:
公式(4)中,为牵连加速度,为地心矢径,ωex、ωey和ωez为牵连角速度,ωe为地球自转角速率。
进一步地,所述重力相对坐标系视加速度的计算公式为:
公式(5)中,为重力相对坐标系视加速度,为牵连加速度,B0为发射点的纬度。
进一步地,所述坐标转换矩阵的计算公式为:
公式(6)中,为重力相对坐标系向载体坐标系的坐标转换矩阵,γ0为滚动角,为俯仰角,ψ0为偏航角。
进一步地,所述惯组输出的视加速度的模拟公式为:
公式(7)中,为惯组输出的视加速度,为重力相对坐标系视加速度,为重力相对坐标系向载体坐标系的坐标转换矩阵。
进一步地,所述惯组输出的角速度的模拟公式为:
公式(8)中,为惯组输出的角速度,ωe为地球自转角速率,A0为运载器的射向,B0为发射点的纬度。
本发明与现有技术相比具有如下有益效果:
(1)、本发明通过在运载器发射前,根据运载器的射向和发射点的纬度,模拟运载器起飞前惯组输出的视加速度和角速度,从而实现了模拟运载器起飞前惯组输出数据的目的。
(2)、本发明模拟了运载器起飞前惯组输出数据,进而完成了运载器起飞前的飞行状态模拟,从而实现了运载器的全飞行状态模拟。
(3)、本发明能够用于运载器的全飞行状态模拟,提高了运载器入轨控制的精确性和可靠性。
(4)、本发明算法简单、高效,能够提高模拟飞行的效率。
附图说明
图1是本发明实施例一中的一种惯组输出数据的模拟方法的流程图;
图2是本发明实施例二中的一种惯组输出数据的模拟装置的结构图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
实施例一
图1是本发明实施例一中的一种惯组输出数据的模拟方法的流程图,本实施例可适用于需要对运载器起飞前惯组输出数据进行模拟的情况,该方法可以由惯组输出数据的模拟装置来执行,其中该装置可以由软件和/或硬件实现,该装置可集成于运载器的主控计算机中。参考图1,本实施例提供的惯组输出数据的模拟方法具体可以包括如下步骤:
S110、在运载器发射前,根据运载器的射向和发射点的纬度,获取地心矢径及牵连角速度。
具体的,在运载器发射前,可获得运载器发射地点的经纬度参数,本实施例中,只需获得运载器发射地点的纬度参数。所述运载器的射向为根据运载器的预定飞行任务预先设置好的射向参数。本实施例中,在运载器发射前,根据运载器的射向和发射点的纬度,获取地心矢径,以最终模拟出惯组输出的视加速度参数;并且根据运载器的射向和发射点的纬度,获取牵连角速度,以最终模拟出惯组输出的角速度参数。
所述地心矢径的计算公式为:
μ=B0-tg-1{[1-αE(2-αE)]·tgB0} (2)
公式(1)中,为地心矢径,R0为地球半径,μ为纬度变量,A0为运载器的射向;公式(2)中,B0为发射点的纬度,αE为地球扁率。
所述牵连角速度的计算公式为:
公式(3)中,为牵连角速度,ωe为地球自转角速率,A0为运载器的射向,B0为发射点的纬度。
S120、根据所述牵连角速度和所述地心矢径,计算牵连加速度。
具体的,为了最终模拟出惯组输出的视加速度参数,本实施例中,根据S110获取的所述牵连角速度和所述地心矢径,计算牵连加速度。
所述牵连加速度的计算公式为:
公式(4)中,为牵连加速度,为地心矢径,ωex、ωey和ωez为牵连角速度,ωe为地球自转角速率。
S130、根据所述牵连加速度和所述发射点的纬度,计算重力相对坐标系视加速度。
具体的,为了最终模拟出惯组输出的视加速度参数,本实施例中,根据S120计算得出的所述牵连加速度,以及运载器发射地点的纬度参数,计算重力相对坐标系视加速度。
所述重力相对坐标系视加速度的计算公式为:
公式(5)中,为重力相对坐标系视加速度,为牵连加速度,B0为发射点的纬度。
S140、利用重力相对坐标系向载体坐标系的滚动角、俯仰角及偏航角,获取坐标转换矩阵。
具体的,由于重力相对坐标系与载体坐标系的坐标基准不同,因而需获取重力相对坐标系向载体坐标系的坐标转换矩阵。本实施例中,利用重力相对坐标系向载体坐标系的滚动角、俯仰角及偏航角,获取坐标转换矩阵。
所述坐标转换矩阵的计算公式为:
公式(6)中,为重力相对坐标系向载体坐标系的坐标转换矩阵,γ0为滚动角,为俯仰角,ψ0为偏航角。
S150、根据所述坐标转换矩阵和所述重力相对坐标系视加速度,模拟惯组输出的视加速度。
具体的,为模拟出运载器起飞前惯组输出的视加速度参数,本实施例中,根据S140获取的所述坐标转换矩阵,以及S130计算出的所述重力相对坐标系视加速度,模拟惯组输出的视加速度。
所述惯组输出的视加速度的模拟公式为:
公式(7)中,为惯组输出的视加速度,为重力相对坐标系视加速度,为重力相对坐标系向载体坐标系的坐标转换矩阵。
S160、根据所述运载器的射向和发射点的纬度,模拟惯组输出的角速度。
具体的,本实施例中,根据预先设置好的运载器射向参数,以及运载器发射地点的纬度参数,模拟运载器起飞前惯组输出的角速度参数。
所述惯组输出的角速度的模拟公式为:
公式(8)中,为惯组输出的角速度,ωe为地球自转角速率,A0为运载器的射向,B0为发射点的纬度。
本实施例的技术方案通过在运载器发射前,根据运载器的射向和发射点的纬度,模拟运载器起飞前惯组输出的视加速度和角速度,从而实现了模拟运载器起飞前惯组输出数据的目的;模拟了运载器起飞前惯组输出数据,进而完成了运载器起飞前的飞行状态模拟,从而实现了运载器的全飞行状态模拟;能够用于运载器的全飞行状态模拟,提高了运载器入轨控制的精确性和可靠性;算法简单、高效,能够提高模拟飞行的效率。
实施例二
图2是本发明实施例二中的一种惯组输出数据的模拟装置的结构图,本实施例可适用于需要对运载器起飞前惯组输出数据进行模拟的情况。参考图2,本实施例提供的惯组输出数据的模拟装置具体可以如下:
第一获取模块210,用于在运载器发射前,根据运载器的射向和发射点的纬度,获取地心矢径及牵连角速度;
第一计算模块220,用于根据所述牵连角速度和所述地心矢径,计算牵连加速度;
第二计算模块230,用于根据所述牵连加速度和所述发射点的纬度,计算重力相对坐标系视加速度;
第二获取模块240,用于利用重力相对坐标系向载体坐标系的滚动角、俯仰角及偏航角,获取坐标转换矩阵;
第一模拟模块250,用于根据所述坐标转换矩阵和所述重力相对坐标系视加速度,模拟惯组输出的视加速度;
第二模拟模块260,用于根据所述运载器的射向和发射点的纬度,模拟惯组输出的角速度。
可选的,所述地心矢径的计算公式为:
μ=B0-tg-1{[1-αE(2-αE)]·tgB0} (2)
公式(1)中,为地心矢径,R0为地球半径,μ为纬度变量,A0为运载器的射向;公式(2)中,B0为发射点的纬度,αE为地球扁率。
可选的,所述牵连角速度的计算公式为:
公式(3)中,为牵连角速度,ωe为地球自转角速率,A0为运载器的射向,B0为发射点的纬度。
可选的,所述牵连加速度的计算公式为:
公式(4)中,为牵连加速度,为地心矢径,ωex、ωey和ωez为牵连角速度,ωe为地球自转角速率。
可选的,所述重力相对坐标系视加速度的计算公式为:
公式(5)中,为重力相对坐标系视加速度,为牵连加速度,B0为发射点的纬度。
可选的,所述坐标转换矩阵的计算公式为:
公式(6)中,为重力相对坐标系向载体坐标系的坐标转换矩阵,γ0为滚动角,为俯仰角,ψ0为偏航角。
可选的,所述惯组输出的视加速度的模拟公式为:
公式(7)中,为惯组输出的视加速度,为重力相对坐标系视加速度,为重力相对坐标系向载体坐标系的坐标转换矩阵。
可选的,所述惯组输出的角速度的模拟公式为:
公式(8)中,为惯组输出的角速度,ωe为地球自转角速率,A0为运载器的射向,B0为发射点的纬度。
本实施例提供的惯组输出数据的模拟装置,与本发明任意实施例所提供的惯组输出数据的模拟方法属于同一发明构思,可执行本发明任意实施例所提供的惯组输出数据的模拟方法,具备执行惯组输出数据的模拟方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明任意实施例提供的惯组输出数据的模拟方法。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (16)

1.一种惯组输出数据的模拟方法,其特征在于,包括:
在运载器发射前,根据运载器的射向和发射点的纬度,获取地心矢径及牵连角速度;
根据所述牵连角速度和所述地心矢径,计算牵连加速度;
根据所述牵连加速度和所述发射点的纬度,计算重力相对坐标系视加速度;
利用重力相对坐标系向载体坐标系的滚动角、俯仰角及偏航角,获取坐标转换矩阵;
根据所述坐标转换矩阵和所述重力相对坐标系视加速度,模拟惯组输出的视加速度;
根据所述运载器的射向和发射点的纬度,模拟惯组输出的角速度。
2.根据权利要求1所述的方法,其特征在于,所述地心矢径的计算公式为:
μ=B0-tg-1{[1-αE(2-αE)]·tgB0} (2)
公式(1)中,为地心矢径,R0为地球半径,μ为纬度变量,A0为运载器的射向;公式(2)中,B0为发射点的纬度,αE为地球扁率。
3.根据权利要求2所述的方法,其特征在于,所述牵连角速度的计算公式为:
公式(3)中,为牵连角速度,ωe为地球自转角速率,A0为运载器的射向,B0为发射点的纬度。
4.根据权利要求3所述的方法,其特征在于,所述牵连加速度的计算公式为:
公式(4)中,为牵连加速度,为地心矢径,ωex、ωey和ωez为牵连角速度,ωe为地球自转角速率。
5.根据权利要求4所述的方法,其特征在于,所述重力相对坐标系视加速度的计算公式为:
公式(5)中,为重力相对坐标系视加速度,为牵连加速度,B0为发射点的纬度。
6.根据权利要求5所述的方法,其特征在于,所述坐标转换矩阵的计算公式为:
公式(6)中,为重力相对坐标系向载体坐标系的坐标转换矩阵,γ0为滚动角,为俯仰角,ψ0为偏航角。
7.根据权利要求6所述的方法,其特征在于,所述惯组输出的视加速度的模拟公式为:
公式(7)中,为惯组输出的视加速度,为重力相对坐标系视加速度,为重力相对坐标系向载体坐标系的坐标转换矩阵。
8.根据权利要求7所述的方法,其特征在于,所述惯组输出的角速度的模拟公式为:
公式(8)中,为惯组输出的角速度,ωe为地球自转角速率,A0为运载器的射向,B0为发射点的纬度。
9.一种惯组输出数据的模拟装置,第一获取模块,用于在运载器发射前,根据运载器的射向和发射点的纬度,获取地心矢径及牵连角速度;
第二获取模块,用于利用重力相对坐标系向载体坐标系的滚动角、俯仰角及偏航角,获取坐标转换矩阵,其特征在于,包括:
第一计算模块,用于根据所述牵连角速度和所述地心矢径,计算牵连加速度;
第二计算模块,用于根据所述牵连加速度和所述发射点的纬度,计算重力相对坐标系视加速度;
第一模拟模块,用于根据所述坐标转换矩阵和所述重力相对坐标系视加速度,模拟惯组输出的视加速度;
第二模拟模块,用于根据所述运载器的射向和发射点的纬度,模拟惯组输出的角速度。
10.根据权利要求9所述的装置,其特征在于,所述地心矢径的计算公式为:
μ=B0-tg-1{[1-αE(2-αE)]·tgB0} (2)
公式(1)中,为地心矢径,R0为地球半径,μ为纬度变量,A0为运载器的射向;公式(2)中,B0为发射点的纬度,αE为地球扁率。
11.根据权利要求10所述的装置,其特征在于,所述牵连角速度的计算公式为:
公式(3)中,为牵连角速度,ωe为地球自转角速率,A0为运载器的射向,B0为发射点的纬度。
12.根据权利要求11所述的装置,其特征在于,所述牵连加速度的计算公式为:
公式(4)中,为牵连加速度,为地心矢径,ωex、ωey和ωez为牵连角速度,ωe为地球自转角速率。
13.根据权利要求12所述的装置,其特征在于,所述重力相对坐标系视加速度的计算公式为:
公式(5)中,为重力相对坐标系视加速度,为牵连加速度,B0为发射点的纬度。
14.根据权利要求13所述的装置,其特征在于,所述坐标转换矩阵的计算公式为:
公式(6)中,为重力相对坐标系向载体坐标系的坐标转换矩阵,γ0为滚动角,为俯仰角,ψ0为偏航角。
15.根据权利要求14所述的装置,其特征在于,所述惯组输出的视加速度的模拟公式为:
公式(7)中,为惯组输出的视加速度,为重力相对坐标系视加速度,为重力相对坐标系向载体坐标系的坐标转换矩阵。
16.根据权利要求15所述的装置,其特征在于,所述惯组输出的角速度的模拟公式为:
公式(8)中,为惯组输出的角速度,ωe为地球自转角速率,A0为运载器的射向,B0为发射点的纬度。
CN201710115352.5A 2017-03-01 2017-03-01 惯组输出数据的模拟方法及装置 Active CN106927063B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710115352.5A CN106927063B (zh) 2017-03-01 2017-03-01 惯组输出数据的模拟方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710115352.5A CN106927063B (zh) 2017-03-01 2017-03-01 惯组输出数据的模拟方法及装置

Publications (2)

Publication Number Publication Date
CN106927063A CN106927063A (zh) 2017-07-07
CN106927063B true CN106927063B (zh) 2019-10-18

Family

ID=59423599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710115352.5A Active CN106927063B (zh) 2017-03-01 2017-03-01 惯组输出数据的模拟方法及装置

Country Status (1)

Country Link
CN (1) CN106927063B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112212869B (zh) * 2020-09-03 2022-11-22 北京航天自动控制研究所 一种模拟火箭飞行试验的地面测试设计方法
CN112329131B (zh) * 2020-10-10 2024-04-05 中国运载火箭技术研究院 一种标准测试模型生成方法、生成装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067084A (en) * 1989-05-25 1991-11-19 Honeywell Inc. Inertial measurement unit with aiding from roll isolated gyro
CN102735267A (zh) * 2012-06-20 2012-10-17 北京航天控制仪器研究所 一种惯性测量装置火箭橇试验测量方法
CN103868514A (zh) * 2014-03-20 2014-06-18 北京航天自动控制研究所 一种在轨飞行器自主导航系统
CN105659824B (zh) * 2012-07-13 2014-08-27 北京航天控制仪器研究所 一种基于晃动基座的捷联惯性导航系统初始对准方法
CN106017507A (zh) * 2016-05-13 2016-10-12 北京航空航天大学 一种用于中低精度的光纤惯组快速标定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067084A (en) * 1989-05-25 1991-11-19 Honeywell Inc. Inertial measurement unit with aiding from roll isolated gyro
CN102735267A (zh) * 2012-06-20 2012-10-17 北京航天控制仪器研究所 一种惯性测量装置火箭橇试验测量方法
CN105659824B (zh) * 2012-07-13 2014-08-27 北京航天控制仪器研究所 一种基于晃动基座的捷联惯性导航系统初始对准方法
CN103868514A (zh) * 2014-03-20 2014-06-18 北京航天自动控制研究所 一种在轨飞行器自主导航系统
CN106017507A (zh) * 2016-05-13 2016-10-12 北京航空航天大学 一种用于中低精度的光纤惯组快速标定方法

Also Published As

Publication number Publication date
CN106927063A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
CN103424126B (zh) 一种无人机视觉自主着陆仿真验证系统及方法
CN108845802A (zh) 无人机集群编队交互式仿真验证系统及实现方法
CN104007665A (zh) 一种固液动力飞行器飞行仿真测试系统
CN101354251B (zh) 一种深空探测器等效转移轨道确定方法
CN103112600A (zh) 一种星际转移轨道设计方法
CN106840196A (zh) 一种捷联惯性导航计算机测试系统及实现方法
CN104443432B (zh) 一种卫星有限推力共面圆轨道自主轨道转移制导方法
CN101497374A (zh) 用飞轮等效模拟柔性附件振动对卫星产生干扰力矩的方法
CN106927063B (zh) 惯组输出数据的模拟方法及装置
CN109211230B (zh) 一种基于牛顿迭代法的炮弹姿态和加速度计常值误差估计方法
CN105242679A (zh) 一种四旋翼飞行器的控制系统设计方法
CN107085385A (zh) 一种模拟多飞行器自主飞行的仿真系统及方法
CN108627667A (zh) 基于光度序列同时估计空间失稳目标进动和自旋速率方法
CN105718727A (zh) 一种估计平流层飞艇飞行性能参数的方法和系统
CN109190248B (zh) 一种用于滑翔飞行器的滑翔射程解析方法及解析系统
CN108021138A (zh) 一种地磁场模型简化设计方法
CN102508492B (zh) 一种飞行器在等高航路点间的定高度大圆飞行实现方法
CN102323759A (zh) 翼伞自主归航半实物仿真系统
CN105718660A (zh) 临近空间大范围机动弹道三维包络计算方法
Diston Computational modelling and simulation of aircraft and the environment, volume 1: Platform kinematics and synthetic environment
CN115113639B (zh) 一种无人机飞行控制与模拟训练方法及装置
Yun et al. Aerodynamic model analysis and flight simulation research of UAV based on Simulink
CN105467462A (zh) 低低跟踪重力测量卫星地面演示验证系统
CN106291126B (zh) 基于变采样率的复杂电磁环境时域信号模拟方法
CN106934131A (zh) 一种飞行仿真方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant