CN106925271B - 一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法 - Google Patents

一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法 Download PDF

Info

Publication number
CN106925271B
CN106925271B CN201511030315.1A CN201511030315A CN106925271B CN 106925271 B CN106925271 B CN 106925271B CN 201511030315 A CN201511030315 A CN 201511030315A CN 106925271 B CN106925271 B CN 106925271B
Authority
CN
China
Prior art keywords
nano
carbon material
range
weight
metallic atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511030315.1A
Other languages
English (en)
Other versions
CN106925271A (zh
Inventor
史春风
荣峻峰
于鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN201511030315.1A priority Critical patent/CN106925271B/zh
Publication of CN106925271A publication Critical patent/CN106925271A/zh
Application granted granted Critical
Publication of CN106925271B publication Critical patent/CN106925271B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种含金属原子纳米碳材料及其制备方法和应用,该含金属原子纳米碳材料含有1‑25重量%的O元素、1‑40重量%的金属元素以及35‑98重量%的C元素,由X射线光电子能谱中529.5‑530.8eV范围内的峰确定的O元素的含量与由X射线光电子能谱确定的氧元素的总量的比值为0.01‑0.6;由X射线光电子能谱中531.0‑532.5eV范围内的峰确定的O元素的量与由532.6‑533.5eV范围内的峰确定的O元素的量的比值为0.2‑1。本发明还提供了一种使用所述含金属原子纳米碳材料作为催化剂的烃脱氢反应方法。所述含金属原子纳米碳材料在烃类物质的脱氢反应中显示出良好的催化性能,能明显提高原料转化率和产物选择性。

Description

一种含金属原子纳米碳材料及其制备方法和应用以及一种烃 脱氢反应方法
技术领域
本发明涉及一种含金属原子纳米碳材料,本发明还涉及一种含金属原子纳米碳材料的制备方法以及由该方法制备的含金属原子纳米碳材料,本发明又涉及一种通过将上述含金属原子纳米碳材料进行焙烧而制备的含金属原子纳米碳材料,本发明进一步涉及根据本发明的含金属原子纳米碳材料作为烃脱氢反应的催化剂的应用、以及一种烃脱氢反应方法。
背景技术
烃类物质的脱氢反应是一类重要的反应类型,例如大部分低碳链烯烃是通过低碳链烷烃的脱氢反应而获得的。脱氢反应根据氧气是否参与可以划分为直接脱氢反应(即,氧气不参与)和氧化脱氢反应(即,氧气参与)两类。
多种类型的纳米碳材料已被证明对烃类物质的直接脱氢反应和氧化脱氢反应均具有催化效果,在纳米碳材料中引入氧原子则可以改善其催化活性。
在纳米碳材料中引入氧原子,可以在纳米碳材料表面形成羟基、羰基、羧基、酯基和酸酐等含氧官能团。
可以通过对纳米碳材料进行氧化处理实现在纳米碳材料中引入氧原子,从而增加纳米碳材料中含氧官能团的含量。例如,可以将纳米碳材料在强酸(如HNO3、H2SO4)和/或强氧化性溶液(如H2O2、KMnO4)中进行回流反应,在回流反应的同时还可以辅助进行微波加热或超声振荡,以增强氧化反应的效果。但是,在强酸和/或强氧化性溶液中进行回流反应可能会对纳米碳材料的骨架结构产生不利影响,甚至破坏纳米碳材料的骨架结构。例如:将纳米碳材料在硝酸中进行回流反应,虽然可以在纳米碳材料表面引入大量含氧官能团,但是极易造成纳米碳材料被切断和/或明显增加石墨网络结构中的缺陷位,从而降低纳米碳材料的性能,如热稳定性。另外,通过在强酸和/或强氧化性溶液中进行回流反应,以引入氧原子时,氧原子的引入量对反应操作条件的依赖性高,波动范围较宽。
尽管有关纳米碳材料的掺杂改性及其催化性能的研究取得了诸多进展,但是对于其中的一些基本问题仍未形成共识,依然需要对掺杂改性纳米碳材料及其制备方法和催化性能进行深入研究。
发明内容
本发明的一个目的在于提供一种含金属原子纳米碳材料的制备方法,采用该方法不仅能在纳米碳材料表面引入金属原子,而且能稳定地提高纳米碳材料中氧原子的含量,同时对纳米碳材料本身的结构影响不大。
本发明的另一个目的在于提供一种含金属原子纳米碳材料,该含金属原子纳米碳材料用于烃类物质的脱氢反应时,能获得较高的原料转化率和产物选择性。
本发明的又一目的在于提供一种烃脱氢反应方法,该方法能获得较高的原料转化率和产物选择性。
根据本发明的第一个方面,本发明提供了一种含金属原子纳米碳材料,该含金属原子纳米碳材料含有C元素、O元素和至少一种金属元素,以该含金属原子纳米碳材料的总量为基准并以元素计,O元素的含量为1-25重量%,所述金属元素的总量为1-40重量%,C元素的含量为35-98重量%,该含金属原子纳米碳材料中,由X射线光电子能谱确定的氧元素的总含量为IO t,由X射线光电子能谱中529.5-530.8eV范围内的峰确定的O元素的含量为IO m,IO m/IO t在0.01-0.6的范围内;该含金属原子纳米碳材料中,由X射线光电子能谱中531.0-532.5eV范围内的峰确定的O元素的量为IO c,由X射线光电子能谱中532.6-533.5eV范围内的峰确定的O元素的量为IO e,IO c/IO e在0.2-1的范围内。
根据本发明的第二个方面,本发明提供了一种含金属原子纳米碳材料的制备方法,该方法包括将一种分散有原料纳米碳材料、至少一种过氧化物和至少一种金属化合物的水分散液于密闭容器中进行反应,反应过程中,所述水分散液的温度保持在80-300℃的范围内。
根据本发明的第三个方面,本发明提供了一种由根据本发明第二个方面的方法制备的含金属原子纳米碳材料。
根据本发明的第四个方面,本发明提供了一种含金属原子纳米碳材料,该含金属原子纳米碳材料是将根据本发明第一个方面或者第三个方面的含金属原子纳米碳材料进行焙烧而制得的。
根据本发明的第五个方面,本发明提供了根据本发明第一个方面的含金属原子纳米碳材料、根据本发明第三个方面的含金属原子纳米碳材料、或者根据本发明第四个方面的含金属原子纳米碳材料作为烃脱氢反应的催化剂的应用。
根据本发明的第六个方面,本发明提供了一种烃脱氢反应方法,该方法包括在存在或不存在氧气的条件下,在烃脱氢反应条件下,将烃与根据本发明第一个方面的含金属原子纳米碳材料、根据本发明第三个方面的含金属原子纳米碳材料、或者根据本发明第四个方面的含金属原子纳米碳材料接触。
根据本发明的含金属原子纳米碳材料的制备方法,不仅能稳定地调控和/或提高纳米碳材料中金属原子和杂原子的含量,同时对纳米碳材料本身的结构影响小,制备的含金属原子纳米碳材料具有稳定的性能。
根据本发明的含金属原子纳米碳材料在烃类物质的脱氢反应中显示出良好的催化性能,能明显提高原料转化率和产物选择性。
附图说明
图1为实施例1制备的含金属原子纳米碳材料的透射电子显微镜照片。
图2为实施例1使用的原料纳米碳材料的透射电子显微镜照片。
具体实施方式
本发明中,纳米碳材料是指分散相尺度至少有一维小于100nm的碳材料。
根据本发明的第一个方面,本发明提供了一种含金属原子纳米碳材料,该含金属原子纳米碳材料含有C元素、O元素以及至少一种金属元素。本发明中,“至少一种”表示一种或两种以上。
根据本发明的含金属纳米碳材料,所述金属元素选自对烃脱氢反应具有催化活性的金属元素,优选选自过渡金属元素,如选自元素周期表中第IIIB族金属元素、第IVB族金属元素、第VB族金属元素、第VIB族金属元素、第VIIB族金属元素、第VIII族金属元素、第IB族金属元素和第IIB族金属元素。所述金属元素的具体实例可以包括但不限于钪、钇、稀土金属元素(如镧、铈、镨)、钛、锆、钒、铌、铬、钼、钨、锰、铁、钌、钴、铑、镍、钯、铂、铜、银、金和锌。优选地,所述金属元素选自第VIII族金属元素,此时将该含金属纳米碳材料用作烃脱氢反应的催化剂时,能获得更高的催化活性。更优选地,所述金属元素选自铁、钌、钴、铑、镍、钯和铂,此时将该含金属纳米碳材料用作烃脱氢反应的催化剂时,能获得进一步提高的催化活性。
根据本发明的含金属原子纳米碳材料,以该含金属原子纳米碳材料的总量为基准并以元素计,O元素的含量为1-25重量%,优选为2-20重量%,更优选为4-18重量%,进一步优选为5-15重量%;金属元素的总量为1-40重量%,优选为2-20重量%,更优选为3-18重量%,进一步优选为4-9重量%;C元素的含量为35-98重量%,优选为60-96重量%,更优选为64-93重量%,进一步优选为76-91重量%。其中,各元素的含量采用X射线光电子能谱法测定。样品在测试前在150℃的温度下于氦气气氛中干燥3小时。
本发明中,X射线光电子能谱分析在Thermo Scientific公司的配备有ThermoAvantage V5.926软件的ESCALab250型X射线光电子能谱仪上进行测试,激发源为单色化AlKαX射线,能量为1486.6eV,功率为150W,窄扫描所用通透能为30eV,分析测试时的基础真空为6.5×10-10mbar,电子结合能用单质碳的C1s峰(284.0eV)校正,在Thermo Avantage软件上进行数据处理,在分析模块中采用灵敏度因子法进行定量分析。
根据本发明的含金属原子纳米碳材料,该含金属原子纳米碳材料中,由X射线光电子能谱确定的氧元素的总含量为IO t,由X射线光电子能谱中529.5-530.8eV范围内的峰确定的O元素(即,与金属原子键合的氧原子)的含量为IO m,IO m/IO t在0.01-0.6的范围内,优选在0.02-0.5的范围内,更优选在0.03-0.4的范围内,进一步优选在0.09-0.18的范围内。根据本发明的含金属原子纳米碳材料,由X射线光电子能谱中531.0-533.5eV范围内的峰确定的O元素(即,不与金属原子键合的氧原子)的含量为IO nm,IO nm/IO t在0.4-0.99的范围内,优选在0.5-0.98的范围内,更优选在0.6-0.97的范围内,进一步优选在0.82-0.91的范围内。本发明中,在表示数值范围时,“在×-×的范围内”包括两个边界数值。
本发明中,将X射线光电子能谱中的O1s谱峰的面积记为AO 1,将O1s谱峰分成两组峰,将在529.5-530.8eV范围内的谱峰(对应于与金属原子相连的氧物种)的面积记为AO 2,将在531.0-533.5eV范围内的谱峰(对应于不与金属原子相连的氧物种)的面积记为AO 3,其中,IO m/IO t=AO 2/AO 1,IO nm/IO t=AO 3/AO 1
根据本发明的含金属原子纳米碳材料,由X射线光电子能谱中531.0-532.5eV范围内的峰确定的O元素(即,C=O)的量为IO c,由X射线光电子能谱中532.6-533.5eV范围内的峰确定的O元素(即,C-O)的量为IO e,IO c/IO e在0.2-1的范围内,优选在0.25-0.9的范围内,更优选在0.3-0.75的范围内。本发明中,将X射线光电子能谱中在531.0-533.5eV范围内的谱峰(对应于不与金属原子相连的氧物种)进一步分成两组峰,即在531.0-532.5eV范围内的谱峰(对应于C=O物种)以及在532.6-533.5eV范围内的谱峰(对应于CO物种),将在531.0-532.5eV范围内的谱峰的面积记为AO 4,将在532.6-533.5eV范围内的谱峰的面积记为AO 5,IO c/IO e=AO 4/AO 5
根据本发明的含金属原子纳米碳材料,以该含金属原子纳米碳材料中由X射线光电子能谱确定的C元素的总量为基准,由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素(即,石墨型碳)的含量可以为50-95重量%,优选为55-90重量%,更优选为60-80重量%;由X射线光电子能谱中286.0-288.8eV范围内的峰确定的C元素的总含量可以为5-50重量%,优选为10-45重量%,更优选为20-40重量%。本发明中,由X射线光电子能谱中的C1s谱峰的面积AC 1确定C元素的总量,将X射线光电子能谱中的C1s谱峰分成两组峰,即在284.7-284.9eV范围内的谱峰(对应于石墨型碳物种)以及在286.0-288.8eV范围内的谱峰(对应于非石墨型碳物种),将在284.7-284.9eV范围内的谱峰的面积记为AC 2,将在286.0-288.8eV范围内的谱峰的面积记为AC 3,由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量=AC 2/AC 1,由X射线光电子能谱中286.0-288.8eV范围内的峰确定的C元素的总含量=AC 3/AC 1
根据本发明的含金属原子纳米碳材料,该含金属原子纳米碳材料中,由X射线光电子能谱中288.6-288.8eV范围内的峰确定的C元素的量为IC c,由X射线光电子能谱中286.0-286.2eV范围内的峰确定的C元素的量为IC e,IC c/IC e在0.3-2的范围内,优选在0.4-1.6的范围内,更优选在0.5-1.4的范围内。本发明中,将X射线光电子能谱中在286.0-288.8eV范围内的谱峰(对应于非石墨碳物种)进一步划分为两组峰,即在286.0-286.2eV范围内的谱峰(对应于羟基和醚型碳物种)以及在288.6-288.8eV范围内的谱峰(对应于羧基、酐和酯型碳物种),将在286.0-286.2eV范围内的谱峰的面积记为AC 4,将在288.6-288.8eV范围内的谱峰的面积记为AC 5,IC c/IC e=AC 5/AC 4
本发明中,各峰的位置由该峰的峰顶所对应的结合能确定,由上文所述范围确定的峰是指峰顶所对应的结合能处于该范围内的峰,在该范围内可以包括一个峰,也可以包括两个以上的峰。例如:288.6-288.8eV范围内的峰是指峰顶所对应的结合能处于288.6-288.8eV的范围内的全部峰。
根据本发明的含金属原子纳米碳材料可以以常见的各种形态存在,具体可以为但不限于含金属原子碳纳米管、含金属原子石墨烯、含金属原子薄层石墨、含金属原子纳米碳颗粒、含金属原子纳米碳纤维、含金属原子纳米金刚石和含金属原子富勒烯中的一种或两种以上的组合。所述含金属原子的碳纳米管可以为含金属原子单壁碳纳米管、含金属原子双壁碳纳米管和含金属原子多壁碳纳米管中的一种或两种以上的组合。根据本发明的含金属原子纳米碳材料,优选为含金属原子多壁碳纳米管。
根据本发明的含金属原子纳米碳材料,优选地,所述含金属原子多壁碳纳米管的比表面积为50-500m2/g,这样能进一步提高该含金属原子纳米碳材料的催化性能,特别是作为烃类物质脱氢反应的催化剂的催化性能。更优选地,该含金属原子多壁碳纳米管的比表面积为80-300m2/g。进一步优选地,该含金属原子多壁碳纳米管的比表面积为90-260m2/g。更进一步优选地,该含金属原子多壁碳纳米管的比表面积为120-180m2/g。本发明中,所述比表面积由氮气吸附BET法测定。
根据本发明的含金属原子纳米碳材料,所述含金属原子多壁碳纳米管在400-800℃的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800优选在0.01-0.5的范围内,这样能够获得更好的催化效果,特别是用作烃类物质脱氢反应的催化剂时,能获得更好的催化反应效果。更优选地,w500/w800在0.02-0.3的范围内。进一步优选地,w500/w800在0.1-0.2的范围内。本发明中,w800=W800-W400,w500=W500-W400,W400为在400℃的温度下测定的质量损失率,W800为在800℃的温度下测定的质量损失率,W500为在500℃的温度下测定的质量损失率;所述失重率采用热重分析仪在空气气氛中测定,测试起始温度为25℃,升温速率为10℃/min;样品在测试前在150℃的温度和1标准大气压下于氦气气氛中干燥3小时。
在本发明的一种优选的实施方式中,所述含金属原子纳米碳材料优选为含金属原子多壁碳纳米管,该含金属原子多壁碳纳米管的比表面积为50-500m2/g,优选为80-300m2/g,更优选为90-260m2/g,进一步优选为120-180m2/g;并且,w500/w800在0.01-0.5的范围内,优选在0.02-0.3的范围内,更优选在0.1-0.2的范围内。
根据本发明的含金属原子纳米碳材料,对于除氧原子外的其它非金属杂原子,如氮原子、硫原子和磷原子,其含量可以为常规含量。一般地,根据本发明的含金属原子纳米碳材料中,除氧原子外的其它非金属杂原子(如氮原子、硫原子和磷原子)的总量可以为0.5重量%以下,优选为0.2重量%以下,更优选为0.1重量%以下,进一步优选为0.05重量%以下。根据本发明的含金属原子纳米碳材料,除前述金属元素外,还可以含有其它金属原子,所述其它金属原子例如可以为来源于制备纳米碳材料时使用的催化剂。所述其它金属原子的含量一般为2.5重量%以下,优选为1.5重量%以下,进一步优选为0.5重量%以下,更进一步优选为0.2重量%以下,特别优选为0.1重量%以下。
根据本发明的第二个方面,本发明提供了一种含金属原子纳米碳材料的制备方法,该方法包括将一种分散有原料纳米碳材料、至少一种过氧化物和至少一种金属化合物的水分散液于密闭容器中进行反应。本发明中,“至少一种”表示一种或两种以上。
所述过氧化物是指分子结构中含有-O-O-键的化合物。具体地,所述过氧化物可以选自过氧化氢和式I所示的有机过氧化物,
式I中,R1和R2各自选自H、C4-C12的烷基、C6-C12的芳基、C7-C12的芳烷基以及且R1和R2不同时为H,R3为C4-C12的直链或支链烷基或者C6-C12的芳基。
本发明中,C4-C12的烷基的具体实例包括但不限于正丁基、仲丁基、异丁基、叔丁基、正戊基、新戊基、异戊基、叔戊基、己基(包括己基的各种异构体)、环己基、辛基(包括辛基的各种异构体)、壬基(包括壬基的各种异构体)、癸基(包括癸基的各种异构体)、十一烷基(包括十一烷基的各种异构体)和十二烷基(包括十二烷基的各种异构体)。
本发明中,C6-C12的芳基的具体实例包括但不限于苯基、萘基、甲基苯基和乙基苯基。本发明中,C7-C12的芳烷基的具体实例包括但不限于苯基甲基、苯基乙基、苯基正丙基、苯基正丁基、苯基叔丁基、苯基异丙基、苯基正戊基和苯基正丁基。
所述过氧化物的具体实例可以包括但不限于:过氧化氢、叔丁基过氧化氢、过氧化氢异丙苯、过氧化氢乙苯、环己基过氧化氢、过氧化二异丙苯、过氧化二苯甲酰、过氧化二叔丁基和过氧化十二酰。
根据本发明的方法,所述金属化合物中的金属元素选自可以对烃脱氢反应具有催化活性的金属元素,优选选自过渡金属元素。所述金属化合物中的金属元素具体可以选自但不限于元素周期表中第IIIB族金属元素、第IVB族金属元素、第VB族金属元素、第VIB族金属元素、第VIIB族金属元素、第VIII族金属元素、第IB族金属元素和第IIB族金属元素。所述金属化合物中的金属元素的具体实例可以包括但不限于钪、钇、稀土金属元素(如镧、铈、镨)、钛、锆、钒、铌、铬、钼、钨、锰、铁、钌、钴、铑、镍、钯、铂、铜、银、金和锌。优选地,所述金属化合物中的金属元素选自第VIII族金属元素,由此制备的含金属纳米碳材料在用作烃脱氢反应的催化剂时,能获得更高的催化活性。更优选地,所述金属化合物中的金属元素选自铁、钌、钴、铑、镍、钯和铂,由此制备的含金属纳米碳材料用作烃脱氢反应的催化剂时,能获得进一步提高的催化活性。
所述金属化合物可以选自金属硝酸盐、金属醋酸盐、金属碳酸盐、金属硫酸盐、金属碱式碳酸盐、金属葡萄糖酸盐、金属氢氧化物、金属氯化物以及金属络合物,进一步优选为金属醋酸盐、金属葡萄糖酸盐、金属碳酸盐、金属碱式碳酸盐、金属氢氧化物以及金属络合物(如硝酸氨钯和乙酰丙酮钯)。
所述金属化合物具体可以选自但不限于硝酸镍、醋酸镍、硫酸镍、碱式碳酸镍、氯化镍、氢氧化镍、硝酸钴、醋酸钴、硫酸钴、碱式碳酸钴、氯化钴、氢氧化钴、硝酸铁、醋酸亚铁、葡萄糖酸亚铁、硫酸铁、碱式碳酸铁、氯化铁、氢氧化铁、硝酸锌、醋酸锌、硫酸锌、碱式碳酸锌、氯化锌、氢氧化锌、硝酸铜、醋酸铜、硫酸铜、碱式碳酸铜、氯化铜、氢氧化铜、硝酸镧、碳酸镧、氯化镧、氢氧化镧、硝酸铈、碳酸铈、氯化铈、氢氧化铈、硝酸钌、氯化钌、氢氧化钌、硝酸钯、氯化钯、氢氧化钯、硝酸铂、氯化铂、硝酸铑、硝酸氨钯(如硝酸四氨合钯)、氯化铑和乙酰丙酮钯。
根据本发明的方法,还可以根据过氧化物的种类对金属化合物的种类进行优化,以进一步提高由此制备的含金属原子纳米碳材料在用作烃脱氢反应时的催化活性。在一种优选的实施方式中,所述过氧化物为过氧化氢,所述金属化合物中的金属元素选自铁、钴和镍。在另一种优选的实施方式中,所述过氧化物为式I所示的有机过氧化物,所述金属化合物中的金属元素选自钌、铑、钯和铂。
根据本发明的方法,所述过氧化物和所述金属化合物的用量可以根据预期在原料纳米碳材料中引入的氧元素以及金属元素的含量以及种类进行选择。在最终制备的含金属原子纳米碳材料在用作烃脱氢反应的催化剂时,优选地,原料纳米碳材料:过氧化物:金属化合物的重量比在1:0.01-20:0.01-10的范围内,由此制备的含金属原子纳米碳材料在用作烃脱氢反应的催化剂时能获得进一步提高的催化反应效果。更优选地,原料纳米碳材料:过氧化物:金属化合物的重量比在1:0.02-18:0.02-5的范围内。进一步优选地,原料纳米碳材料:过氧化物:金属化合物的重量比在1:0.02-15:0.02-4的范围内。更进一步优选地,原料纳米碳材料:过氧化物:金属化合物的重量比在1:0.5-2:0.2-3的范围内。
根据本发明的方法,所述过氧化物与所述金属化合物的摩尔比优选在1:0.001-15的范围内,由此制备的含金属原子纳米碳材料在用作烃脱氢反应的催化剂时具有更为优异的催化活性。更优选地,所述过氧化物与所述金属化合物的摩尔比在1:0.002-10的范围内。进一步优选地,所述过氧化物与所述金属化合物的摩尔比在1:0.003-5的范围内。更进一步优选地,所述过氧化物与所述金属化合物的摩尔比在1:0.05-0.15的范围内。
根据本发明的方法,可以根据原料纳米碳材料的量对水的用量进行选择。优选地,原料纳米碳材料:H2O的重量比在1:2-500的范围内,在水的用量处于该范围之内时,纳米碳材料在处理过程中的结构形态保持性更好,例如:对于碳纳米管而言,在处理过程中基本不会被切断。更优选地,原料纳米碳材料:H2O的重量比在1:5-400的范围内。进一步优选地,原料纳米碳材料:H2O的重量比在1:10-350的范围内。更进一步优选地,原料纳米碳材料:H2O的重量比在1:50-100的范围内。
根据本发明的方法,还可以根据过氧化物以及金属化合物的种类对用量进行优化,以进一步提高由此制备的含金属原子纳米碳材料在用作烃脱氢反应的催化剂时的催化活性。
在一种优选的实施方式中,所述过氧化物为过氧化氢,所述金属化合物中的金属元素选自铁、钴和镍,原料纳米碳材料:过氧化物:金属化合物的重量比优选在1:0.01-15:0.05-5的范围内,更优选在1:0.02-8:0.05-4的范围内,进一步优选在1:1-2:0.5-3的范围内。在该优选的实施方式中,过氧化物:金属化合物的摩尔比优选在1:0.05-10的范围内,更优选在1:0.06-1的范围内,进一步优选在1:0.08-0.1的范围内。在该优选的实施方式中,原料纳米碳材料:H2O的重量比优选在1:5-400的范围内,更优选在1:10-300的范围内,进一步优选在1:50-100的范围内。
在另一种优选的实施方式中,所述过氧化物为式I所示的有机过氧化物,所述金属化合物中的金属元素选自钌、铑、钯和铂,原料纳米碳材料:过氧化物:金属化合物的重量比优选在1:0.02-5:0.01-2的范围内,更优选在1:0.2-2.5:0.02-0.5的范围内,进一步优选在1:0.5-1:0.1-0.2的范围内。在该优选的实施方式中,过氧化物:金属化合物的摩尔比优选在1:0.002-0.3的范围内,更优选在1:0.03-0.2的范围内,进一步优选在1:0.005-0.15的范围内。在该优选的实施方式中,原料纳米碳材料:H2O的重量比优选在1:10-300的范围内,更优选在1:20-200的范围内,进一步优选在1:20-50的范围内。
根据本发明的方法,所述反应的条件以足以提高原料纳米碳材料中的氧原子和金属原子的含量为准。优选地,反应过程中,所述水分散液的温度在80-300℃的范围内。在所述水分散液的温度处于上述范围之内时,不仅能有效地提高原料纳米碳材料中的氧原子和金属原子含量,而且不会对原料纳米碳材料的结构形态产生明显影响。更优选地,反应过程中,所述水分散液的温度在80-220℃的范围内。进一步优选地,反应过程中,所述水分散液的温度在110-180℃的范围内。
根据本发明的方法,所述反应的持续时间可以根据反应的温度进行选择,以能够在原料纳米碳材料中引入足量的氧原子和金属原子为准。一般地,所述反应的持续时间可以在0.5-96小时的范围内,优选在2-72小时的范围内,更优选在24-48小时的范围内。
根据本发明的方法,可以采用常用的各种方法来形成所述水分散液,例如可以将原料纳米碳材料分散在水(优选为去离子水)中,然后加入所述过氧化物和所述金属化合物,从而得到所述水分散液。所述过氧化物和所述金属化合物可以以水溶液的形式提供,也可以以纯物质的形式提供,没有特别限定。为了进一步提高原料纳米碳材料在水中的分散效果,同时缩短分散的时间,可以采用超声振荡的方法将原料纳米碳材料分散在水中。所述超声振荡的条件可以为常规选择,一般地,所述超声振荡的频率可以为20-200kHz,优选为10-100kHz;所述超声振荡的持续时间可以为0.1-12小时,优选为0.2-6小时,更优选为0.5-2小时。
根据本发明的方法,所述原料纳米碳材料中O元素的含量没有特别限定,可以为常规选择。一般地,所述原料纳米碳材料中O元素的含量为不高于1重量%,优选为不高于0.8重量%,更优选为不高于0.5重量%,进一步优选为不高于0.3重量%。根据本发明的方法,所述原料纳米碳材料中除氧原子外的其余非金属杂原子(如氮原子、磷原子和硫原子)的总量(以元素计)可以为常规含量。一般地,所述原料纳米碳材料中除氧原子外的其余非金属杂原子的总量为不高于0.5重量%,优选为不高于0.2重量%,更优选为不高于0.1重量%,更进一步优选为不高于0.05重量%。根据本发明的方法,所述原料纳米碳材料根据来源的不同,可能含有一些金属元素,例如来源于制备原料纳米碳材料时使用的催化剂中的金属元素。所述原料纳米碳材料中金属元素的含量(以元素计)一般在2重量%以下,优选1.8重量%以下,更优选为1重量%以下,进一步优选为0.5重量%以下,更进一步优选为0.1重量%以下。
根据本发明的方法,原料纳米碳材料在使用前可以采用本领域常用的方法进行预处理(如洗涤),以除去原料纳米碳材料表面的一些杂质;也可以不进行预处理,直接使用。本发明公开的实施例中,原料纳米碳材料在使用前均未进行预处理。
根据本发明的方法,可以对各种存在形态的纳米碳材料进行处理,从而提高该纳米碳材料中的氧原子和金属元素含量。所述原料纳米碳材料可以为但不限于碳纳米管、石墨烯、纳米金刚石、薄层石墨、纳米碳颗粒、纳米碳纤维和富勒烯中的一种或两种以上的组合。所述碳纳米管可以为单壁碳纳米管、双壁碳纳米管和多壁碳纳米管中的一种或两种以上的组合。优选地,所述原料纳米碳材料为碳纳米管,更优选为多壁碳纳米管。
在一种优选的实施方式中,所述原料纳米碳材料为多壁碳纳米管,所述多壁碳纳米管的比表面积可以为50-500m2/g,优选为80-300m2/g,更优选为100-260m2/g,进一步优选为120-190m2/g。在所述多壁碳纳米材料的比表面积处于上述范围之内时,最终得到的含金属原子纳米碳材料具有更好的催化活性,特别是在用作烃类物质的脱氢反应的催化剂时,显示出更高的催化活性。
在所述原料纳米碳材料为多壁碳纳米管时,所述多壁碳纳米管在400-800℃的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800可以在0.01-0.5的范围内,优选在0.02-0.4的范围内,更优选在0.05-0.35的范围内,进一步优选在0.05-0.15的范围内。
在本发明的一种更为优选的实施方式中,所述原料纳米碳材料为多壁碳纳米管,所述多壁碳纳米管的比表面积为50-500m2/g,优选为80-300m2/g,更优选为100-260m2/g,进一步优选为120-190m2/g;所述多壁碳纳米管在400-800℃的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800在0.01-0.5的范围内,优选在0.02-0.4的范围内,更优选在0.05-0.35的范围内,进一步优选在0.05-0.15的范围内。
根据本发明的方法,所述反应在密闭容器中进行。所述反应可以在自生压力(即,不额外施加压力)下进行,也可以在加压的条件下进行。优选地,所述反应在自生压力下进行。所述密闭容器可以为常见的能实现密封和加热的反应器,如高压反应釜。
根据本发明的方法,还可以包括从反应得到的混合物中分离出固体物质,并将分离出的固体物质进行干燥,从而得到所述含金属原子纳米碳材料。
可以采用常用的固液分离方法从反应得到的混合物中分离出固体物质,如离心、过滤和倾析中的一种或两种以上的组合。
所述干燥的条件可以为常规选择,以能脱除分离出的固体物质中的挥发性物质为准。一般地,所述干燥可以在50-200℃的温度下进行,优选在80-180℃的温度下进行,更优选在120-160℃的温度下进行。所述干燥的持续时间可以根据干燥的温度和方式进行选择。一般地,所述干燥的持续时间可以为0.5-48小时,优选为6-24小时,更优选为10-12小时。所述干燥可以在常压(即,1标准大气压)下进行,也可以在减压的条件下进行。从进一步提高干燥的效率的角度出发,所述干燥优选在减压的条件下进行。
根据本发明的方法,能有效地提高原料纳米碳材料中的氧原子和金属原子含量,同时不会对原料纳米碳材料的结构形态产生明显影响。
根据本发明的第三个方面,本发明提供了一种由根据本发明第二个方面所述的方法制备的含金属原子纳米碳材料。
根据本发明的第四个方面,本发明提供了一种含金属原子纳米碳材料,该含金属原子纳米碳材料是将根据本发明第一个方面的含金属原子纳米碳材料或者根据本发明第三个方面的含金属原子纳米碳材料进行焙烧而制得的。
所述焙烧可以在常规条件下进行。优选地,所述焙烧在250-500℃的温度下进行。更优选地,所述焙烧在300-450℃的温度下进行,如350-450℃的温度下进行。所述焙烧的持续时间可以根据焙烧的温度进行选择。一般地,所述焙烧的持续时间可以为1-24小时,优选为2-12小时,更优选为2-4小时。所述焙烧可以在含氧气氛中进行,也可以在由惰性气体形成的气氛中进行。所述含氧气氛可以为空气气氛;还可以为氧气与惰性气体混合形成的混合气氛,所述混合气氛中,氧气的含量可以为0.1-22体积%。所述惰性气体可以包括但不限于氮气和/或稀有气体,所述稀有气体可以为氩气和/或氦气。从便利性和成本等角度考虑,优选地,所述焙烧在含氧气氛(如空气气氛)中进行。
根据本发明的含金属原子纳米碳材料或者由本发明的方法制备的含金属原子纳米碳材料具有良好的催化性能,特别是在烃类物质脱氢反应中显示出较高的催化活性。
根据本发明的含金属原子纳米碳材料或者由本发明的方法制备的含金属原子纳米碳材料可以直接用作催化剂,也可以以成型催化剂的形式使用。所述成型催化剂可以含有根据本发明的含金属原子纳米碳材料或者由本发明的方法制备的含金属原子纳米碳材料以及粘结剂。所述粘结剂可以根据该成型催化剂的具体使用场合进行选择,以能够满足使用要求为准,例如可以为有机粘结剂和/或无机粘结剂。所述有机粘结剂可以为常见的各种聚合物型粘结剂,所述无机粘结剂可以为常见的各种耐热无机氧化物,如氧化铝和/或氧化硅。在所述成型催化剂为对烃脱氢反应(如直接脱氢反应和氧化脱氢反应)、特别是对氧化脱氢反应具有催化作用的成型催化剂时,所述粘结剂优选为无机粘结剂。所述成型催化剂中,含金属原子纳米碳材料的含量可以根据具体使用要求进行选择,没有特别限定,一般地,以所述成型催化剂的总量为基准,所述含金属原子纳米碳材料的含量可以为5-95重量%。
根据本发明的第五个方面,本发明提供了根据本发明第一个方面的含金属原子纳米碳材料、根据本发明第三个方面的含金属原子纳米碳材料、或者根据本发明第四个方面的含金属原子纳米碳材料作为烃脱氢反应的催化剂的应用。
根据本发明的应用,所述含金属原子纳米碳材料可以直接用于烃脱氢反应,也可以成型后用于烃脱氢反应。所述脱氢反应可以在氧气存在下进行,也可以不在氧气存在下进行。优选地,所述脱氢反应在氧气存在下进行,这样能获得更好的催化效果。
根据本发明的第六个方面,本发明提供了一种烃脱氢反应方法,该方法包括在存在或不存在氧气的条件下,在烃脱氢反应条件下,将烃与根据本发明第一个方面的含金属原子纳米碳材料、根据本发明第三个方面的含金属原子纳米碳材料、或者根据本发明第四个方面的含金属原子纳米碳材料接触。
根据本发明的烃脱氢反应方法,所述含金属原子纳米碳材料可以直接用于与烃接触,也可以将所述含金属原子纳米碳材料成型后用于与烃接触。
根据本发明的烃脱氢反应方法可以对多种类型的烃进行脱氢,从而得到不饱和烃,如烯烃。根据本发明的方法特别适于对烷烃进行脱氢,从而得到不饱和烃,如烯烃。
根据本发明的方法,所述烃优选为烷烃,如C2-C12的烷烃。具体地,所述烃可以为但不限于乙烷、丙烷、正丁烷、异丁烷、正戊烷、异戊烷、新戊烷、环戊烷、正己烷、2-甲基戊烷、3-甲基戊烷、2,3-二甲基丁烷、环己烷、甲基环戊烷、正庚烷、2-甲基己烷、3-甲基己烷、2-乙基戊烷、3-乙基戊烷、2,3-二甲基戊烷、2,4-二甲基戊烷、正辛烷、2-甲基庚烷、3-甲基庚烷、4-甲基庚烷、2,3-二甲基己烷、2,4-二甲基己烷、2,5-二甲基己烷、3-乙基己烷、2,2,3-三甲基戊烷、2,3,3-三甲基戊烷、2,4,4-三甲基戊烷、2-甲基-3-乙基戊烷、正壬烷、2-甲基辛烷、3-甲基辛烷、4-甲基辛烷、2,3-二甲基庚烷、2,4-二甲基庚烷、3-乙基庚烷、4-乙基庚烷、2,3,4-三甲基己烷、2,3,5-三甲基己烷、2,4,5-三甲基己烷、2,2,3-三甲基己烷、2,2,4-三甲基己烷、2,2,5-三甲基己烷、2,3,3-三甲基己烷、2,4,4-三甲基己烷、2-甲基-3-乙基己烷、2-甲基-4-乙基己烷、3-甲基-3-乙基己烷、3-甲基-4-乙基己烷、3,3-二乙基戊烷、1-甲基-2-乙基环己烷、1-甲基-3-乙基环己烷、1-甲基-4-乙基环己烷、正丙基环己烷、异丙基环己烷、三甲基环己烷(包括三甲基环己烷的各种异构体,如1,2,3-三甲基环己烷、1,2,4-三甲基环己烷、1,2,5-三甲基环己烷、1,3,5-三甲基环己烷)、正癸烷、2-甲基壬烷、3-甲基壬烷、4-甲基壬烷、5-甲基壬烷、2,3-二甲基辛烷、2,4-二甲基辛烷、3-乙基辛烷、4-乙基辛烷、2,3,4-三甲基庚烷、2,3,5-三甲基庚烷、2,3,6-三甲基庚烷、2,4,5-三甲基庚烷、2,4,6-三甲基庚烷、2,2,3-三甲基庚烷、2,2,4-三甲基庚烷、2,2,5-三甲基庚烷、2,2,6-三甲基庚烷、2,3,3-三甲基庚烷、2,4,4-三甲基庚烷、2-甲基-3-乙基庚烷、2-甲基-4-乙基庚烷、2-甲基-5-乙基庚烷、3-甲基-3-乙基庚烷、4-甲基-3-乙基庚烷、5-甲基-3-乙基庚烷、4-甲基-4-乙基庚烷、4-丙基庚烷、3,3-二乙基己烷、3,4-二乙基己烷、2-甲基-3,3-二乙基戊烷、苯乙烷、1-苯基丙烷、2-苯基丙烷、1-苯基丁烷、2-苯基丁烷、1-苯基戊烷、2-苯基戊烷和3-苯基戊烷中的一种或两种以上的组合。更优选地,所述烃为丙烷、正丁烷、异丁烷和苯乙烷中的一种或两种以上。进一步优选地,所述烃为正丁烷。
根据本发明的烃脱氢反应方法,所述反应可以在存在氧气的条件下进行,也可以在不存在氧气的条件下。优选地,根据本发明的烃脱氢反应方法,在存在氧气的条件下进行。在本发明的方法在存在氧气的条件下进行时,氧气的用量可以为常规选择。一般地,烃与氧气的摩尔比可以为0.01-100:1,优选为0.1-10:1,更优选为0.2-5:1,最优选为0.3-2:1,如0.4-0.8:1。
根据本发明的烃脱氢反应方法,可以通过载气将烃和可选的氧气送入反应器中与含金属原子纳米碳材料接触反应。所述载气可以为常用的在反应条件下不会与反应物和反应生成物发生化学相互作用并且不会发生分解的气体,如氮气、二氧化碳、稀有气体和水蒸气中的一种或两种以上的组合。所述载气的用量可以为常规选择。一般地,载气的含量可以为30-99.5体积%,优选为50-99体积%,更优选为70-98体积%。
根据本发明的烃脱氢反应方法,所述接触的温度可以为常规选择,以足以使烃发生脱氢反应为准。一般地,所述接触可以在200-650℃的温度下进行,优选在300-600℃的温度下进行,更优选在350-550℃的温度下进行,如烃为丁烷时,进一步优选在400-450℃的温度下进行。
根据本发明的烃脱氢反应方法,所述接触可以在固定床反应器中进行,也可以在流化床反应器中进行,没有特别限定。优选地,所述接触在固定床反应器中进行。
根据本发明的烃脱氢反应方法,所述接触的持续时间可以根据接触的温度进行选择,如所述接触在固定床反应器中进行时,可以用进料的气体的体积空速来表示接触的持续时间。一般地,进料的气体的体积空速可以为0.1-10000h-1,优选为1-6000h-1,更优选为5-5000h-1,进一步优选为10-4000h-1,如100-300h-1
以下结合实施例详细说明本发明,但并不因此限制本发明的范围。
以下实施例和对比例中,X射线光电子能谱分析在Thermo Scientific公司的配备有Thermo Avantage V5.926软件的ESCALab250型X射线光电子能谱仪上进行测试,激发源为单色化Al KαX射线,能量为1486.6eV,功率为150W,窄扫描所用通透能为30eV,分析测试时的基础真空为6.5×10-10mbar,电子结合能用单质碳的C1s峰(284.0eV)校正,在ThermoAvantage软件上进行数据处理,在分析模块中采用灵敏度因子法进行定量分析。样品在测试前在150℃的温度和1标准大气压下于氦气气氛中干燥3小时。
以下实施例和对比例中,热重分析在TA5000热分析仪上进行,测试条件为空气气氛,升温速度为10℃/min,温度范围为室温(25℃)至1000℃。样品在测试前在150℃的温度和1标准大气压下于氦气气氛中干燥3小时。采用美国Micromertrics公司的ASAP2000型N2物理吸附仪测定比表面积。采用美国FEI公司生产的高分辨透射电镜分析原料纳米碳材料以及含金属原子纳米碳材料的微观形貌。
实施例1-27用于说明本发明的含金属原子纳米碳材料及其制备方法。
实施例1
(1)将20g作为原料纳米碳材料的多壁碳纳米管(比表面积为136m2/g,氧原子含量为0.3重量%,除氧原子外的其余非金属杂原子(氮原子、磷原子和硫原子)的总含量为0.03重量%,金属原子总含量为0.1重量%,在400-800℃温度区间内的失重率为w800,在400-500℃温度区间内的失重率为w500,w500/w800为0.12,购自中国科学院成都有机化学有限公司)分散在去离子水中,其中,分散在超声振荡条件下进行,超声振荡条件包括:频率为14kHz,时间为0.5小时,然后加入过氧化氢和作为金属化合物的醋酸钴,混合均匀,从而得到水分散液,其中,过氧化氢以30重量%水溶液的形式提供,按原料纳米碳材料:过氧化氢:金属化合物:H2O的重量比为1:1:0.5:100的比例投料。
(2)将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于110℃的温度下,在自生压力下反应36小时。反应结束后,待高压反应釜内的温度降至室温后,打开反应釜,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压(1标准大气压,下同)、120℃的温度下干燥12小时后,得到含金属原子纳米碳材料,该含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
图1为制备的含金属原子纳米碳材料的透射电子显微镜照片,图2为作为原料的多壁碳纳米管的透射电子显微镜照片。从图1和图2可以看出,含金属原子纳米碳材料的微观形态良好,表明反应过程对纳米碳材料的结构影响不大。
对比例1
将与实施例1相同的水分散液置于配备冷凝管的三口烧瓶中,将该三口烧瓶置于110℃的油浴中,于常压下回流反应36小时。反应结束后,待三口烧瓶内的温度降至室温后,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压、120℃的温度下干燥12小时后,得到含金属原子纳米碳材料。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
对比例2
采用与实施例1相同的方法制备纳米碳材料,不同的是,步骤(1)中,用于配制水分散液的水溶液不含金属化合物,也就是,将作为原料纳米碳材料的多壁碳纳米管分散在去离子水中,然后加入过氧化氢,混合均匀,从而得到水分散液,其中,按原料纳米碳材料:过氧化氢:金属化合物:H2O的重量比为1:1:0:100的比例投料。制备的纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
对比例3
采用与实施例1相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,用于配制水分散液的水溶液不含过氧化氢,也就是,将作为原料纳米碳材料的多壁碳纳米管分散在去离子水中,然后加入金属化合物,混合均匀,从而得到水分散液,其中,按原料纳米碳材料:过氧化氢:金属化合物:H2O的重量比为1:0:0.5:100的比例投料。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
对比例4
将采用与对比例2相同的方法制备的纳米碳材料分散水中,其中,分散在超声振荡条件下进行,超声振荡条件包括:频率为110kHz,时间为2小时,然后加入作为金属化合物的醋酸钴,混合均匀,从而得到水分散液,其中,按原料纳米碳材料(为制备与对比例2相同的纳米碳材料时使用的原料纳米碳材料的量):金属化合物:H2O的重量比为1:0.5:100的比例投料。将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于110℃的温度下,在自生压力下反应36小时。反应结束后,待高压反应釜内的温度降至室温后,打开反应釜,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压、120℃的温度下干燥12小时后,得到含金属原子纳米碳材料,该含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
对比例5
采用实施例1相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,过氧化氢用等摩尔量的KMnO4代替。得到的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
对比例6
采用实施例1相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,不使用过氧化氢,步骤(2)中,向高压反应釜中通入与实施例1中过氧化氢等摩尔量的臭氧后关闭高压反应釜进行反应。得到的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
对比例7
采用实施例1相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,过氧化氢用等摩尔量的H2SO4代替。得到的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
实施例2
采用与实施例1相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,作为原料纳米碳材料的多壁碳纳米管(购自山东大展纳米材料有限公司)的比表面积为251m2/g,在400-800℃的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800为0.33,氧原子含量为0.62重量%,除氧原子外的其余非金属杂原子(氮原子、磷原子和硫原子)的总含量为0.02重量%,金属原子总含量为0.08重量%。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
实施例3
采用与实施例1相同的方法制备含金属原子纳米碳材料,不同的是,步骤(2)中,将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于90℃的温度下,在自生压力下反应36小时。制备的含金属原子纳米碳材料的组成、比表面积及w500/w800在表1中列出。
实施例4
采用与实施例1相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,按原料纳米碳材料:过氧化氢:金属化合物:H2O的重量比为1:0.1:0.05:300的比例投料。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
实施例5
将20g作为原料纳米碳材料的多壁碳纳米管(比表面积为183m2/g,氧原子含量为0.2重量%,除氧原子外的其余非金属杂原子(氮原子、磷原子和硫原子)的总含量为0.05重量%,金属原子含量为0.03重量%,在400-800℃的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800为0.07,购自中国科学院成都有机化学有限公司)分散在去离子水中,其中,分散在超声振荡条件下进行,超声振荡条件包括:频率为90kHz,时间为2小时,然后加入过氧化氢和作为金属化合物的醋酸镍,混合均匀,从而得到水分散液,其中,过氧化氢和金属化合物分别以30重量%水溶液的形式提供,按原料纳米碳材料:过氧化氢:金属化合物:H2O的重量比为1:2:1:50的比例投料。
(2)将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于180℃的温度下,在自生压力下反应24小时。反应结束后,待高压反应釜内的温度降至室温后,打开反应釜,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压、160℃的温度下干燥10小时后,得到含金属原子纳米碳材料,该含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
对比例8
采用与实施例5相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,用于配制水分散液的水溶液不含过氧化氢,也就是,将作为原料纳米碳材料的多壁碳纳米管分散在去离子水,然后加入金属化合物混合均匀,从而得到水分散液,得到的水分散液中,原料纳米碳材料:过氧化氢:金属化合物:H2O的重量比为1:0:1:50。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
实施例6
采用与实施例5相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,作为原料纳米碳材料的多壁碳纳米管(购自山东大展纳米材料有限公司)的比表面积为103m2/g,w500/w800为0.23,氧原子含量为1.1重量%,除氧原子外的其余非金属杂原子(氮原子、磷原子和硫原子)的总含量为0.04重量%,金属原子总含量为1.6重量%。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
实施例7
采用与实施例5相同的方法制备含金属原子纳米碳材料,不同的是,步骤(2)中,将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于220℃的温度下,在自生压力下反应24小时。制备的含金属原子纳米碳材料的组成、比表面积及w500/w800在表1中列出。
实施例8
采用与实施例5相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,按原料纳米碳材料:过氧化氢:金属化合物:H2O的重量比为1:0.02:1:250的比例投料。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
实施例9
采用与实施例5相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,金属化合物用等摩尔量的醋酸亚铁代替。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
实施例10
采用与实施例5相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,金属化合物用等摩尔量的碱式碳酸钴代替。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
实施例11
采用与实施例5相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,金属化合物用等摩尔量的葡萄糖酸亚铁代替。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
实施例12
采用与实施例5相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,过氧化氢用等摩尔量的叔丁基过氧化氢代替。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
实施例13
采用与实施例5相同的方法制备含金属原子纳米碳材料,不同的是,过氧化氢用等摩尔量的过氧化二苯甲酰代替。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表1中列出。
实施例14
采用与实施例1相同的方法制备含金属原子纳米碳材料,不同之处如下:
步骤(1)中,向分散有原料纳米碳材料的去离子水中加入作为过氧化物的叔丁基过氧化氢和作为金属化合物的乙酰丙酮钯,混合均匀,从而得到水分散液,其中,乙酰丙酮钯以30重量%水溶液的形式提供,叔丁基过氧化氢以30重量%水分散液的形式提供,按原料纳米碳材料:过氧化物:金属化合物:H2O的重量比为1:0.5:0.1:25的比例投料;
步骤(2)中,将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于120℃的温度下,在自生压力下反应48小时。
制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表2中列出。
对比例9
将与实施例14相同的水分散液置于配备冷凝管的三口烧瓶中,将该三口烧瓶置于温度为120℃的油浴中,于常压下回流反应48小时。反应结束后,待三口烧瓶内的温度降至室温后,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压、120℃的温度下干燥12小时后,得到含金属原子纳米碳材料。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表2中列出。
对比例10
采用与实施例14相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中使用的水溶液不含过氧化物,也就是,将作为原料纳米碳材料的多壁碳纳米管分散在去离子水中,然后加入金属化合物混合均匀,从而得到水分散液,其中,按原料纳米碳材料:过氧化物:金属化合物:H2O的重量比为1:0:0.1:25的比例投料。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表2中列出。
对比例11
采用与实施例14相同的方法制备纳米碳材料,不同的是,步骤(1)中使用的水溶液不含金属化合物,也就是,将作为原料纳米碳材料的多壁碳纳米管分散在去离子水中,然后加入作为过氧化物的叔丁基过氧化氢混合均匀,从而得到水分散液,其中,按原料纳米碳材料:过氧化物:金属化合物:H2O的重量比为1:0.5:0:25的比例投料。
制备的纳米碳材料的组成、比表面积以及w500/w800在表2中列出。
实施例15
采用与实施例14相同的方法制备含金属原子纳米碳材料,不同的是,步骤(2)中,将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于80℃的温度下,在自生压力下反应48小时。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表2中列出。
实施例16
采用与实施例14相同的方法制备含金属原子纳米碳材料,不同的是,作为原料纳米碳材料的多壁碳纳米管与实施例2相同。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表2中列出。
实施例17
采用与实施例14相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,按原料纳米碳材料:过氧化物:金属化合物:H2O的重量比为1:2:0.02:200的比例投料。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表2中列出。
实施例18
采用与实施例5相同的方法制备含金属原子纳米碳材料,不同之处如下:
步骤(1)中,向分散有原料纳米碳材料的去离子水中加入作为过氧化物的过氧化氢异丙苯和作为金属化合物的醋酸钯,从而得到水分散液,其中,醋酸钯以20重量%水溶液的形式提供,过氧化氢异丙苯以30重量%水分散液的形式提供,按原料纳米碳材料:过氧化物:金属化合物:H2O的重量比为1:1:0.2:50的比例投料;
步骤(2)中,将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于160℃的温度下,在自生压力下反应24小时。
制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表2中列出。
实施例19
采用与实施例18相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,作为原料纳米碳材料的多壁碳纳米管与实施例6相同。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表2中列出。
实施例20
采用与实施例18相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,按原料纳米碳材料:过氧化物:金属化合物:H2O的重量比为1:0.2:0.02:200的比例投料。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表2中列出。
实施例21
采用与实施例18相同的方法制备含金属原子纳米碳材料,不同的是,步骤(2)中,将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于210℃的温度下,在自生压力下反应24小时。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表2中列出。
实施例22
采用与实施例18相同的方法制备含金属原子纳米碳材料,不同的是,步骤(1)中,过氧化氢异丙苯用等摩尔量的过氧化氢代替。制备的含金属原子纳米碳材料的组成、比表面积以及w500/w800在表2中列出。
实施例23
将实施例1制备的含金属原子纳米碳材料在350℃的温度下空气气氛中焙烧4小时。
对比例12
将对比例1制备的含金属原子纳米碳材料在350℃的温度下空气气氛中焙烧4小时。
对比例13
将对比例2制备的含金属原子纳米碳材料在350℃的温度下空气气氛中焙烧4小时。
对比例14
将对比例3制备的含金属原子纳米碳材料在350℃的温度下空气气氛中焙烧4小时。
对比例15
将对比例4制备的含金属原子纳米碳材料在350℃的温度下空气气氛中焙烧4小时。
对比例16
将对比例5制备的含金属原子纳米碳材料在350℃的温度下空气气氛中焙烧4小时。
对比例17
将对比例6制备的含金属原子纳米碳材料在350℃的温度下空气气氛中焙烧4小时。
对比例18
将对比例7制备的含金属原子纳米碳材料在350℃的温度下空气气氛中焙烧4小时。
实施例24
将实施例2制备的含金属原子纳米碳材料在350℃的温度下空气气氛中焙烧4小时。
实施例25
将实施例3制备的含金属原子纳米碳材料在350℃的温度下空气气氛中焙烧4小时。
实施例26
将实施例4制备的含金属原子纳米碳材料在350℃的温度下空气气氛中焙烧4小时。
实施例27
将实施例18制备的含金属原子纳米碳材料在450℃的温度下空气气氛中焙烧2小时。
实施例28-54用于说明本发明的含金属原子纳米碳材料的应用和烃脱氢反应方法。
实施例28-49
分别将0.2g(装填体积为1.9mL)实施例1-22制备的含金属原子纳米碳材料作为催化剂装填在通用型固定床微型石英管反应器中,微型石英管反应器两端封有石英砂,在0.1MPa和450℃条件下,将含有烃和氧气的气体(正丁烷的浓度为1.98体积%,正丁烷和氧气摩尔比2:3,余量为作为载气的氮气)以总体积空速为200h-1通入反应器中进行反应,连续监测从反应器中输出的反应混合物的组成,并计算正丁烷转化率、总烯烃选择性和1-丁烯选择性,反应3小时和24小时的结果列于表3中。
对比例19-29
采用与实施例28-49相同的方法进行反应,不同的是,分别使用对比例1-11制备的含金属原子纳米碳材料作为催化剂。反应结果在表3中列出。
对比例30
采用与实施例28-49相同的方法进行反应,不同的是,使用与实施例1相同的原料纳米碳材料作为催化剂。反应结果在表3中列出。
对比例31
采用与实施例28-49相同的方法进行反应,不同的是,使用与实施例3相同的原料纳米碳材料作为催化剂。反应结果在表3中列出。
实施例50-54
采用与实施例28-49相同的方法进行反应,不同的是,使用实施例30-35制备的含金属原子碳纳米管作为催化剂。反应结果在表4中列出。
对比例32-38
采用与实施例28-49相同的方法进行反应,不同的是,使用对比例12-18制备的含金属原子碳纳米管作为催化剂。反应结果在表4中列出。
对比例39
采用与实施例28-49相同的方法进行反应,不同的是,催化剂为将与实施例1相同的原料纳米碳材料在350℃空气气氛中焙烧4小时而得到的。反应结果在表4中列出。
对比例40
采用与实施例28-49相同的方法进行反应,不同的是,催化剂为将与实施例5相同的原料纳米碳材料在300℃空气气氛中焙烧12小时而得到的。反应结果在表4中列出。
表3
表4
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (81)

1.一种含金属原子纳米碳材料,该含金属原子纳米碳材料含有C元素、O元素和至少一种金属元素,以该含金属原子纳米碳材料的总量为基准并以元素计,O元素的含量为1-25重量%,所述金属元素的总量为1-40重量%,C元素的含量为35-98重量%,
该含金属原子纳米碳材料中,由X射线光电子能谱确定的氧元素的总含量为IO t,由X射线光电子能谱中529.5-530.8eV范围内的峰确定的O元素的含量为IO m,IO m/IO t在0.01-0.6的范围内;
该含金属原子纳米碳材料中,由X射线光电子能谱中531.0-532.5eV范围内的峰确定的O元素的量为IO c,由X射线光电子能谱中532.6-533.5eV范围内的峰确定的O元素的量为IO e,IO c/IO e在0.2-1的范围内;
该含金属纳米碳材料采用包括以下步骤的方法制备:将一种分散有原料纳米碳材料、至少一种过氧化物和至少一种金属化合物的水分散液于密闭容器中进行反应,反应过程中,所述水分散液的温度保持在80-300℃的范围内,所述过氧化物选自过氧化氢和式I所示的有机过氧化物,
式I中,R1和R2各自选自H、C4-C12的烷基、C6-C12的芳基、C7-C12的芳烷基以及且R1和R2不同时为H,R3为C4-C12的直链或支链烷基或者C6-C12的芳基。
2.根据权利要求1所述的含金属原子纳米碳材料,其中,IO m/IO t在0.02-0.5的范围内;IO c/IO e在0.25-0.9的范围内。
3.根据权利要求2所述的含金属原子纳米碳材料,其中,IO m/IO t在0.03-0.4的范围内;IO c/IO e在0.3-0.75的范围内。
4.根据权利要求3所述的含金属原子纳米碳材料,其中,IO m/IO t在0.09-0.18的范围内。
5.根据权利要求1-4中任意一项所述的含金属原子纳米碳材料,其中,该含金属原子纳米碳材料中,由X射线光电子能谱中288.6-288.8eV范围内的峰确定的C元素的量为IC c,由X射线光电子能谱中286.0-286.2eV范围内的峰确定的C元素的量为IC e,IC c/IC e在0.2-1的范围内。
6.根据权利要求5所述的含金属原子纳米碳材料,其中,IC c/IC e在0.25-0.9的范围内。
7.根据权利要求6所述的含金属原子纳米碳材料,其中,IC c/IC e在0.3-0.75的范围内。
8.根据权利要求1-4中任意一项所述的含金属原子纳米碳材料,其中,以该含金属原子纳米碳材料中由X射线光电子能谱确定的C元素的总量为基准,由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量为50-95重量%,由X射线光电子能谱中286.0-288.8eV范围内的峰确定的C元素的含量为5-50重量%。
9.根据权利要求8所述的含金属原子纳米碳材料,其中,以该含金属原子纳米碳材料中由X射线光电子能谱确定的C元素的总量为基准,由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量为55-90重量%,由X射线光电子能谱中286.0-288.8eV范围内的峰确定的C元素的含量为10-45重量%。
10.根据权利要求9所述的含金属原子纳米碳材料,其中,以该含金属原子纳米碳材料中由X射线光电子能谱确定的C元素的总量为基准,由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量为60-80重量%,由X射线光电子能谱中286.0-288.8eV范围内的峰确定的C元素的含量为20-40重量%。
11.根据权利要求1-4中任意一项所述的含金属原子纳米碳材料,其中,以该含金属原子纳米碳材料的总量为基准并以元素计,O元素的含量为2-20重量%,C元素的含量为60-96重量%,所述金属元素的总量为2-20重量%。
12.根据权利要求11所述的含金属原子纳米碳材料,其中,以该含金属原子纳米碳材料的总量为基准并以元素计,O元素的含量为4-18重量%,C元素的含量为64-93重量%,所述金属元素的总量为3-18重量%。
13.根据权利要求12所述的含金属原子纳米碳材料,其中,以该含金属原子纳米碳材料的总量为基准并以元素计,O元素的含量为5-15重量%,C元素的含量为76-91重量%,所述金属元素的总量为4-9重量%。
14.根据权利要求1-4中任意一项所述的含金属原子纳米碳材料,其中,所述金属元素选自过渡金属元素。
15.根据权利要求14所述的含金属原子纳米碳材料,其中,所述金属元素选自第VIII族金属元素。
16.根据权利要求15所述的含金属元素纳米碳材料,其中,所述金属元素选自铁、钌、钴、铑、镍、钯和铂。
17.根据权利要求1-4中任意一项所述的含金属原子纳米碳材料,其中,该含金属原子纳米碳材料为含金属原子碳纳米管。
18.根据权利要求17所述的含金属元素纳米碳材料,其中,该含金属原子纳米碳材料为含金属原子多壁碳纳米管。
19.根据权利要求18所述的含金属原子纳米碳材料,其中,所述含金属原子多壁碳纳米管的比表面积为50-500m2/g。
20.根据权利要求19所述的含金属元素纳米碳材料,其中,所述含金属原子多壁碳纳米管的比表面积为80-300m2/g。
21.根据权利要求20所述的含金属元素纳米碳材料,其中,含金属原子多壁碳纳米管的比表面积为90-260m2/g。
22.根据权利要求21所述的含金属元素纳米碳材料,其中,含金属原子多壁碳纳米管的比表面积为120-180m2/g。
23.根据权利要求18所述的含金属原子纳米碳材料,其中,所述含金属原子多壁碳纳米管在400-800℃的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800在0.01-0.5的范围内,所述失重率在空气气氛中测定。
24.根据权利要求23所述的含金属原子纳米碳材料,其中,w500/w800在0.02-0.3的范围内。
25.根据权利要求24所述的含金属原子纳米碳材料,其中,w500/w800在0.1-0.2的范围内。
26.一种含金属原子纳米碳材料的制备方法,该方法包括将一种分散有原料纳米碳材料、至少一种过氧化物和至少一种金属化合物的水分散液于密闭容器中进行反应,反应过程中,所述水分散液的温度保持在80-300℃的范围内,所述反应的持续时间在0.5-96小时的范围内,原料纳米碳材料:过氧化物:金属化合物的重量比在1:0.01-20:0.01-10的范围内,原料纳米碳材料:H2O的重量比在1:2-500的范围内,过氧化物:金属化合物的摩尔比在1:0.001-15的范围内,所述过氧化物选自过氧化氢和式I所示的有机过氧化物,
式I中,R1和R2各自选自H、C4-C12的烷基、C6-C12的芳基、C7-C12的芳烷基以及且R1和R2不同时为H,R3为C4-C12的直链或支链烷基或者C6-C12的芳基。
27.根据权利要求26所述的方法,其中,原料纳米碳材料:过氧化物:金属化合物的重量比在1:0.02-18:0.02-5的范围内;
原料纳米碳材料:H2O的重量比在1:5-400的范围内。
28.根据权利要求27所述的方法,其中,原料纳米碳材料:过氧化物:金属化合物的重量比在1:0.02-15:0.02-4的范围内。
29.根据权利要求28所述的方法,其中,原料纳米碳材料:过氧化物:金属化合物的重量比在1:0.5-2:0.2-3的范围内。
30.根据权利要求27所述的方法,其中,原料纳米碳材料:H2O的重量比在1:10-350的范围内。
31.根据权利要求30所述的方法,其中,原料纳米碳材料:H2O的重量比在1:50-100的范围内。
32.根据权利要求26-31中任意一项所述的方法,其中,过氧化物:金属化合物的摩尔比在1:0.002-10的范围内。
33.根据权利要求32所述的方法,其中,过氧化物:金属化合物的摩尔比在1:0.003-5的范围内。
34.根据权利要求33所述的方法,其中,过氧化物:金属化合物的摩尔比在1:0.05-0.15的范围内。
35.根据权利要求26-31中任意一项所述的方法,其中,所述金属化合物中的金属元素选自过渡金属元素。
36.根据权利要求35所述的方法,其中,所述金属化合物中的金属元素选自第VIII族金属元素。
37.根据权利要求36所述的方法,其中,所述金属化合物中的金属元素选自铁、钌、钴、铑、镍、钯和铂。
38.根据权利要求35所述的方法,其中,所述金属化合物选自金属醋酸盐、金属葡萄糖酸盐、金属碳酸盐、金属碱式碳酸盐、金属氢氧化物以及金属络合物。
39.根据权利要求35所述的方法,其中,所述过氧化物为过氧化氢,所述金属化合物中的金属元素选自铁、钴和镍,原料纳米碳材料:过氧化物:金属化合物的重量比在1:0.01-15:0.05-5的范围内,过氧化物:金属化合物的摩尔比在1:0.05-10的范围内,原料纳米碳材料:H2O的重量比在1:5-400的范围内;或者
所述过氧化物为式I所示的有机过氧化物,所述金属化合物中的金属元素选自钌、铑、钯和铂,原料纳米碳材料:过氧化物:金属化合物的重量比在1:0.02-5:0.01-2的范围内,过氧化物:金属化合物的摩尔比在1:0.002-0.3的范围内,原料纳米碳材料:H2O的重量比在1:10-300的范围内。
40.根据权利要求39所述的方法,其中,所述过氧化物为过氧化氢,所述金属化合物中的金属元素选自铁、钴和镍,原料纳米碳材料:过氧化物:金属化合物的重量比在1:0.02-8:0.05-4的范围内,过氧化物:金属化合物的摩尔比在1:0.06-1的范围内,原料纳米碳材料:H2O的重量比在1:10-300的范围内。
41.根据权利要求40所述的方法,其中,所述过氧化物为过氧化氢,所述金属化合物中的金属元素选自铁、钴和镍,原料纳米碳材料:过氧化物:金属化合物的重量比在1:1-2:0.5-3的范围内,过氧化物:金属化合物的摩尔比在1:0.08-0.1的范围内,原料纳米碳材料:H2O的重量比在1:50-100的范围内。
42.根据权利要求39所述的方法,其中,所述过氧化物为式I所示的有机过氧化物,所述金属化合物中的金属元素选自钌、铑、钯和铂,原料纳米碳材料:过氧化物:金属化合物的重量比在1:0.2-2.5:0.02-0.5的范围内,过氧化物:金属化合物的摩尔比在1:0.03-0.2的范围内,原料纳米碳材料:H2O的重量比在1:20-200的范围内。
43.根据权利要求42所述的方法,其中,所述过氧化物为式I所示的有机过氧化物,所述金属化合物中的金属元素选自钌、铑、钯和铂,原料纳米碳材料:过氧化物:金属化合物的重量比在1:0.5-1:0.1-0.2的范围内,过氧化物:金属化合物的摩尔比在1:0.005-0.15的范围内,原料纳米碳材料:H2O的重量比在1:20-50的范围内。
44.根据权利要求26-31中任意一项所述的方法,其中,反应过程中,所述水分散液的温度保持在80-220℃的范围内。
45.根据权利要求44所述的方法,其中,反应过程中,所述水分散液的温度保持在110-180℃的范围内。
46.根据权利要求26所述的方法,其中,所述反应的持续时间在2-72小时的范围内。
47.根据权利要求46所述的方法,其中,所述反应的持续时间在24-48小时的范围内。
48.根据权利要求26-31中任意一项所述的方法,其中,所述原料纳米碳材料中,O元素的含量为不高于1重量%,金属元素的总量在2重量%以下。
49.根据权利要求48所述的方法,其中,所述原料纳米碳材料中,O元素的含量为不高于0.8重量%。
50.根据权利要求49所述的方法,其中,所述原料纳米碳材料中,O元素的含量为不高于0.5重量%。
51.根据权利要求50所述的方法,其中,所述原料纳米碳材料中,O元素的含量为不高于0.3重量%。
52.根据权利要求48所述的方法,其中,所述金属元素的总量在1.8重量%以下。
53.根据权利要求52所述的方法,其中,所述金属元素的总量在1重量%以下。
54.根据权利要求53所述的方法,其中,所述金属元素的总量在0.5重量%以下。
55.根据权利要求54所述的方法,其中,所述金属元素的总量在0.1重量%以下。
56.根据权利要求26-31中任意一项所述的方法,其中,所述原料纳米碳材料为碳纳米管。
57.根据权利要求56所述的方法,其中,所述原料纳米碳材料为多壁碳纳米管。
58.根据权利要求57所述的方法,其中,所述多壁碳纳米管的比表面积为50-500m2/g。
59.根据权利要求58所述的方法,其中,所述多壁碳纳米管的比表面积为80-300m2/g。
60.根据权利要求59所述的方法,其中,所述多壁碳纳米管的比表面积为100-260m2/g。
61.根据权利要求60所述的方法,其中,所述多壁碳纳米管的比表面积为120-190m2/g。
62.根据权利要求57所述的方法,其中,所述多壁碳纳米管在400-800℃的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800在0.01-0.5的范围内,所述失重率在空气气氛中测定。
63.根据权利要求62所述的方法,其中,w500/w800在0.02-0.4的范围内。
64.根据权利要求26-31中任意一项所述的方法,其中,该方法还包括从反应得到的混合物中分离出固体物质,并将分离出的固体物质进行干燥。
65.根据权利要求64所述的方法,其中,所述干燥在50-200℃的温度下进行,所述干燥的持续时间为0.5-48小时。
66.根据权利要求65所述的方法,其中,所述干燥在80-180℃的温度下进行,所述干燥的持续时间为6-24小时。
67.根据权利要求66所述的方法,其中,所述干燥在120-160℃的温度下进行,所述干燥的持续时间为10-12小时。
68.一种由权利要求26-67中任意一项所述的方法制备的含金属原子纳米碳材料。
69.一种含金属原子纳米碳材料,该含金属原子纳米碳材料是将权利要求1-25中任意一项所述的含金属原子纳米碳材料或者权利要求68所述的含金属原子纳米碳材料进行焙烧而制得的。
70.根据权利要求69所述的含金属原子纳米碳材料,其中,所述焙烧在300-500℃的温度下进行,所述焙烧的持续时间为1-24小时。
71.根据权利要求70所述的含金属原子纳米碳材料,其中,所述焙烧在300-450℃的温度下进行,所述焙烧的持续时间为2-12小时。
72.根据权利要求71所述的含金属原子纳米碳材料,其中,所述焙烧在350-450℃的温度下进行,所述焙烧的持续时间为2-4小时。
73.权利要求1-25和68中任意一项所述的含金属原子纳米碳材料、或者权利要求69-72中任意一项所述的含金属原子纳米碳材料作为烃脱氢反应的催化剂的应用。
74.根据权利要求73所述的应用,其中,所述脱氢反应在氧气存在下进行。
75.根据权利要求73或74所述的应用,其中,所述烃为烷烃。
76.根据权利要求75所述的应用,其中,所述烃为C2-C12的烷烃。
77.根据权利要求76所述的应用,其中,所述烃为正丁烷。
78.一种烃脱氢反应方法,该方法包括在存在或不存在氧气的条件下,在烃脱氢反应条件下,将烃与权利要求1-25和68中任意一项所述的含金属原子纳米碳材料、或者权利要求69-72中任意一项所述的含金属原子纳米碳材料接触。
79.根据权利要求78所述的方法,其中,所述烃为烷烃。
80.根据权利要求79所述的方法,其中,所述烃为C2-C12的烷烃。
81.根据权利要求80所述的方法,其中,所述烃为正丁烷。
CN201511030315.1A 2015-12-31 2015-12-31 一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法 Active CN106925271B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511030315.1A CN106925271B (zh) 2015-12-31 2015-12-31 一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511030315.1A CN106925271B (zh) 2015-12-31 2015-12-31 一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法

Publications (2)

Publication Number Publication Date
CN106925271A CN106925271A (zh) 2017-07-07
CN106925271B true CN106925271B (zh) 2019-06-14

Family

ID=59444799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511030315.1A Active CN106925271B (zh) 2015-12-31 2015-12-31 一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法

Country Status (1)

Country Link
CN (1) CN106925271B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110538668B (zh) * 2018-05-28 2023-04-07 中国石油化工股份有限公司 含杂原子纳米碳材料及其制备方法以及环己烷氧化方法
CN110538671B (zh) * 2018-05-28 2023-04-07 中国石油化工股份有限公司 具有催化氧化作用的催化剂及其制备方法以及环己烷氧化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1911502A (zh) * 2006-09-05 2007-02-14 大庆石油管理局 一种纳米级低碳烷烃脱氢催化剂
CN101575096A (zh) * 2009-06-02 2009-11-11 桂林电子科技大学 表面接枝乙烯基类高分子链的碳纳米管的制备方法
CN101718011A (zh) * 2009-11-16 2010-06-02 天津工业大学 一种碳纳米纤维的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2924362B1 (fr) * 2007-11-30 2012-07-13 Centre Nat Rech Scient Reacteur chimique avec superstructure nanometrique
CN101774573A (zh) * 2010-02-08 2010-07-14 哈尔滨工业大学 一种碳纳米管氨基化的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1911502A (zh) * 2006-09-05 2007-02-14 大庆石油管理局 一种纳米级低碳烷烃脱氢催化剂
CN101575096A (zh) * 2009-06-02 2009-11-11 桂林电子科技大学 表面接枝乙烯基类高分子链的碳纳米管的制备方法
CN101718011A (zh) * 2009-11-16 2010-06-02 天津工业大学 一种碳纳米纤维的制备方法

Also Published As

Publication number Publication date
CN106925271A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
CN105817245B (zh) 一种含杂原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
Xie et al. A novel Ru–B/SiO2 amorphous catalyst used in benzene-selective hydrogenation
CN109305881A (zh) 一种醇类化合物的合成方法
Zhan et al. Selective epoxidation of styrene with air catalyzed by CoOx and CoOx/SiO2 without any reductant
Xu et al. New Au/FeOx/SiO2 catalysts using deposition–precipitation for low-temperature carbon monoxide oxidation
CN106925326B (zh) 一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
Su et al. Aerobic oxidation of alcohols catalyzed by gold nanoparticles supported on gallia polymorphs
CN106925271B (zh) 一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
Daisley et al. Metal nitrides, the Mars-van Krevelen mechanism and heterogeneously catalysed ammonia synthesis
CN107008244A (zh) 一种含杂原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
CN107008243A (zh) 一种含杂原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
CN106925318B (zh) 一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
CN106925321B (zh) 一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
CN106925325B (zh) 一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
CN106925319B (zh) 一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
CN110903175B (zh) 一种利用Au/α-Fe2O3纳米片催化剂将挥发性有机物资源化利用的方法
CN109304197A (zh) 一种含金属原子碳材料及其制备方法和应用以及一种烃氧化脱氢方法
CN106925278B (zh) 一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
CN106925322B (zh) 一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
CN114308061A (zh) NiAu双金属合金纳米催化剂及其合成与应用
CN106925327B (zh) 一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
CN106925311B (zh) 一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
CN112138686A (zh) 一种负载型MoVTeNbOx纳米复合氧化物催化剂及其制备方法和应用
CN106925323B (zh) 一种含金属原子纳米碳材料及制备方法和应用以及一种烃脱氢反应方法
CN106925324B (zh) 一种含金属原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant