CN106925256B - 一种可见光响应特性氧化钛/钒酸铋异质结薄膜及其制备方法和应用 - Google Patents

一种可见光响应特性氧化钛/钒酸铋异质结薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN106925256B
CN106925256B CN201710203934.9A CN201710203934A CN106925256B CN 106925256 B CN106925256 B CN 106925256B CN 201710203934 A CN201710203934 A CN 201710203934A CN 106925256 B CN106925256 B CN 106925256B
Authority
CN
China
Prior art keywords
bivo
film
tio
precursor liquid
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710203934.9A
Other languages
English (en)
Other versions
CN106925256A (zh
Inventor
谈国强
张昕蕾
许驰
任慧君
夏傲
邵丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhichanhui Technology Co ltd
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201710203934.9A priority Critical patent/CN106925256B/zh
Publication of CN106925256A publication Critical patent/CN106925256A/zh
Application granted granted Critical
Publication of CN106925256B publication Critical patent/CN106925256B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0234Impregnation and coating simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Laminated Bodies (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明提供一种可见光响应特性氧化钛/钒酸铋异质结薄膜及其制备方法和应用,先配置BiVO4前驱液和TiO2前驱液,然后利用羟基层静电吸附作用的反向层层自组装技术将基板放入BiVO4前驱液中制备出一定厚度的非晶BiVO4薄膜,将非晶BiVO4薄膜在紫外光下照射形成羟基层,再将其放入TiO2前驱液中二次进行反向层层自组装,形成BiVO4‑TiO2非晶薄膜,最后于500℃保温晶化即得到可见光响应特性氧化钛/钒酸铋异质结薄膜。本发明工艺过程简单易控,实验条件要求较低,制备的TiO2/BiVO4异质结薄膜在光催化领域具有广阔的应用前景。

Description

一种可见光响应特性氧化钛/钒酸铋异质结薄膜及其制备方 法和应用
技术领域
本发明属于功能材料领域,具体涉及一种分子识别吸附的层层自组装技术制备具有灵敏的可见光响应特性TiO2/BiVO4薄膜及其制备方法和应用。
背景技术
随着社会的发展,能源和环境已成为人们最关注的两大时代问题。由于人们的过度开采与使用,导致煤、石油等不可再生能源日进枯竭甚至在将来可能会消失殆尽。与能源问题比肩的就是环境问题。我国的工业化进程迅猛发展,在我们享受科技给带来的成果时,必然要面对重工业等带来的环境污染问题。治理环境污染亟待解决,必须寻求对污染物无害坏的彻底处理。许多研究工作者都致力于解决能源与环境这两大问题。目前使用的具有代表性的处理化学污染的方法主要有:物理法、化学法、生物法和高温焚烧法等。这些方法对环境的维护和治理都起着一定作用,但都不同程度地存在着技术应用缺陷。然而,随着科学研究的不断深入,人们发现一些半导体能够在光照条件下物质表面能够受激活化,有效地氧化分解有机物、还原重金属离子,从而展现出良好的光催化效果。因此,利用光催化剂降解有机污染物中有毒有害物质以其高效清洁,成本低廉及使用设备简单等优势逐渐成为治理环境污染技术中的主流趋势之一。
BiVO4是一种无毒、稳定性好的环境友好型半导体材料,有三种晶体结构:单斜白钨矿型、四方白钨矿型和四方锆石型。其中以单斜白钨矿型BiVO4的光催化活性最强,应用价值最大。BiVO4的基本组成元素Bi和V来源成本低,故成为最有发展前景的光催化材料之一,被广泛地应用于光催化领域。BiVO4的价带宽度为2.4eV左右,在可见光区域有很好的光吸收,但其禁带宽度较窄,具有较快的空穴与电子结合速率以及较为缓慢的电子传递速率极大地影响了BiVO4的使用。
TiO2具有带隙宽、生物相容性好、抗化学腐蚀,对人体无毒害,成本低廉等特点,在催化降解、可再生能源的利用、气体传感器、杀菌消毒等许多领域都有着极为广泛的应用,是目前最受瞩目的光催化剂。同时,TiO2具有较高的电子-空穴的重组速率以及较大的禁带宽度,将二者进行复合,能够促进光生载流子的分离,有效解决单独半导体中电子-空穴对容易复合的问题,增强光催化活性。
目前制备TiO2/BiVO4复合薄膜的方法主要分为物理法和化学法,其中物理方法有:等离子体法、丝电爆炸技术、激光-感应复合技术、高能球磨法等;化学方法主要有:催化裂解法、激光诱导化学气相沉积法、超重力法、燃烧火焰-化学气相冷凝法、溶胶-凝胶法、化学沉淀法等。但薄膜结构致密不利于光催化降解,重复性不高,环境污染大,与基板结合程度不牢固等缺点,或多或少的存在着无法兼顾“清洁、节能、高效制备光催化薄膜”这一理念。
发明内容
本发明的目的在于提供一种可见光响应特性氧化钛/钒酸铋异质结薄膜及其制备方法和应用,该方法利用层层自组装技术制得氧化钛/钒酸铋异质结薄膜,实验条件要求较低,制得的氧化钛/钒酸铋异质结薄膜具有可见光响应特性,能够用于在可见光下光催化降解有机污染物。
为实现上述目的,本发明采用的技术方案为:
一种可见光响应特性氧化钛/钒酸铋异质结薄膜的制备方法,包括以下步骤:
1)BiVO4前驱液的配置:
室温下,向去离子水中加入NH4VO3,搅拌至澄清,然后加入稀硝酸,搅拌均匀,再加入Bi(NO3)3·5H2O,搅拌至澄清,最后加入硼酸,搅拌至澄清,得到BiVO4前驱液;其中加入的NH4VO3、稀硝酸、Bi(NO3)3·5H2O和硼酸的摩尔比为1:(35~55):1:1;
2)基板的功能化:
将基板洗涤干净后置于184.9nm的紫外光下照射20~40min,使基板表面形成羟基单分子层;
3)BiVO4薄膜的自组装:
将基板的羟基单分子层一面悬浮于BiVO4前驱液表面进行自组装吸附,利用基板表面羟基层的静电作用吸附BiVO4前驱液中的小分子,然后异相成核自组装形成一层BiVO4前驱薄膜,再将BiVO4前驱薄膜在室温下干燥6~8h;
4)BiVO4薄膜的层层自组装:
将干燥后的BiVO4前驱薄膜在184.9nm的紫外光下照射20~40min,使其表面形成羟基单分子层,然后将其悬浮于BiVO4前驱液表面进行自组装吸附,在其表面再次异相成核自组装形成一层BiVO4前驱薄膜,然后在室温下干燥6~8h;如此反复多次层层自组装直至达到所需厚度,得到非晶BiVO4薄膜;
5)TiO2前驱液的配置:
室温下,向去离子水中加入(NH4)2TiF6,搅拌至澄清,然后加入硼酸,搅拌至澄清,最后加入稀硝酸,调节pH值至1~4,并搅拌至澄清,得TiO2前驱液;其中加入的(NH4)2TiF6和硼酸的摩尔比为(1~3):(1~2);
6)非晶BiVO4薄膜的功能化:
将非晶BiVO4薄膜用184.9nm的紫外光照射20~40min,在其表面形成羟基层;
7)TiO2薄膜的自组装:
将非晶BiVO4薄膜的羟基层一面悬浮于TiO2前驱液表面进行自组装聚合,利用非晶BiVO4薄膜表面的羟基层与TiO2前驱液中[Ti(OH)6]2-中的OH进行聚合反应,异相成核自组装形成非晶态的BiVO4-O-[Ti(OH)5]-前驱薄膜;将非晶态的BiVO4-O-[Ti(OH)5]-前驱薄膜在室温下干燥6-8h,制得BiVO4-O-[TiO3H)]-非晶薄膜;
8)薄膜的层层自组装:
将BiVO4-O-[TiO3H)]-非晶薄膜在184.9nm的紫外光下照射20~40min,在其表面形成BiVO4-TiO2-OH-羟基单分子层,然后将该羟基单分子层悬浮于TiO2前驱液表面,对TiO2前驱液中的小分子[Ti(OH)6]2-进行自组装聚合,再在室温下干燥6~8h,形成BiVO4-TiO2-O-[TiO3H)]-非晶薄膜;如此反复多次层层自组装直至达到所需厚度,得到非晶态BiVO4-TiO2异质结薄膜;
9)薄膜的晶化
将非晶态BiVO4-TiO2异质结薄膜放入马弗炉中,从室温升到250~550℃,保温60~180min,再自然冷却至室温,即得到可见光响应特性氧化钛/钒酸铋异质结薄膜。
所述步骤1)中加入NH4VO3后搅拌10~20min至澄清,加入稀硝酸后搅拌10~20min至均匀,加入Bi(NO3)3·5H2O后搅拌50~100min至澄清,加入硼酸后搅拌10~20min至澄清;BiVO4前驱液中Bi元素的浓度为0.010~0.030mol/L。
所述步骤2)中基板为FTO导电玻璃、ITO导电玻璃、玻璃载玻片或Si基板。
所述步骤3)和步骤4)中BiVO4前驱液的温度为70~75℃,自组装吸附的时间为18~22min。
所述步骤5)中加入(NH4)2TiF6后搅拌10~20min至澄清,加入硼酸后搅拌20~40min至澄清,加入稀硝酸后搅拌10~20min至澄清;TiO2前驱液中Ti元素的浓度为0.010~0.030mol/L。
所述步骤7)和步骤8)中TiO2前驱液的温度为60~65℃,自组装聚合的时间为12~13h。
所述步骤9)中的升温速度为10~30℃/min。
所述的可见光响应特性氧化钛/钒酸铋异质结薄膜的制备方法制得的可见光响应特性氧化钛/钒酸铋异质结薄膜,所述可见光响应特性氧化钛/钒酸铋异质结薄膜中TiO2附着于球状BiVO4颗粒的表面,二者相互包被,形成异质结结构,其中BiVO4的晶型为四方相德钒矿型和单斜相白钨矿型,TiO2的晶型为锐钛矿型。
在可见光照射下,0~1.5V偏压下,所述可见光响应特性氧化钛/钒酸铋异质结薄膜产生0~1.5mA/cm2光电流;
所述可见光响应特性氧化钛/钒酸铋异质结薄膜在光照瞬间产生的阳极尖峰在3s内达到稳态,光照开始后光电流密度由0.018mA/cm2快速衰减为0.017mA/cm2,所述可见光响应特性氧化钛/钒酸铋异质结薄膜在光生电子-空穴表面复合过程中的复合几率为5.6%。
所述的可见光响应特性氧化钛/钒酸铋异质结薄膜在可见光下光催化降解有机污染物方面的应用。
相对于现有技术,本发明具有以下有益效果:
本发明提供的可见光响应特性氧化钛/钒酸铋异质结薄膜的制备方法,先配置BiVO4前驱液和TiO2前驱液,然后利用羟基层静电吸附作用的反向层层自组装技术将基板放入BiVO4前驱液中制备出一定厚度的非晶BiVO4薄膜,将非晶BiVO4薄膜在紫外光下照射形成羟基层,再将其放入TiO2前驱液中二次进行反向层层自组装,形成非晶态BiVO4-TiO2异质结薄膜,最后于500℃保温晶化即得到可见光响应特性氧化钛/钒酸铋异质结薄膜。本发明工艺过程简单易控,实验条件要求较低,通过二次反向吸附液相层层自组装法得到具可见光响应的TiO2/BiVO4异质结薄膜。自组装单层膜(self-assembled monolayers,SAMs)技术是一个借鉴于仿生学的新型成膜技术,通过短波紫外光辐照在基底界面上自发形成的有序的单分子羟基吸附层,形成的羟基吸附层在空气中自发通过化学键牢固地吸附在基板上所形成的超薄羟基膜,具有原位自发形成、成键高度有序排列、缺陷少、结合力强、呈“结晶态”等特点,适用于异相成核诱导制备无机材料薄膜,具有制备方法简单、成膜效果好、稳定性强、膜层厚度超薄等优点。
本发明制备的可见光响应特性氧化钛/钒酸铋异质结薄膜附着在基板表面,且氧化钛/钒酸铋的复合层间相互包被,有利于提高比表面积和有机物吸附能力,从而提高薄膜的光催化效果。并且本发明制备的TiO2/BiVO4异质结薄膜具有良好的光电响应能力,使其在光催化领域具有广阔的应用前景。
附图说明
图1是本发明制备的TiO2/BiVO4异质结薄膜的XRD图;
图2是本发明制备的TiO2/BiVO4异质结薄膜的SEM图;
图3是本发明制备的TiO2/BiVO4异质结薄膜的电流-电压曲线;
图4是本发明制备的TiO2/BiVO4异质结薄膜的交流阻抗图。
具体实施方式
下面结合附图和本发明优选的具体实施例对本发明做进一步描述,原料均为分析纯。
实施例1:
1)BiVO4前驱液的配置:
向去离子水中加入NH4VO3,搅拌20min至澄清,然后加入稀硝酸,搅拌10min至溶液均匀,再加入Bi(NO3)3·5H2O,室温下搅拌60min至澄清,最后加入硼酸,搅拌10min至澄清,得到BiVO4前驱液;其中加入的NH4VO3、稀硝酸、Bi(NO3)3·5H2O和硼酸的摩尔比为1:41.7:1:1;BiVO4前驱液中Bi元素的浓度为0.010mol/L;
2)基板的功能化:
将FTO导电玻璃基板依次置于水、丙酮、无水乙醇中超声洗涤10min。洗涤干净后置于184.9nm的紫外光下照射30min,使基板表面形成羟基单分子层,得到吸附羟基层的基板;
3)BiVO4薄膜的自组装:
将基板的羟基层一面悬浮于70℃的BiVO4前驱液表面自组装吸附20min,利用基板表面羟基层静电作用吸附BiVO4前驱液中的小分子,然后异相成核自组装形成BiVO4前驱薄膜,再将BiVO4前驱薄膜在室温下干燥6小时;
4)BiVO4薄膜的层层自组装:
将干燥后的BiVO4前驱薄膜在184.9nm的紫外光下照射30min,使其表面形成羟基单分子层,然后将其悬浮于70℃的BiVO4前驱液表面自组装吸附20min,在其表面再次异相成核自组装形成一层BiVO4前驱薄膜,然后在室温下干燥6h;如此反复多次层层自组装直至达到所需厚度,得到非晶BiVO4薄膜;
5)TiO2前驱液的配置:
向去离子水中加入(NH4)2TiF6,搅拌10min至澄清,然后加入硼酸,室温下搅拌30min至澄清,最后加入稀硝酸,调节pH值至2.9,并搅拌10min至澄清,得TiO2前驱液;其中加入的(NH4)2TiF6和硼酸的摩尔比为1:1;TiO2前驱液中Ti元素的浓度为0.010mol/L;
6)非晶BiVO4薄膜的功能化:
将非晶BiVO4薄膜用184.9nm的紫外光照射30min,在其表面形成羟基层,即形成FTO-BiVO4-OH-
7)TiO2薄膜的自组装:
将FTO-BiVO4-OH-悬浮于65℃的TiO2前驱液表面自组装聚合12h,利用非晶BiVO4薄膜表面的羟基层与TiO2前驱液中的小分子[Ti(OH)6]2-和大分子[TiF6-n(OH)n]2-中的OH进行聚合反应,其中在重力作用下,大分子[TiF6-n(OH)n]2-向下移动,不易与非晶BiVO4薄膜表面的羟基层聚合反应,而小分子[Ti(OH)6]2-向上移动,非晶BiVO4薄膜表面的羟基层只与[Ti(OH)6]2-聚合反应异相成核自组装形成非晶态的FTO-BiVO4-O-[Ti(OH)5]-前驱薄膜;将该前驱薄膜在室温下干燥6h,制得FTO-BiVO4-O-[TiO3H)]-非晶薄膜;
8)薄膜的层层自组装:
将FTO-BiVO4-O-[TiO3H)]-非晶薄膜在室温下干燥后在184.9nm的紫外光下照射20min,形成使前驱薄膜头端有羟基单分子层的FTO-BiVO4-TiO2-OH-羟基单分子层,然后将该羟基单分子层悬浮于65℃的TiO2前驱液表面,对TiO2前驱液中的小分子[Ti(OH)6]2-进行12h的自组装聚合,形成FTO-BiVO4-TiO2-O-[TiO3H)]-非晶薄膜,再在室温下干燥6h;如此反复多次层层自组装直至达到所需厚度,得到非晶态FTO-BiVO4-TiO2异质结薄膜;
9)薄膜的晶化
将非晶态FTO-BiVO4-TiO2异质结薄膜在室温干燥后,放入马弗炉中,以10℃/min的升温速度从室温升到500℃,保温120min,再自然冷却至室温,即得到可见光响应特性氧化钛/钒酸铋异质结薄膜。
实施例2
1)BiVO4前驱液的配置:
向去离子水中加入NH4VO3,搅拌15min至澄清,然后加入稀硝酸,搅拌15min至溶液均匀,再加入Bi(NO3)3·5H2O,室温下搅拌50min至澄清,最后加入硼酸,搅拌15min至澄清,得到BiVO4前驱液;其中加入的NH4VO3、稀硝酸、Bi(NO3)3·5H2O和硼酸的摩尔比为1:35:1:1;BiVO4前驱液中Bi元素的浓度为0.020mol/L;
2)基板的功能化:
将FTO导电玻璃基板依次置于水、丙酮、无水乙醇中超声洗涤10min。洗涤干净后置于184.9nm的紫外光下照射20min,使基板表面形成羟基单分子层,得到吸附羟基层的基板;
3)BiVO4薄膜的自组装:
将基板的羟基层一面悬浮于75℃的BiVO4前驱液表面自组装吸附18min,利用基板表面羟基层静电作用吸附BiVO4前驱液中的小分子,然后异相成核自组装形成BiVO4前驱薄膜,再将BiVO4前驱薄膜在室温下干燥8小时;
4)BiVO4薄膜的层层自组装:
将干燥后的BiVO4前驱薄膜在184.9nm的紫外光下照射20min,使其表面形成羟基单分子层,然后将其悬浮于75℃的BiVO4前驱液表面自组装吸附18min,在其表面再次异相成核自组装形成一层BiVO4前驱薄膜,然后在室温下干燥8h;如此反复多次层层自组装直至达到所需厚度,得到非晶BiVO4薄膜;
5)TiO2前驱液的配置:
向去离子水中加入(NH4)2TiF6,搅拌15min至澄清,然后加入硼酸,室温下搅拌20min至澄清,最后加入稀硝酸,调节pH值至1,并搅拌15min至澄清,得TiO2前驱液;其中加入的(NH4)2TiF6和硼酸的摩尔比为3:2;TiO2前驱液中Ti元素的浓度为0.020mol/L;
6)非晶BiVO4薄膜的功能化:
将非晶BiVO4薄膜用184.9nm的紫外光照射20min,在其表面形成羟基层,即形成FTO-BiVO4-OH-
7)TiO2薄膜的自组装:
将FTO-BiVO4-OH-悬浮于60℃的TiO2前驱液表面自组装聚合13h,利用非晶BiVO4薄膜表面的羟基层与TiO2前驱液中的小分子[Ti(OH)6]2-和大分子[TiF6-n(OH)n]2-中的OH进行聚合反应,其中在重力作用下,大分子[TiF6-n(OH)n]2-向下移动,不易与非晶BiVO4薄膜表面的羟基层聚合反应,而小分子[Ti(OH)6]2-向上移动,非晶BiVO4薄膜表面的羟基层只与[Ti(OH)6]2-聚合反应异相成核自组装形成非晶态的FTO-BiVO4-O-[Ti(OH)5]-前驱薄膜;将该前驱薄膜在室温下干燥8h,制得FTO-BiVO4-O-[TiO3H)]-非晶薄膜;
8)薄膜的层层自组装:
将FTO-BiVO4-O-[TiO3H)]-非晶薄膜在室温下干燥后在184.9nm的紫外光下照射30min,形成使前驱薄膜头端有羟基单分子层的FTO-BiVO4-TiO2-OH-羟基单分子层,然后将该羟基单分子层悬浮于60℃的TiO2前驱液表面,对TiO2前驱液中的小分子[Ti(OH)6]2-进行13h的自组装聚合,形成FTO-BiVO4-TiO2-O-[TiO3H)]-非晶薄膜,再在室温下干燥8h;如此反复多次层层自组装直至达到所需厚度,得到非晶态FTO-BiVO4-TiO2异质结薄膜;
9)薄膜的晶化
将非晶态FTO-BiVO4-TiO2异质结薄膜在室温干燥后,放入马弗炉中,以20℃/min的升温速度从室温升到250℃,保温180min,再自然冷却至室温,即得到可见光响应特性氧化钛/钒酸铋异质结薄膜。
实施例3
1)BiVO4前驱液的配置:
向去离子水中加入NH4VO3,搅拌10min至澄清,然后加入稀硝酸,搅拌20min至溶液均匀,再加入Bi(NO3)3·5H2O,室温下搅拌80min至澄清,最后加入硼酸,搅拌20min至澄清,得到BiVO4前驱液;其中加入的NH4VO3、稀硝酸、Bi(NO3)3·5H2O和硼酸的摩尔比为1:55:1:1;BiVO4前驱液中Bi元素的浓度为0.030mol/L;
2)基板的功能化:
将ITO导电玻璃基板依次置于水、丙酮、无水乙醇中超声洗涤10min。洗涤干净后置于184.9nm的紫外光下照射40min,使基板表面形成羟基单分子层,得到吸附羟基层的基板;
3)BiVO4薄膜的自组装:
将基板的羟基层一面悬浮于72℃的BiVO4前驱液表面自组装吸附22min,利用基板表面羟基层静电作用吸附BiVO4前驱液中的小分子,然后异相成核自组装形成BiVO4前驱薄膜,再将BiVO4前驱薄膜在室温下干燥7小时;
4)BiVO4薄膜的层层自组装:
将干燥后的BiVO4前驱薄膜在184.9nm的紫外光下照射40min,使其表面形成羟基单分子层,然后将其悬浮于72℃的BiVO4前驱液表面自组装吸附22min,在其表面再次异相成核自组装形成一层BiVO4前驱薄膜,然后在室温下干燥7h;如此反复多次层层自组装直至达到所需厚度,得到非晶BiVO4薄膜;
5)TiO2前驱液的配置:
向去离子水中加入(NH4)2TiF6,搅拌20min至澄清,然后加入硼酸,室温下搅拌40min至澄清,最后加入稀硝酸,调节pH值至4,并搅拌20min至澄清,得TiO2前驱液;其中加入的(NH4)2TiF6和硼酸的摩尔比为1:1.5;TiO2前驱液中Ti元素的浓度为0.030mol/L;
6)非晶BiVO4薄膜的功能化:
将非晶BiVO4薄膜用184.9nm的紫外光照射40min,在其表面形成羟基层,即形成ITO-BiVO4-OH-
7)TiO2薄膜的自组装:
将ITO-BiVO4-OH-悬浮于62℃的TiO2前驱液表面自组装聚合12.8h,利用非晶BiVO4薄膜表面的羟基层与TiO2前驱液中的小分子[Ti(OH)6]2-和大分子[TiF6-n(OH)n]2-中的OH进行聚合反应,其中在重力作用下,大分子[TiF6-n(OH)n]2-向下移动,不易与非晶BiVO4薄膜表面的羟基层聚合反应,而小分子[Ti(OH)6]2-向上移动,非晶BiVO4薄膜表面的羟基层只与[Ti(OH)6]2-聚合反应异相成核自组装形成非晶态的ITO-BiVO4-O-[Ti(OH)5]-前驱薄膜;将该前驱薄膜在室温下干燥7h,制得ITO-BiVO4-O-[TiO3H)]-非晶薄膜;
8)薄膜的层层自组装:
将ITO-BiVO4-O-[TiO3H)]-非晶薄膜在室温下干燥后在184.9nm的紫外光下照射40min,形成使前驱薄膜头端有羟基单分子层的ITO-BiVO4-TiO2-OH-羟基单分子层,然后将该羟基单分子层悬浮于62℃的TiO2前驱液表面,对TiO2前驱液中的小分子[Ti(OH)6]2-进行12.8h的自组装聚合,形成ITO-BiVO4-TiO2-O-[TiO3H)]-非晶薄膜,再在室温下干燥7h;如此反复多次层层自组装直至达到所需厚度,得到非晶态ITO-BiVO4-TiO2异质结薄膜;
9)薄膜的晶化
将非晶态ITO-BiVO4-TiO2异质结薄膜在室温干燥后,放入马弗炉中,以30℃/min的升温速度从室温升到550℃,保温60min,再自然冷却至室温,即得到可见光响应特性氧化钛/钒酸铋异质结薄膜。
实施例4
1)BiVO4前驱液的配置:
向去离子水中加入NH4VO3,搅拌12min至澄清,然后加入稀硝酸,搅拌12min至溶液均匀,再加入Bi(NO3)3·5H2O,室温下搅拌90min至澄清,最后加入硼酸,搅拌12min至澄清,得到BiVO4前驱液;其中加入的NH4VO3、稀硝酸、Bi(NO3)3·5H2O和硼酸的摩尔比为1:45:1:1;BiVO4前驱液中Bi元素的浓度为0.015mol/L;
2)基板的功能化:
将Si基板依次置于水、丙酮、无水乙醇中超声洗涤10min。洗涤干净后置于184.9nm的紫外光下照射25min,使基板表面形成羟基单分子层,得到吸附羟基层的基板;
3)BiVO4薄膜的自组装:
将基板的羟基层一面悬浮于73℃的BiVO4前驱液表面自组装吸附21min,利用基板表面羟基层静电作用吸附BiVO4前驱液中的小分子,然后异相成核自组装形成BiVO4前驱薄膜,再将BiVO4前驱薄膜在室温下干燥6.5小时;
4)BiVO4薄膜的层层自组装:
将干燥后的BiVO4前驱薄膜在184.9nm的紫外光下照射25min,使其表面形成羟基单分子层,然后将其悬浮于73℃的BiVO4前驱液表面自组装吸附21min,在其表面再次异相成核自组装形成一层BiVO4前驱薄膜,然后在室温下干燥6.5h;如此反复多次层层自组装直至达到所需厚度,得到非晶BiVO4薄膜;
5)TiO2前驱液的配置:
向去离子水中加入(NH4)2TiF6,搅拌12min至澄清,然后加入硼酸,室温下搅拌25min至澄清,最后加入稀硝酸,调节pH值至2,并搅拌12min至澄清,得TiO2前驱液;其中加入的(NH4)2TiF6和硼酸的摩尔比为1.5:1;TiO2前驱液中Ti元素的浓度为0.015mol/L;
6)非晶BiVO4薄膜的功能化:
将非晶BiVO4薄膜用184.9nm的紫外光照射25min,在其表面形成羟基层,即形成Si-BiVO4-OH-
7)TiO2薄膜的自组装:
将Si-BiVO4-OH-悬浮于63℃的TiO2前驱液表面自组装聚合12.5h,利用非晶BiVO4薄膜表面的羟基层与TiO2前驱液中的小分子[Ti(OH)6]2-和大分子[TiF6-n(OH)n]2-中的OH进行聚合反应,其中在重力作用下,大分子[TiF6-n(OH)n]2-向下移动,不易与非晶BiVO4薄膜表面的羟基层聚合反应,而小分子[Ti(OH)6]2-向上移动,非晶BiVO4薄膜表面的羟基层只与[Ti(OH)6]2-聚合反应异相成核自组装形成非晶态的Si-BiVO4-O-[Ti(OH)5]-前驱薄膜;将该前驱薄膜在室温下干燥6.5h,制得Si-BiVO4-O-[TiO3H)]-非晶薄膜;
8)薄膜的层层自组装:
将Si-BiVO4-O-[TiO3H)]-非晶薄膜在室温下干燥后在184.9nm的紫外光下照射25min,形成使前驱薄膜头端有羟基单分子层的Si-BiVO4-TiO2-OH-羟基单分子层,然后将该羟基单分子层悬浮于63℃的TiO2前驱液表面,对TiO2前驱液中的小分子[Ti(OH)6]2-进行12.5h的自组装聚合,形成Si-BiVO4-TiO2-O-[TiO3H)]-非晶薄膜,再在室温下干燥6.5h;如此反复多次层层自组装直至达到所需厚度,得到非晶态Si-BiVO4-TiO2异质结薄膜;
9)薄膜的晶化
将非晶态Si-BiVO4-TiO2异质结薄膜在室温干燥后,放入马弗炉中,以15℃/min的升温速度从室温升到450℃,保温80min,再自然冷却至室温,即得到可见光响应特性氧化钛/钒酸铋异质结薄膜。
实施例5
1)BiVO4前驱液的配置:
向去离子水中加入NH4VO3,搅拌18min至澄清,然后加入稀硝酸,搅拌18min至溶液均匀,再加入Bi(NO3)3·5H2O,室温下搅拌100min至澄清,最后加入硼酸,搅拌18min至澄清,得到BiVO4前驱液;其中加入的NH4VO3、稀硝酸、Bi(NO3)3·5H2O和硼酸的摩尔比为1:50:1:1;BiVO4前驱液中Bi元素的浓度为0.025mol/L;
2)基板的功能化:
将玻璃载玻片基板依次置于水、丙酮、无水乙醇中超声洗涤10min。洗涤干净后置于184.9nm的紫外光下照射35min,使基板表面形成羟基单分子层,得到吸附羟基层的基板;
3)BiVO4薄膜的自组装:
将基板的羟基层一面悬浮于74℃的BiVO4前驱液表面自组装吸附19min,利用基板表面羟基层静电作用吸附BiVO4前驱液中的小分子,然后异相成核自组装形成BiVO4前驱薄膜,再将BiVO4前驱薄膜在室温下干燥7.5小时;
4)BiVO4薄膜的层层自组装:
将干燥后的BiVO4前驱薄膜在184.9nm的紫外光下照射35min,使其表面形成羟基单分子层,然后将其悬浮于74℃的BiVO4前驱液表面自组装吸附19min,在其表面再次异相成核自组装形成一层BiVO4前驱薄膜,然后在室温下干燥7.5h;如此反复多次层层自组装直至达到所需厚度,得到非晶BiVO4薄膜;
5)TiO2前驱液的配置:
向去离子水中加入(NH4)2TiF6,搅拌18min至澄清,然后加入硼酸,室温下搅拌35min至澄清,最后加入稀硝酸,调节pH值至2.5,并搅拌18min至澄清,得TiO2前驱液;其中加入的(NH4)2TiF6和硼酸的摩尔比为2:1.8;TiO2前驱液中Ti元素的浓度为0.025mol/L;
6)非晶BiVO4薄膜的功能化:
将非晶BiVO4薄膜用184.9nm的紫外光照射35min,在其表面形成羟基层,即形成玻璃-BiVO4-OH-
7)TiO2薄膜的自组装:
将玻璃-BiVO4-OH-悬浮于64℃的TiO2前驱液表面自组装聚合12.2h,利用非晶BiVO4薄膜表面的羟基层与TiO2前驱液中的小分子[Ti(OH)6]2-和大分子[TiF6-n(OH)n]2-中的OH进行聚合反应,其中在重力作用下,大分子[TiF6-n(OH)n]2-向下移动,不易与非晶BiVO4薄膜表面的羟基层聚合反应,而小分子[Ti(OH)6]2-向上移动,非晶BiVO4薄膜表面的羟基层只与[Ti(OH)6]2-聚合反应异相成核自组装形成非晶态的玻璃-BiVO4-O-[Ti(OH)5]-前驱薄膜;将该前驱薄膜在室温下干燥7.5h,制得玻璃-BiVO4-O-[TiO3H)]-非晶薄膜;
8)薄膜的层层自组装:
将玻璃-BiVO4-O-[TiO3H)]-非晶薄膜在室温下干燥后在184.9nm的紫外光下照射35min,形成使前驱薄膜头端有羟基单分子层的玻璃-BiVO4-TiO2-OH-羟基单分子层,然后将该羟基单分子层悬浮于64℃的TiO2前驱液表面,对TiO2前驱液中的小分子[Ti(OH)6]2-进行12.2h的自组装聚合,形成玻璃-BiVO4-TiO2-O-[TiO3H)]-非晶薄膜,再在室温下干燥7.5h;如此反复多次层层自组装直至达到所需厚度,得到非晶态玻璃-BiVO4-TiO2异质结薄膜;
9)薄膜的晶化
将非晶态玻璃-BiVO4-TiO2异质结薄膜在室温干燥后,放入马弗炉中,以25℃/min的升温速度从室温升到350℃,保温100min,再自然冷却至室温,即得到可见光响应特性氧化钛/钒酸铋异质结薄膜。
图1为本发明制备的TiO2/BiVO4异质结薄膜的XRD图谱,在衍射角为19.2°、24.8°、31.4°、49.1°,衍射峰对应的(101)晶面、(200)晶面、(112)晶面、(312)晶面与标准谱图中的四方相德钒矿BiVO4(JCPDS PDF#14-0133)的衍射峰基本吻合,同时在衍射角为18.2°、29.0°、31.0°、34.7°、42.5°、49.4°,衍射峰对应(011)晶面、(121)晶面、(040)晶面、(002)晶面、(051)晶面、(042)晶面与标准谱图中的单斜型BiVO4(JCPDS PDF#14-0688)的衍射峰基本吻合,说明制备的异质结薄膜中BiVO4为四方相和单斜型共存;在衍射角为26.3°、39.2°、39.9°衍射峰对应的(101)晶面、(004)晶面、(112)晶面标准谱图中的锐钛矿型TiO2薄膜(JCPDS PDF#21-1272)的衍射峰完全吻合,说明制备异质结薄膜中TiO2为锐钛矿型,说明成功制备了TiO2/BiVO4异质结薄膜。
图2为本发明制备的TiO2/BiVO4异质结薄膜的SEM图,可以看出二氧化钛附着于球状钒酸铋颗粒的表面,二者相互包被,形成异质结结构。
图3是本发明制备的TiO2/BiVO4异质结薄膜的电流-电压曲线,电压由0V增加到1.5V的过程中相应的TiO2/BiVO4异质结薄膜的光电流由0mA/cm2增加到1.5mA/cm2(1.2V偏压下TiO2/BiVO4异质结薄膜产生0.6mA/cm2光电流),即随着所加偏压的增加,样品的电流密度是逐渐增大的,电子-空穴对的分离率增加,使其具有更加灵敏的模拟太阳光响应。另外光照瞬间产生的阳极尖峰在3s内达到稳态,光照开始后光电流密度由0.018mA/cm2快速衰减为0.017mA/cm2,TiO2/BiVO4异质结薄膜光生电子-空穴表面复合过程的复合几率为5.6%。说明本发明制备的氧化钛/钒酸铋异质结薄膜具有可见光响应特性,能够在可见光下光催化降解有机污染物。
图4是本发明制备的TiO2/BiVO4异质结薄膜的交流阻抗图,EIS中Nyquist曲线的半径大小反映了电极表面反应速率的大小以及电极电阻的大小。半径越大说明电极表面反应速率越小,电荷转移电阻越大。从图4可知,通过四种不同方式复合后的异质结薄膜与纯相TiO2以及纯相BiVO4相比发生显著的变化,光照后的曲率半径明显小于纯相样品。其中电荷转移电阻(R)是主要的研究对象,从表1可知复合后的TiO2/BiVO4异质结薄膜光照后的R为0.8Ω,而纯相TiO2的R为1.4935Ω、纯相BiVO4的R为2067Ω,复合后R值分别减小了约1.87倍和2583倍,说明TiO2/BiVO4之间形成的异质结结构有效的促进了光生载流子的传输及分离,提高了载流子的浓度。其中图4和表1中3TiO2+3BiVO4表示在基板上先制备3层TiO2再制备3层BiVO4得到的异质结薄膜,3BiVO4+3TiO2表示在基板上先制备3层BiVO4再制备3层TiO2得到的异质结薄膜,3(BiVO4+TiO2)表示在基板上先制备1层BiVO4再制备1层TiO2,交替共制备6层得到的异质结薄膜,3(TiO2+BiVO4)表示在基板上先制备1层TiO2再制备1层BiVO4,交替共制备6层得到的异质结薄膜,6层TiO2表示在基板上制备6层TiO2得到的薄膜,6层BiVO4表示在基板上制备6层BiVO4得到的薄膜。
表1本发明制备的氧化钛/钒酸铋异质结薄膜的交流阻抗数据
以上所述内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不是全部或唯一的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

Claims (9)

1.一种可见光响应特性氧化钛/钒酸铋异质结薄膜的制备方法,其特征在于,包括以下步骤:
1)BiVO4前驱液的配置:
室温下,向去离子水中加入NH4VO3,搅拌至澄清,然后加入稀硝酸,搅拌均匀,再加入Bi(NO3)3·5H2O,搅拌至澄清,最后加入硼酸,搅拌至澄清,得到BiVO4前驱液;其中加入的NH4VO3、稀硝酸、Bi(NO3)3·5H2O和硼酸的摩尔比为1:(35~55):1:1;
2)基板的功能化:
将基板洗涤干净后置于184.9nm的紫外光下照射20~40min,使基板表面形成羟基单分子层;
3)BiVO4薄膜的自组装:
将基板的羟基单分子层一面悬浮于BiVO4前驱液表面进行自组装吸附,利用基板表面羟基层的静电作用吸附BiVO4前驱液中的小分子,然后异相成核自组装形成一层BiVO4前驱薄膜,再将BiVO4前驱薄膜在室温下干燥6~8h;
4)BiVO4薄膜的层层自组装:
将干燥后的BiVO4前驱薄膜在184.9nm的紫外光下照射20~40min,使其表面形成羟基单分子层,然后将其悬浮于BiVO4前驱液表面进行自组装吸附,在其表面再次异相成核自组装形成一层BiVO4前驱薄膜,然后在室温下干燥6~8h;如此反复多次层层自组装直至达到所需厚度,得到非晶BiVO4薄膜;
5)TiO2前驱液的配置:
室温下,向去离子水中加入(NH4)2TiF6,搅拌至澄清,然后加入硼酸,搅拌至澄清,最后加入稀硝酸,调节pH值至1~4,并搅拌至澄清,得TiO2前驱液;其中加入的(NH4)2TiF6和硼酸的摩尔比为(1~3):(1~2);
6)非晶BiVO4薄膜的功能化:
将非晶BiVO4薄膜用184.9nm的紫外光照射20~40min,在其表面形成羟基层;
7)TiO2薄膜的自组装:
将非晶BiVO4薄膜的羟基层一面悬浮于TiO2前驱液表面进行自组装聚合,利用非晶BiVO4薄膜表面的羟基层与TiO2前驱液中[Ti(OH)6]2-中的OH进行聚合反应,异相成核自组装形成非晶态的BiVO4-O-[Ti(OH)5]-前驱薄膜;将非晶态的BiVO4-O-[Ti(OH)5]-前驱薄膜在室温下干燥6-8h,制得BiVO4-O-[TiO3H]-非晶薄膜;
8)薄膜的层层自组装:
将BiVO4-O-[TiO3H]-非晶薄膜在184.9nm的紫外光下照射20~40min,在其表面形成BiVO4-TiO2-OH-羟基单分子层,然后将该羟基单分子层悬浮于TiO2前驱液表面,对TiO2前驱液中的小分子[Ti(OH)6]2-进行自组装聚合,再在室温下干燥6~8h,形成BiVO4-TiO2-O-[TiO3H]-非晶薄膜;如此反复多次层层自组装直至达到所需厚度,得到非晶态BiVO4-TiO2异质结薄膜;
9)薄膜的晶化
将非晶态BiVO4-TiO2异质结薄膜放入马弗炉中,从室温升到250~550℃,保温60~180min,再自然冷却至室温,即得到可见光响应特性氧化钛/钒酸铋异质结薄膜;
所述步骤7)和步骤8)中TiO2前驱液的温度为60~65℃,自组装聚合的时间为12~13h。
2.根据权利要求1所述的可见光响应特性氧化钛/钒酸铋异质结薄膜的制备方法,其特征在于,所述步骤1)中加入NH4VO3后搅拌10~20min至澄清,加入稀硝酸后搅拌10~20min至均匀,加入Bi(NO3)3·5H2O后搅拌50~100min至澄清,加入硼酸后搅拌10~20min至澄清;BiVO4前驱液中Bi元素的浓度为0.010~0.030mol/L。
3.根据权利要求1所述的可见光响应特性氧化钛/钒酸铋异质结薄膜的制备方法,其特征在于,所述步骤2)中基板为FTO导电玻璃、ITO导电玻璃、玻璃载玻片或Si基板。
4.根据权利要求1所述的可见光响应特性氧化钛/钒酸铋异质结薄膜的制备方法,其特征在于,所述步骤3)和步骤4)中BiVO4前驱液的温度为70~75℃,自组装吸附的时间为18~22min。
5.根据权利要求1所述的可见光响应特性氧化钛/钒酸铋异质结薄膜的制备方法,其特征在于,所述步骤5)中加入(NH4)2TiF6后搅拌10~20min至澄清,加入硼酸后搅拌20~40min至澄清,加入稀硝酸后搅拌10~20min至澄清;TiO2前驱液中Ti元素的浓度为0.010~0.030mol/L。
6.根据权利要求1所述的可见光响应特性氧化钛/钒酸铋异质结薄膜的制备方法,其特征在于,所述步骤9)中的升温速度为10~30℃/min。
7.权利要求1-6中任意一项所述的可见光响应特性氧化钛/钒酸铋异质结薄膜的制备方法制得的可见光响应特性氧化钛/钒酸铋异质结薄膜,其特征在于,所述可见光响应特性氧化钛/钒酸铋异质结薄膜中TiO2附着于球状BiVO4颗粒的表面,二者相互包被,形成异质结结构,其中BiVO4的晶型为四方相德钒矿型和单斜相白钨矿型,TiO2的晶型为锐钛矿型。
8.根据权利要求7所述的可见光响应特性氧化钛/钒酸铋异质结薄膜,其特征在于,在可见光照射下,0~1.5V偏压下,所述可见光响应特性氧化钛/钒酸铋异质结薄膜产生0~1.5mA/cm2光电流;
所述可见光响应特性氧化钛/钒酸铋异质结薄膜在光照瞬间产生的阳极尖峰在3s内达到稳态,光照开始后光电流密度由0.018mA/cm2快速衰减为0.017mA/cm2,所述可见光响应特性氧化钛/钒酸铋异质结薄膜在光生电子-空穴表面复合过程中的复合几率为5.6%。
9.权利要求7或8所述的可见光响应特性氧化钛/钒酸铋异质结薄膜在可见光下光催化降解有机污染物方面的应用。
CN201710203934.9A 2017-03-30 2017-03-30 一种可见光响应特性氧化钛/钒酸铋异质结薄膜及其制备方法和应用 Active CN106925256B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710203934.9A CN106925256B (zh) 2017-03-30 2017-03-30 一种可见光响应特性氧化钛/钒酸铋异质结薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710203934.9A CN106925256B (zh) 2017-03-30 2017-03-30 一种可见光响应特性氧化钛/钒酸铋异质结薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106925256A CN106925256A (zh) 2017-07-07
CN106925256B true CN106925256B (zh) 2019-05-10

Family

ID=59425390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710203934.9A Active CN106925256B (zh) 2017-03-30 2017-03-30 一种可见光响应特性氧化钛/钒酸铋异质结薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106925256B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108786829B (zh) * 2018-04-04 2021-05-11 芜湖职业技术学院 掺杂纳米二氧化钛的光催化剂及其制备方法
US11505870B2 (en) 2018-07-20 2022-11-22 King Fahd University Of Petroleum And Minerals Efficient method for plasmon-aided solar water-splitting using (BiVO4)x—(TiO2)1-x ternary nanocomposites

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073048A (zh) * 2012-12-24 2013-05-01 陕西科技大学 一种液相自组装技术制备图案化的ZnO薄膜的方法
CN104761152A (zh) * 2015-03-31 2015-07-08 陕西科技大学 一种沿(040)晶面取向生长的BiVO4薄膜的制备方法
CN104773959A (zh) * 2015-03-31 2015-07-15 陕西科技大学 一种利用仿生法制备BiVO4薄膜的方法
CN105948530A (zh) * 2016-04-25 2016-09-21 陕西科技大学 一种多孔网状结构BiVO4薄膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073048A (zh) * 2012-12-24 2013-05-01 陕西科技大学 一种液相自组装技术制备图案化的ZnO薄膜的方法
CN104761152A (zh) * 2015-03-31 2015-07-08 陕西科技大学 一种沿(040)晶面取向生长的BiVO4薄膜的制备方法
CN104773959A (zh) * 2015-03-31 2015-07-15 陕西科技大学 一种利用仿生法制备BiVO4薄膜的方法
CN105948530A (zh) * 2016-04-25 2016-09-21 陕西科技大学 一种多孔网状结构BiVO4薄膜及其制备方法

Also Published As

Publication number Publication date
CN106925256A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
CN106944037B (zh) 一种可见光响应特性氧化锌/钒酸铋异质结薄膜及其制备方法和应用
Chen et al. Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO− TiO2 nanocomposites
CN107204379B (zh) 一种高质量无机钙钛矿薄膜及其制备方法和在太阳能电池中的应用
Saito et al. Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells
CN105047826B (zh) 一种在钙钛矿层中掺入硫化镉的钙钛矿太阳能电池及其制备方法
Sahu et al. Nanostructured zinc titanate wide band gap semiconductor as a photoelectrode material for quantum dot sensitized solar cells
Bhogaita et al. Synthesis and characterization of TiO2 thin films for DSSC prototype
CN101664675B (zh) 生物形态精细分级结构的光催化材料的制备方法
CN110791777A (zh) 一种富含表层氧空位的钒酸铋电极及其制备方法和应用
Karuppuchamy et al. Preparation of nanostructured TiO 2 photoelectrode for flexible dye-sensitized solar cell applications
CN106925256B (zh) 一种可见光响应特性氧化钛/钒酸铋异质结薄膜及其制备方法和应用
CN105948530B (zh) 一种多孔网状结构BiVO4薄膜及其制备方法
CN102394272A (zh) 一种增强有机聚合物太阳能电池效率的方法
CN102544378A (zh) 一种基于ZnO同质核壳结构纳米棒阵列的有机/无机杂化太阳电池及其制备方法
Akhtar et al. Synthesis and characterization of ZnO nanorods and balls nanomaterials for dye sensitized solar cells
CN109148688A (zh) 一种高效钙钛矿太阳能电池及其制备方法
CN104192900A (zh) 一种TiO2纳米晶的合成方法
CN104198560A (zh) 一种石墨烯修饰的多孔二氧化钛复合膜的制备方法
CN103515536A (zh) 一种反型有机太阳能电池的简易制备方法
CN109994610A (zh) 一种双组分界面混合式电子传输层及其制备方法和应用
CN107311231A (zh) 一种具有光催化分解水制氢性能的超薄二维纳米片
CN106279763B (zh) 一种基于NaOH/尿素溶液的纳米ZnO纤维素复合材料的水热制备方法及应用
CN105642367B (zh) 一种以单晶硅为载体的消反射双层p/n异质结的层级复合材料及应用
CN105771949A (zh) 二氧化钛纳米半导体光催化薄膜的制备方法
Irwan et al. Effect of hexamethylenetetramine surfactant in morphology and optical properties of TiO2 nanoparticle for dye-sensitized solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240723

Address after: 810, 8th Floor, Building 10, Courtyard 1, Tianxing Street, Fangshan District, Beijing, 102400

Patentee after: Beijing Zhichanhui Technology Co.,Ltd.

Country or region after: China

Address before: No. 1, Weiyang District university garden, Xi'an, Shaanxi Province, Shaanxi

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

Country or region before: China