CN106920953A - 具有核壳结构的锂硫电池正极材料及其制备方法 - Google Patents

具有核壳结构的锂硫电池正极材料及其制备方法 Download PDF

Info

Publication number
CN106920953A
CN106920953A CN201710312265.9A CN201710312265A CN106920953A CN 106920953 A CN106920953 A CN 106920953A CN 201710312265 A CN201710312265 A CN 201710312265A CN 106920953 A CN106920953 A CN 106920953A
Authority
CN
China
Prior art keywords
shell structure
core shell
anode material
battery anode
cnt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710312265.9A
Other languages
English (en)
Other versions
CN106920953B (zh
Inventor
黄钊文
肖文平
张立荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shunde Vocational and Technical College
Shunde Polytechnic
Original Assignee
Shunde Vocational and Technical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shunde Vocational and Technical College filed Critical Shunde Vocational and Technical College
Priority to CN201710312265.9A priority Critical patent/CN106920953B/zh
Publication of CN106920953A publication Critical patent/CN106920953A/zh
Application granted granted Critical
Publication of CN106920953B publication Critical patent/CN106920953B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开一种具有核壳结构的锂硫电池正极材料,其特征在于:具有核壳结构,内核为具有纳米尺度的单质硫,内核的数量可以是一个,也可以是多个,次外层为疏松且具备良好导电性的碳纳米管、碳纳米纤维或者两者的混合物,最外层为柠檬酸或沥青裂解碳构成的具有一定硬度的外壳。本发明方法制备简便,成本低廉,且利于规模化生产,有利于实现锂硫电池正极材料的商业化。

Description

具有核壳结构的锂硫电池正极材料及其制备方法
技术领域
本发明涉及锂硫电池正极材料技术领域,更具体地说,是涉及一种具有核壳结构的锂硫电池正极材料及其制备方法。
背景技术
锂硫电池其电极理论容量达到1675mAh/g,电池能量密度高达2600Wh/kg,是在研的各种二次电池所无法比拟的。但是单质硫的导电性较弱,且存在多硫化物在电解液中的溶解,以及充放电过程中存在较大的体积膨胀与收缩,导致其至今无法商业化。
一种较常用的方法是硫与纳米无机金属复合,希望利用纳米无机金属的高比表面积实现对硫的吸附的同时提升硫的导电性,该方法的缺点是大幅降低电极的硫含量,大部分的载流量不足50%,无法体现锂硫电池的优越性;
另一种方法是硫与导电高分子化合物复合,将导电高分子作为硫的基质,并提供导电性,该方法能减少硫在电解液中的溶解,并为硫提供导电基质的作用,但仍无法解决体积膨胀的问题,且不能根本解决多硫化物在电解液中溶解的问题。
还有一种则是采用各种孔径的纳米碳及其衍生物(如石墨烯)与硫复合。由于纳米碳及其衍生物具有较强的导电性及吸附性,且能为硫的体积膨胀预留空间,目前能做出具有较高容量的样品。但其仍未能彻底解决硫的溶解问题。
发明内容
本发明的目的在于提供一种具有核壳结构的锂硫电池正极材料及其制备方法,以克服现有技术中所存在的不足。
本发明解决其技术问题的技术方案是:一种具有核壳结构的锂硫电池正极材料,其特征在于:具有核壳结构,内核为具有纳米尺度的单质硫,内核的数量可以是一个,也可以是多个,次外层为疏松且具备良好导电性的碳纳米管、碳纳米纤维或者两者的混合物,最外层为柠檬酸或沥青裂解碳构成的具有一定硬度的外壳。
一种锂硫电池正极材料的制备方法,其特征在于包括以下步骤:
S1)将单质硫与Ni(NO3)2·6H2O混合,放入纳米球磨机中球磨不少于40小时并充分干燥;
S2)放入通有氮气气氛保护的回转炉中,同时通入乙炔气体,加热使乙炔气体裂解成为碳纳米管或者碳纤维或者两者的混合物;
S3)将步骤S2)所获得的半成品与经有机溶剂溶解的柠檬酸或沥青充分混合;
S4)干燥后放入氮气气氛保护的炉中作热处理,柠檬酸或沥青裂解碳形成具有一定硬度的外壳。
上述具有核壳结构的锂硫电池正极材料的制备方法中,单质硫的总混合物中所占的质量百分比是70%-85%;Ni(NO3)2·6H2O的质量百分比是0.1%~1%;碳纳米管或者碳纤维或者两者的混合物的质量比为3%-10%;外壳质量比为4%~27%。
本发明的有益效果是:
本发明的单质硫具备纳米尺度(单体颗粒不大于100nm),能有效改变硫绝缘的特点;二是外包覆的疏松且具备良好导电性的碳纳米管或碳纳米纤维及其混合物能有效提升单质硫的导电性,且为硫可能存在的体积膨胀预留空间;三是外包覆具有一定硬度的外壳,彻底解决了多硫化物在电解液中溶解的问题,并将硫的嵌锂反应及体积膨胀控制在核壳结构内,能有效提升该正极材料的循环寿命及稳定性。
另外,本发明方法制备简便,成本低廉,且利于规模化生产,有利于实现锂硫电池正极材料的商业化。
附图说明
图1是本发明具有核壳结构的锂硫电池正极材料的制备方法流程示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
如图1所示,本发明提供了一种用于锂硫电池的正极材料及其制备方法。正极材料的特征如下:核壳结构正极材料10具有核壳结构11,内核为具有纳米尺度的单质硫内核13,内核的数量可以是一个,也可以是多个,次外层为疏松且具备良好导电性的碳纳米管、碳纳米纤维或者两者的混合物12,最外层为柠檬酸或沥青裂解碳构成的具有一定硬度的外壳。
该结构的优点在于:一是单质硫具备纳米尺度(单体颗粒不大于100nm),能有效改变硫绝缘的特点;二是外包覆的疏松且具备良好导电性的碳纳米管或碳纳米纤维及其混合物能有效提升单质硫的导电性,且为硫可能存在的体积膨胀预留空间;三是外包覆具有一定硬度的外壳,彻底解决了多硫化物在电解液中溶解的问题,并将硫的嵌锂反应及体积膨胀控制在核壳结构内,能有效提升该正极材料的循环寿命及稳定性。
制备方法:将质量比为70%-85%的单质硫2,与Ni(NO3)2·6H2O硝酸镍1充分混合,Ni(NO3)2·6H2O的质量比为0.1%~1%,后放入纳米球磨机中球磨不少于40小时,球磨在无水乙醇的环境中进行,经充分干燥后放入通有氮气气氛保护的回转炉3中,同时通入乙炔气体,加热使乙炔气体裂解成为碳纳米管或者碳纤维或者两者的混合物,沉积碳纳米管/碳纳米纤维复合层,碳纳米管或者碳纤维或者两者的混合物的质量比为3%-10%,将获得的半成品与经有机溶剂溶解的柠檬酸或沥青4充分混合,干燥后放入氮气气氛保护的炉5中作热处理,形成核壳结构正极材料10柠檬酸或沥青裂解碳形成具有一定硬度的外壳,外壳质量比为4%~27%。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员应当理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同替换所限定,在未经创造性劳动所作的改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种具有核壳结构的锂硫电池正极材料,其特征在于:正极材料具有核壳结构,内核为具有纳米尺度的单质硫,内核的数量是一个或多个,次外层为疏松且具备良好导电性的碳纳米管或碳纳米纤维或碳纳米管和碳纳米纤维两者的混合物,最外层为柠檬酸或沥青裂解碳构成的具有一定硬度的外壳。
2.根据权利要求1所述具有核壳结构的锂硫电池正极材料的制备方法,其特征在于包括以下步骤:
S1)将单质硫与Ni(NO3)2·6H2O混合,放入纳米球磨机中球磨不少于40小时并充分干燥;
S2)放入通有氮气气氛保护的回转炉中,同时通入乙炔气体,加热使乙炔气体裂解成为碳纳米管或者碳纤维或者两者的混合物;
S3)将步骤S2)所获得的半成品与经有机溶剂溶解的柠檬酸或沥青充分混合;
S4)干燥后放入氮气气氛保护的炉中作热处理,柠檬酸或沥青裂解碳形成具有一定硬度的外壳。
3.根据权利要求2所述具有核壳结构的锂硫电池正极材料的制备方法,其特征在于:单质硫的总混合物中所占的质量百分比是70%-85%;Ni(NO3)2·6H2O的质量百分比是0.1%~1%;碳纳米管或者碳纤维或者两者的混合物的质量比为3%-10%;外壳质量比为4%~27%。
CN201710312265.9A 2017-05-05 2017-05-05 具有核壳结构的锂硫电池正极材料及其制备方法 Active CN106920953B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710312265.9A CN106920953B (zh) 2017-05-05 2017-05-05 具有核壳结构的锂硫电池正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710312265.9A CN106920953B (zh) 2017-05-05 2017-05-05 具有核壳结构的锂硫电池正极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106920953A true CN106920953A (zh) 2017-07-04
CN106920953B CN106920953B (zh) 2019-05-24

Family

ID=59568486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710312265.9A Active CN106920953B (zh) 2017-05-05 2017-05-05 具有核壳结构的锂硫电池正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106920953B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611396A (zh) * 2017-09-08 2018-01-19 中国科学院山西煤炭化学研究所 一种硫‑沥青基/石墨烯复合材料及其制备方法和应用
CN107978736A (zh) * 2017-10-25 2018-05-01 温州大学 金属合金/碳管/石墨烯载硫复合正极材料及其制备方法与应用
CN108987707A (zh) * 2018-07-18 2018-12-11 顺德职业技术学院 一种锂离子电池用磷铜负极材料及其制备方法
CN109616619A (zh) * 2017-09-15 2019-04-12 原子能和替代能源委员会 制备具有大的活性表面积的锂-硫电池电极的方法
CN106920953B (zh) * 2017-05-05 2019-05-24 顺德职业技术学院 具有核壳结构的锂硫电池正极材料及其制备方法
CN111211300A (zh) * 2020-01-10 2020-05-29 南昌大学 金属镍/氮掺杂碳纳米管及其锂硫电池复合正极材料

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3772765A1 (en) * 2019-08-06 2021-02-10 Fundación Imdea Materiales Sulfur cathodes protected with hybrid solid-electrolyte interfaces for high performance li-s batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474633A (zh) * 2012-06-07 2013-12-25 中国人民解放军63971部队 一种具有网络双核壳结构的碳-硫-外壳物复合材料及其制备方法
CN104241612A (zh) * 2013-06-14 2014-12-24 中国科学院大连化学物理研究所 一种硫化聚合物包覆的硫/碳复合材料及其制备方法
CN104779376A (zh) * 2015-03-18 2015-07-15 河南师范大学 一种锂硫电池正极材料、制备方法和锂硫电池
CN105633379A (zh) * 2016-03-03 2016-06-01 大连理工大学 一种核壳结构碳/硫复合正极材料、制备方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106920953B (zh) * 2017-05-05 2019-05-24 顺德职业技术学院 具有核壳结构的锂硫电池正极材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474633A (zh) * 2012-06-07 2013-12-25 中国人民解放军63971部队 一种具有网络双核壳结构的碳-硫-外壳物复合材料及其制备方法
CN104241612A (zh) * 2013-06-14 2014-12-24 中国科学院大连化学物理研究所 一种硫化聚合物包覆的硫/碳复合材料及其制备方法
CN104779376A (zh) * 2015-03-18 2015-07-15 河南师范大学 一种锂硫电池正极材料、制备方法和锂硫电池
CN105633379A (zh) * 2016-03-03 2016-06-01 大连理工大学 一种核壳结构碳/硫复合正极材料、制备方法及其应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106920953B (zh) * 2017-05-05 2019-05-24 顺德职业技术学院 具有核壳结构的锂硫电池正极材料及其制备方法
CN107611396A (zh) * 2017-09-08 2018-01-19 中国科学院山西煤炭化学研究所 一种硫‑沥青基/石墨烯复合材料及其制备方法和应用
CN109616619A (zh) * 2017-09-15 2019-04-12 原子能和替代能源委员会 制备具有大的活性表面积的锂-硫电池电极的方法
CN107978736A (zh) * 2017-10-25 2018-05-01 温州大学 金属合金/碳管/石墨烯载硫复合正极材料及其制备方法与应用
CN107978736B (zh) * 2017-10-25 2020-09-22 温州大学 金属合金/碳管/石墨烯载硫复合正极材料及其制备方法与应用
CN108987707A (zh) * 2018-07-18 2018-12-11 顺德职业技术学院 一种锂离子电池用磷铜负极材料及其制备方法
CN111211300A (zh) * 2020-01-10 2020-05-29 南昌大学 金属镍/氮掺杂碳纳米管及其锂硫电池复合正极材料

Also Published As

Publication number Publication date
CN106920953B (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
Zhang et al. Na 3 V 2 (PO 4) 3: an advanced cathode for sodium-ion batteries
Ye et al. A high‐efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li–S batteries
CN106920953A (zh) 具有核壳结构的锂硫电池正极材料及其制备方法
Pei et al. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries
Liu et al. Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries
Zhuang et al. A freestanding MoO2‐decorated carbon nanofibers interlayer for rechargeable lithium sulfur battery
Dai et al. Uniform α-Ni (OH) 2 hollow spheres constructed from ultrathin nanosheets as efficient polysulfide mediator for long-term lithium-sulfur batteries
Yuan et al. Separator modified with N, S co-doped mesoporous carbon using egg shell as template for high performance lithium-sulfur batteries
Gong et al. An iodine quantum dots based rechargeable sodium–iodine battery
Cui et al. Ball‐cactus‐like Bi embedded in N‐riched carbon nanonetworks enables the best potassium storage performance
Yao et al. Facile synthesis of hierarchical Na2Fe (SO4) 2@ rGO/C as high-voltage cathode for energy density-enhanced sodium-ion batteries
Ren et al. Nitrogen-doped carbon fiber foam enabled sulfur vapor deposited cathode for high performance lithium sulfur batteries
Chen et al. S-doped carbon@ TiO2 to store Li+/Na+ with high capacity and long life-time
Ji et al. Flexible electrocatalytic nanofiber membrane reactor for lithium/sulfur conversion chemistry
Li et al. Molybdenum carbide nanocrystals modified carbon nanofibers as electrocatalyst for enhancing polysulfides redox reactions in lithium‐sulfur batteries
Zhang et al. In Situ Grown Hierarchical Electrospun Nanofiber Skeletons with Embedded Vanadium Nitride Nanograins for Ultra‐Fast and Super‐Long Cycle Life Aqueous Zn‐Ion Batteries
Xu et al. Hydrothermal synthesis of boron-doped unzipped carbon nanotubes/sulfur composite for high-performance lithium-sulfur batteries
Hu et al. Electrospinning synthesis of Na2MnPO4F/C nanofibers as a high voltage cathode material for Na-ion batteries
Zhu et al. Enhanced performance of Li‐S battery by constructing inner conductive network and outer adsorption layer sulfur‐carbon composite
Wu et al. A multidimensional and nitrogen-doped graphene/hierarchical porous carbon as a sulfur scaffold for high performance lithium sulfur batteries
Zhang et al. Cobalt nanoparticle-encapsulated carbon nanowire arrays: Enabling the fast redox reaction kinetics of lithium-sulfur batteries
CN109037554A (zh) 一种应用于锂硫电池的Ni/C复合纳米纤维膜及其制备方法和锂硫电池
CN109473643B (zh) 一种CoSe2/石墨烯复合材料制备方法和用途
Li et al. Hollow graphene spheres coated separator as an efficient trap for soluble polysulfides in LiS battery
Xie et al. Microbelt–void–microbelt-structured SnO 2@ C as an advanced electrode with outstanding rate capability and high reversibility

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant