CN106908322A - 一种基于全应力‑应变曲线的岩石脆性指数评价方法 - Google Patents

一种基于全应力‑应变曲线的岩石脆性指数评价方法 Download PDF

Info

Publication number
CN106908322A
CN106908322A CN201710098371.1A CN201710098371A CN106908322A CN 106908322 A CN106908322 A CN 106908322A CN 201710098371 A CN201710098371 A CN 201710098371A CN 106908322 A CN106908322 A CN 106908322A
Authority
CN
China
Prior art keywords
rock
brittleness index
stress
value
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710098371.1A
Other languages
English (en)
Other versions
CN106908322B (zh
Inventor
陈国庆
赵聪
刘顶
李天斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Original Assignee
Chengdu Univeristy of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology filed Critical Chengdu Univeristy of Technology
Priority to CN201710098371.1A priority Critical patent/CN106908322B/zh
Publication of CN106908322A publication Critical patent/CN106908322A/zh
Application granted granted Critical
Publication of CN106908322B publication Critical patent/CN106908322B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种基于全应力‑应变曲线的岩石脆性指数评价方法,该方法包括:从地应力,温度,水压等方面对待测岩样所处地质环境进行评价;选取符合待测岩样地质环境的岩石力学实验,包括单轴压缩实验,考虑温度的三轴压缩实验,考虑水压的三轴压缩实验;获取实验过程中各特征应力值以及其对应的应变大小;根据所提出的脆性指数计算方法,将特征应力值及应变带入进行计算,得到待测岩石的脆性指数。本方法是一种针对岩石所处地质环境并基于岩石力学实验全过程的脆性指数综合计算方法,提高了岩石脆性评价的合理性与准确性。

Description

一种基于全应力-应变曲线的岩石脆性指数评价方法
技术领域
本发明涉及岩石力学技术领域,具体地,涉及一种基于全应力-应变曲线的岩石脆性指数评价方法。
背景技术
脆性是岩石在极小的形变条件下发生破坏,并释放大量能量,深部岩体一般具有较高脆性,同时常伴随着高地温高水压的恶劣环境。作为岩石极为重要的一种性质,脆性评价对岩体工程有着重要的指导意义,例如在高地应力下的深部岩体工程中,岩体的脆性是影响岩爆等工程灾害的重要内部因素;脆性指标也是油气藏工程领域中储层力学特征、井壁稳定性评价以及水力压裂效果评价的重要指标;在岩体开挖进程中,岩石的脆性也决定了TBM掘进速度和钻机的钻孔效率。目前,国内外学者关于岩石脆性尚未形成统一的评价标准,如专利号201410461329.8公开的一种基于煤岩工业组分的脆性指数确定方法,采用煤岩工业组分结合测井资料方法确定脆性指数,其方法繁琐且只能适用于煤气领域,专利号201310254628.X公开的一种应用声发射能量值测定岩石脆性指数的方法,由于岩石声发射能量值具有较大的随机性,其测试结果不稳定,具有较大误差,但由于岩石的脆性与其力学特性密切相关,因此,对岩体所处环境下的力学特性进行研究可实现对脆性指标的准确评价。
发明内容
本发明目的在于提供一种基于全应力-应变曲线的岩石脆性指数评价方法,该方法基于岩石单轴实验或三轴实验的应力-应变曲线全过程的分析,可提高岩石脆性评价的合理性与准确性。
为实现上述目的,本发明实施例提供一种基于全应力-应变曲线的岩石脆性指数评价方法,包括:
从地应力,温度,水压方面对待测岩样所处地质环境进行评价;
选取符合待测岩样地质环境的岩石力学实验,包括单轴压缩实验,考虑温度的三轴压缩实验,考虑水压的三轴压缩实验;
获取实验过程中各特征应力值以及其对应的应变大小,各特征应力值包括起裂应力、峰值应力、残余应力;
根据所提出的脆性指数计算方法,将特征应力值及应变带入进行计算,得到待测岩石的脆性指数。
所述的脆性指数计算方法为:
其中:σi为起裂应力;σp为峰值应力;σr为残余应力;εi为起裂应变;εp为峰值应变;εr为残余应变;t为三轴压缩实验所设置温度;t20为外界环境温度,一般为20℃;D为三轴压缩实验所设置水压;k为系数,待测岩石为硬岩时取4,待测岩石为软岩时取2。
为了在实验中获取更好的峰后曲线,实验加载系统采用三段式控制,在实验开始时采用轴向位移控制,当轴向应力达到峰值强度70%-85%时,切换为环向位移控制,环向位移速率逐级递增,初始设定值为0.0025-0.0040mm/s,当应力达到峰值并开始下降至峰值强度的80%-90%时,将环向位移速率调整为初始值的1.5-2倍,当下降至峰值强度的50%-60%时,将环向位移速率调整为初始值的2.5-3倍,当下降至峰值强度的30%-40%时,调整为初始值的3.5-5倍,当下降至峰值强度10%-20%时,再次切换为轴向位移控制,来获得最终完整的峰后曲线。当试验岩样为硬岩时,在范围内取较大值;当试验岩样为软岩时,在范围内去取较小值。
结合岩石所处地质环境,当岩石无需考虑其他外部因素时,岩石力学实验选用单轴压缩实验,本发明所述的脆性指数计算方法采用B1
结合岩石所处地质环境,当岩石需要考虑温度因素时,一般伴随较高的地应力,岩石力学实验须选用考虑温度的三轴压缩实验,本发明所述的脆性指数计算方法采用B2
结合岩石所处地质环境,当岩石需要考虑水压因素时,一般伴随较高的地应力,岩石力学实验选用考虑水压的三轴压缩实验,本发明所述的脆性指数计算方法采用B3
本发明提供了一种基于全应力-应变曲线的岩石脆性指数计算方法,该方法模拟了岩样所处地质环境,同时也考虑到了岩石力学实验整个过程对岩样脆性指数的影响;相比于现有技术,本发明方法针对性强,操作简单,提高了岩石脆性评价的合理性与准确性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍。
图1为本发明的流程示意图;
图2为本发明实施例提供的四种岩样岩石力学实验的应力-应变曲线;
图3为本发明实施例提供的起裂应力值计算方法示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清除、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例一
对地表出露的大理岩、砂岩、粗颗粒花岗岩、细颗粒花岗岩进行脆性指数评价,如图1所示,本发明实施例提供的脆性指数计算方法,包括以下步骤:
对四种岩石所处地质环境进行评价:地表出露,地应力较小,且无温度、水压等影响;
由于岩样所处地质环境简单,选用单轴压缩实验,实验加载系统采用三段式控制,在实验开始时采用轴向位移控制,当轴向压力达到峰值强度70%时,切换为环向位移控制,环向位移速率逐级递增,初始设定值为0.0025mm/s,当曲线达到峰值并开始下降至峰值强度的90%时,将环向位移速率调整为0.005mm/s,当下降至峰值强度的60%时,将环向位移速率调整为0.01mm/s,当下降至峰值强度的40%时,调整为0.02mm/s,当下降至峰值强度10%时,再次切换为轴向位移控制,来获得最终完整的峰后曲线;
如图2所示,获得四种岩样在单轴压缩条件下的应力-应变曲线;
如图3所示,根据已有的技术方法,采用裂纹体积应变拐点法确定起裂应力值,四种岩样的应力-应变曲线获得岩样各特征应力值及应变值如表1。
表1实施例一的具体特征应力值及其应变值
带入单轴压缩的脆性指数计算方法:
最后,得到大理岩的脆性指数为B=1.059,砂岩的脆性指数为B=11.799,粗颗粒花岗岩的脆性指数为B=9.54,细颗粒花岗岩的脆性指数为B=11.858,因此可知,四种岩石的脆性程度为细颗粒花岗岩>砂岩>粗颗粒花岗岩>大理岩。
实施例二
对20℃,40℃,60℃,90℃下大理岩进行脆性指数评价,如图1所示,本发明实施例提供的脆性指数计算方法,包括以下步骤:
对四种温度下岩石所处地质环境进行评价:高地温岩石一般深埋地下,地应力较大,无水压影响;
选用三轴压缩试验,由于地应力较大,围压选用20MPa;
获取实验过程中各特征应力值以及其对应的应变大小如表2所示,各特征应力值包括起裂应力,峰值应力,残余应力;
表2实施例二的具体特征应力值及其应变值
带入考虑温度三轴压缩的脆性指数计算方法:
最后得到20℃的脆性指数为B20℃=4.156,40℃的脆性指数为B40℃=9.716,60℃的脆性指数为B60℃=17.074,90℃的脆性指数为B90℃=35.747,因此可知,四种温度下大理岩的脆性程度为90℃>60℃>40℃>20℃。
实施例三
对水压为0MPa,4MPa,8MPa,12MPa下大理岩进行脆性指数评价,如图1所示,本发明实施例提供的脆性指数计算方法,包括以下步骤:
对四种水压下岩石所处地质环境进行评价:高水压岩石一般深埋地下,地下水丰富,地应力较大,无温度影响;
选用三轴压缩试验,由于地应力较大,围压选用20MPa;
获取实验过程中各特征应力值以及其对应的应变大小如表3所示,各特征应力值包括起裂应力,峰值应力,残余应力;
表3实施例三的具体特征应力值及其应变值
带入考虑水压三轴压缩的脆性指数计算方法,其中k取4:
最后得到水压0MPa的脆性指数为B0MPa=4.271,4MPa的脆性指数为B4MPa=4.502,8MPa的脆性指数为B8MPa=5.040,12MPa的脆性指数为B12MPa=5.688,因此可知,四种水压下大理岩的脆性程度为12MPa>8MPa>4MPa>0MPa。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种基于全应力-应变曲线的岩石脆性指数评价方法,其特征在于,包括以下步骤:
(1)从地应力、温度、水压方面对待测岩样所处地质环境进行评价;
(2)选取符合待测岩样地质环境的岩石力学实验,包括单轴压缩实验、考虑温度的三轴压缩实验、考虑水压的三轴压缩实验;
(3)获取实验过程中各特征应力值以及其对应的应变大小,各特征应力值包括起裂应力、峰值应力、残余应力;
(4)根据脆性指数计算方法,将特征应力值及应变值带入进行计算,得到待测岩石的脆性指数;
所述的脆性指数计算方法为:
B 1 = ( σ p - σ i ) / σ p ( ϵ p - ϵ i ) / ϵ p + ( σ p - σ r ) / σ p ( ϵ r - ϵ p ) / ϵ p ;
其中:σi为起裂应力;σp为峰值应力;σr为残余应力;εi为起裂应变;εp为峰值应变;εr为残余应变;t为三轴压缩实验所设置温度;t20为外界环境温度,一般为20℃;D为三轴压缩实验所设置水压;k为系数,待测岩石为硬岩时取4,待测岩石为软岩时取2。
2.根据权利要求1所述的一种基于全应力-应变曲线的岩石脆性指数评价方法,其特征在于,为了在实验中获取更好的峰后曲线,实验加载系统采用三段式控制,在实验开始时采用轴向位移控制,当轴向应力达到峰值强度70%-85%时,切换为环向位移控制,环向位移速率逐级递增,初始设定值为0.0025-0.0040mm/s,当应力达到峰值并开始下降至峰值强度的80%-90%时,将环向位移速率调整为初始值的1.5-2倍,当下降至峰值强度的50%-60%时,将环向位移速率调整为初始值的2.5-3倍,当下降至峰值强度的30%-40%时,调整为初始值的3.5-5倍,当下降至峰值强度10%-20%时,再次切换为轴向位移控制,来获得最终完整的峰后曲线;当试验岩样为硬岩时,在范围内取较大值;当试验岩样为软岩时,在范围内去取较小值。
3.根据权利要求1所述的一种基于全应力-应变曲线的岩石脆性指数评价方法,其特征在于,结合岩石所处地质环境,当岩石无需考虑其他外部因素时,岩石力学实验选用单轴压缩实验,步骤4中脆性指数计算方法采用B1
4.根据权利要求1所述的一种基于全应力-应变曲线的岩石脆性指数评价方法,其特征在于,结合岩石所处地质环境,当岩石需要考虑温度因素时,伴随较高的地应力,岩石力学实验须选用考虑温度的三轴压缩实验,步骤4中脆性指数计算方法采用B2
5.根据权利要求1所述方法,其特征在于,结合岩石所处地质环境,当岩石需要考虑水压因素时,伴随较高的地应力,岩石力学实验选用考虑水压的三轴压缩实验,步骤4中脆性指数计算方法采用B3
CN201710098371.1A 2017-02-23 2017-02-23 一种基于全应力-应变曲线的岩石脆性指数评价方法 Active CN106908322B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710098371.1A CN106908322B (zh) 2017-02-23 2017-02-23 一种基于全应力-应变曲线的岩石脆性指数评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710098371.1A CN106908322B (zh) 2017-02-23 2017-02-23 一种基于全应力-应变曲线的岩石脆性指数评价方法

Publications (2)

Publication Number Publication Date
CN106908322A true CN106908322A (zh) 2017-06-30
CN106908322B CN106908322B (zh) 2019-04-23

Family

ID=59208561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710098371.1A Active CN106908322B (zh) 2017-02-23 2017-02-23 一种基于全应力-应变曲线的岩石脆性指数评价方法

Country Status (1)

Country Link
CN (1) CN106908322B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108020472A (zh) * 2017-12-07 2018-05-11 武汉大学 软岩填料劣化试验设备及试验方法
CN109238854A (zh) * 2018-10-21 2019-01-18 东北石油大学 一种确定破裂岩石裂缝面积的致密储层可压性评价方法
CN110006738A (zh) * 2019-02-28 2019-07-12 中国石油大学(北京) 一种基于应力应变曲线和划痕测试的岩石脆性评价方法
CN110726608A (zh) * 2019-11-08 2020-01-24 西南石油大学 一种基于应力-应变曲线能量演化的页岩脆性评价方法
CN111238931A (zh) * 2019-12-30 2020-06-05 长江大学 基于能量演化的页岩脆性指数评价方法
CN111353239A (zh) * 2020-03-26 2020-06-30 武汉大学 岩石脆性指数计算方法及装置
CN111504780A (zh) * 2020-04-07 2020-08-07 武汉大学 黏结裂纹模型中的岩石软化曲线确定方法及装置
CN111504779A (zh) * 2020-04-07 2020-08-07 武汉大学 利用脆性指数确定岩石软化曲线的方法及装置
CN111811924A (zh) * 2020-07-06 2020-10-23 安徽理工大学 一种判别岩石扩容起始点的红外试验方法
CN112240847A (zh) * 2020-07-21 2021-01-19 中煤科工集团重庆研究院有限公司 一种定量分析环境因素对煤系泥岩力学性质影响的方法
CN112461662A (zh) * 2020-11-26 2021-03-09 西南石油大学 一种基于应力-应变曲线定量表征岩石脆性的新方法
CN113051727A (zh) * 2021-03-13 2021-06-29 西华大学 基于岩石峰前起裂及峰后应力特征的脆性评价方法及系统
CN114861519A (zh) * 2022-03-07 2022-08-05 成都理工大学 复杂地质条件下初始地应力场加速优化反演方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406849A (zh) * 2014-11-21 2015-03-11 中国石油天然气股份有限公司 一种储层岩石脆性的预测方法及装置
CN104777035A (zh) * 2015-04-08 2015-07-15 西南石油大学 一种基于单轴强度实验的页岩可压性综合评价方法
CN106248494A (zh) * 2016-08-29 2016-12-21 中国石油化工股份有限公司江汉油田分公司石油工程技术研究院 一种用于页岩气井储层脆性综合评价的方法
CN106323760A (zh) * 2015-09-25 2017-01-11 王伟 一种岩石脆性试验方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406849A (zh) * 2014-11-21 2015-03-11 中国石油天然气股份有限公司 一种储层岩石脆性的预测方法及装置
CN104777035A (zh) * 2015-04-08 2015-07-15 西南石油大学 一种基于单轴强度实验的页岩可压性综合评价方法
CN106323760A (zh) * 2015-09-25 2017-01-11 王伟 一种岩石脆性试验方法
CN106248494A (zh) * 2016-08-29 2016-12-21 中国石油化工股份有限公司江汉油田分公司石油工程技术研究院 一种用于页岩气井储层脆性综合评价的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DECHENG ZHANG等: "The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: A review", 《JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING》 *
张志镇 等: "高温后花岗岩应力脆性跌落系数的实验研究", 《实验力学》 *
李庆辉 等: "页岩脆性的室内评价方法及改进", 《岩石力学与工程学报》 *
王宇 等: "脆性岩石起裂应力水平与脆性指标关系探讨", 《岩石力学与工程学报》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108020472A (zh) * 2017-12-07 2018-05-11 武汉大学 软岩填料劣化试验设备及试验方法
CN109238854B (zh) * 2018-10-21 2021-03-26 东北石油大学 一种确定破裂岩石裂缝面积的致密储层可压性评价方法
CN109238854A (zh) * 2018-10-21 2019-01-18 东北石油大学 一种确定破裂岩石裂缝面积的致密储层可压性评价方法
CN110006738A (zh) * 2019-02-28 2019-07-12 中国石油大学(北京) 一种基于应力应变曲线和划痕测试的岩石脆性评价方法
CN110726608A (zh) * 2019-11-08 2020-01-24 西南石油大学 一种基于应力-应变曲线能量演化的页岩脆性评价方法
CN111238931A (zh) * 2019-12-30 2020-06-05 长江大学 基于能量演化的页岩脆性指数评价方法
CN111238931B (zh) * 2019-12-30 2023-08-22 长江大学 基于能量演化的页岩脆性指数评价方法
CN111353239A (zh) * 2020-03-26 2020-06-30 武汉大学 岩石脆性指数计算方法及装置
CN111504780A (zh) * 2020-04-07 2020-08-07 武汉大学 黏结裂纹模型中的岩石软化曲线确定方法及装置
CN111504779A (zh) * 2020-04-07 2020-08-07 武汉大学 利用脆性指数确定岩石软化曲线的方法及装置
CN111811924A (zh) * 2020-07-06 2020-10-23 安徽理工大学 一种判别岩石扩容起始点的红外试验方法
CN111811924B (zh) * 2020-07-06 2023-12-12 安徽理工大学 一种判别岩石扩容起始点的红外试验方法
CN112240847A (zh) * 2020-07-21 2021-01-19 中煤科工集团重庆研究院有限公司 一种定量分析环境因素对煤系泥岩力学性质影响的方法
CN112461662A (zh) * 2020-11-26 2021-03-09 西南石油大学 一种基于应力-应变曲线定量表征岩石脆性的新方法
CN112461662B (zh) * 2020-11-26 2022-05-06 西南石油大学 一种基于应力-应变曲线定量表征岩石脆性的新方法
CN113051727A (zh) * 2021-03-13 2021-06-29 西华大学 基于岩石峰前起裂及峰后应力特征的脆性评价方法及系统
CN113051727B (zh) * 2021-03-13 2022-12-23 西华大学 基于岩石峰前起裂及峰后应力特征的脆性评价方法及系统
CN114861519A (zh) * 2022-03-07 2022-08-05 成都理工大学 复杂地质条件下初始地应力场加速优化反演方法

Also Published As

Publication number Publication date
CN106908322B (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
CN106908322B (zh) 一种基于全应力-应变曲线的岩石脆性指数评价方法
Kong et al. Dynamic mechanical characteristics and fracture mechanism of gas-bearing coal based on SHPB experiments
Lade et al. The concept of effective stress for soil, concrete and rock
Yu et al. Triaxial test research on mechanical properties and permeability of sandstone with a single joint filled with gypsum
Lin et al. Anisotropic characteristic of irregular columnar-jointed rock mass based on physical model test
Yu et al. Experimental study on time-dependent behavior of silty mudstone from the Three Gorges Reservoir Area, China
CN104374684A (zh) 用于测试采动过程卸荷煤岩体渗透率的系统及其应用
Wang et al. Triaxial creep behavior of coal containing gas in laboratory
CN204165873U (zh) 用于测试采动过程卸荷煤岩体渗透率的系统
Wu et al. Sealing Form and Failure Mechanism of Deep In Situ Rock Core Pressure‐Maintaining Controller
CN115169163B (zh) 考虑不规则钻孔和裂隙形状的水压致裂地应力计算方法
Zhang et al. A novel apparatus for dynamic-static coupling tests on gas-adsorbed coal
Yi-shun et al. Experimental study on the influence of temperature and damage degree on the permeability of sandstone
Xv et al. Experimental study on hydraulic fracture propagation in conglomerate reservoirs
Hu et al. An experimental study on the interaction law of the pore gas pressure and stress in gassy coals
Chen et al. The Suitable Strength Criterion to Determine the Collapse of Hydrate Reservoirs with Different Saturation
Li et al. Creep properties of expansive soils under triaxial drained conditions and its nonlinear constitutive model
Abdellah et al. Numerical simulation of mechanical behavior of rock samples under uniaxial and triaxial compression tests
Ván et al. Centenary of the first triaxial test–recalculation of the results of Kármán
Fu et al. Experimental investigations on the effect of high temperature and pressure on the mechanical properties and drillability of granite
CN112418597B (zh) 一种适用于页岩气老区开发调整井的储层可压性评价方法
Yang et al. Application of a damage model to submarine slope stability after gas hydrate dissociation
Zhang et al. Experimental Study on Shear Failure Characteristics and Crack Propagation Laws of Rocks with Various Joint Angles under Hydro-Mechanical Coupling
He et al. A discrete approach for modelling the permeability evolution of granite under triaxial and true-triaxial stress conditions
Luo et al. Development and applications of the quasi‐dynamic triaxial apparatus for deep rocks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant