CN106893984A - 增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法 - Google Patents
增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法 Download PDFInfo
- Publication number
- CN106893984A CN106893984A CN201710064299.0A CN201710064299A CN106893984A CN 106893984 A CN106893984 A CN 106893984A CN 201710064299 A CN201710064299 A CN 201710064299A CN 106893984 A CN106893984 A CN 106893984A
- Authority
- CN
- China
- Prior art keywords
- ito
- film
- visible light
- light wave
- electron beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
- C23C14/30—Vacuum evaporation by wave energy or particle radiation by electron bombardment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明涉及一种增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法,分别采用电子束蒸发法、直流反应磁控溅射法沉积ITO、Au薄膜,获得ITO/Au/ITO复合结构薄膜。然后将样品进行电子束辐照改性,即可得到所述具有可见光波段透射增强特性的ITO/Au/ITO复合薄膜。本发明可通过控制电子束功率大小及辐照时间控制其可见光透过率,操作方法及流程简单,可重复性高且可控性强。
Description
技术领域
本发明涉及一种薄膜制备方法,特别涉及一种增强可见光波段透射的掺锡氧化铟基透明导电复合薄膜的制备方法。
背景技术
透明导电氧化 (Transparent Conductive Oxide, TCO)薄膜是当前研究和使用最为广泛的薄膜材料之一,被广泛应用于太阳能电池,电子显示屏,红外探测器等领域。随着光电器件技术的进步,人们越来越重视具有优异光电性能的TCO透明导电膜的研究。近年来,TCO透明导电膜得以迅速发展,特别是在薄膜晶体管(TFT)制造、平板液晶显示(LCD)、太阳电池透明电极以及红外辐射反射镜涂层、火车飞机用玻璃除霜、建筑物幕墙玻璃等方面获得广泛应用。
TCO透明导电膜具有高硬度、耐磨性、耐化学腐蚀特性,拥有良好的加工性能。这种膜具有禁带宽、可见光谱区光透射率高和电阻率低等优异的光电特性。特别地,在电气和航空方面,要求其对可见光有良好的透过性能。在实际应用中,被使用最广的透明导电氧化薄膜为掺锡氧化铟(Indium-Tin Oxide,ITO)导电薄膜,且以ITO为基的透明导电复合薄膜也得以广泛应用。因此,如果能够进一步提高ITO基透明导电复合薄膜在可见光波段的透过率,将对其在航空电气领域的应用有重要意义。
为了提高ITO基透明导电复合薄膜在可见光波段的透过率,国内外研究者在材料和工艺上进行创新,各种新工艺不断涌现。现在,已有许多研究方法可以有效提高透明导电复合薄膜在可见光波段的透过率,例如超声雾化喷涂法(USES)、金属有机化合物化学气相沉淀(MOCVD)等。但这些制备方法成本较高,操作困难,其技术问题限制了高可见光波段透光率ITO透明导电复合薄膜的广泛应用。因此,仍需要对ITO基透明导电复合薄膜可见光波段透射增强特性制备方法做进一步的研究。
发明内容
本发明是针对提高ITO基透明导电复合薄膜在可见光波段的透过率存在的问题,提出了一种增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法,进一步提高了透明导电氧化薄膜可见光区域的透过率,且具有操作简单、成本低廉、可重复性高的特点。
本发明的技术方案为:一种增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法,具体包括如下步骤:
1)在电子束蒸发设备中,将石英基片放置于镀膜夹具;
2)在真空度大于5×10-4Pa、300-400℃的烘烤温度下,在以20-40r/min的速率自转的石英基片上采用电子束蒸发法沉积ITO层;
3)待真空室温度降至室温时,取出基片放置于直流反应磁控溅射设备中作为阳极;以Au靶作为阴极溅射靶,以氩气作为溅射气体;预先对金靶溅射10-20min,去除其表面杂质;得到预溅射靶材后,在ITO层上沉积Au层,形成Au/ITO双层复合薄膜;
4)再将制备的双层复合薄膜放回电子束蒸发设备中,重复步骤1)和2)得到ITO/Au/ITO复合薄膜;
5)将制备好的ITO/Au/ITO复合薄膜放置于电子束辐照设备中,待真空室抽至真空度大于5×10-4Pa时,在100-150W的功率下用电子束辐照轰击复合薄膜的表面5-30min使其改性;复合薄膜冷却至室温,即可得到具有可见光波段透射增强特性的ITO/Au/ITO复合薄膜。
一种增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法,具体包括如下步骤:
(1)将选定的石英基片依次经过丙酮、酒精和去离子水超声波清洗10min后,将其放置于电子束蒸发设备的镀膜夹具中;
(2) 将ITO膜料放置于坩埚中,待真空室的真空度和烘烤温度达到设定值时,对ITO膜料先预蒸发10~20min, 然后通入反应气体再以1.0-3.0Å/s的速率在石英基片上沉积ITO膜层;
(3)待真空室温度降至室温时,取出镀有膜层的石英基片放置于直流反应磁控溅射设备的夹具中作为阳极与真空室相连,以Au靶作为阴极溅射靶,活动挡板置于基底夹具与金靶材之间,通入氩气作为溅射气体,保持真空室内的工作压强为0.8Pa,打开活动挡板并预溅射Au靶10-20min,然后在ITO膜层上溅射沉积Au膜层,即可获得Au/ITO复合薄膜;
(4)再将Au/ITO复合薄膜放回电子束蒸发设备中,重复步骤(2)在Au膜层上沉积ITO膜层,即可获得ITO/Au/ITO复合薄膜;
(5)将制备得到的ITO/Au/ITO复合薄膜放置于电子束辐照设备中,待真空室抽至大于5×10-4Pa真空度时,在100-150W功率下,用电子束辐照轰击复合薄膜的表面5-15min使其改性,并冷却至室温,即获得具有可见光波段透射增强特性的ITO/Au/ITO复合薄膜。
所述步骤(2)中反应气体为纯度为99.99%的氧气。
所述阴极溅射靶材为纯度99.99%以上的金靶。
本发明的有益效果在于:本发明增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法,相对于其它制备方法,采用电子束蒸发法和电子束辐照法制备的具有可见光波段透射增强特性的ITO基(具体为ITO/Au/ITO)复合薄膜,成本低廉,操作流程简单且重复性高和可控性强,具有重要意义。
附图说明
图1为本发明ITO/Au/ITO复合薄膜的结构示意图;
图2为本发明实施例中制备的ITO/Au/ITO复合薄膜的可见光波段的透过率图谱。
具体实施方式
实施例1
增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法步骤如下:(1):采用电子束蒸发法,石英基片4依次经过丙酮、酒精和去离子水超声波清洗10min后,放置于电子束蒸发设备的镀膜夹具中;(2):将ITO膜料放置于坩埚中;待一定真空度和一定烘烤温度时,对ITO膜料先预蒸发 (10~20min),然后以一定速率在石英基片4上沉积ITO膜层3;(3):待真空室温度降至室温时,取出镀有膜层3的基片放置于直流反应磁控溅射设备的夹具中作为阳极,以Au靶作为阴极溅射靶,通入氩气作为溅射气体,打开活动挡板并预溅射Au靶(10-20min),然后在ITO层上溅射沉积Au膜层2得到Au/ITO双层复合薄膜;(4):再将(3)中所得薄膜放回电子束蒸发设备中,重复(2)在所得双层复合薄膜上沉积ITO膜层1,即可获得ITO/Au/ITO复合薄膜。
将制备得到的ITO/Au/ITO复合薄膜放置于电子束辐照设备中,待真空室抽至一定真空度时,在一定功率下,用电子束辐照轰击复合薄膜的表面5min使其改性,并冷却(至室温)一定时间即可获得所述具有可见光波段透射增强特性的ITO/Au/ITO复合薄膜。
其中,所述一定真空度大于5×10-4Pa;所述烘烤温度为300-400℃;所述一定速率为1.0-3.0Å/s;所述一定功率为100-150W;所述一定时间为30min。
实施例2
增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法步骤如下:(1):采用电子束蒸发法,石英基片4依次经过丙酮、酒精和去离子水超声波清洗10min后,放置于电子束蒸发设备的镀膜夹具中;(2):将ITO膜料放置于坩埚中;待一定真空度和一定烘烤温度时,对ITO膜料先预蒸发 (10~20min),然后以一定速率在石英基片4上沉积ITO膜层3;(3):待真空室温度降至室温时,取出镀有膜层3的基片放置于直流反应磁控溅射设备的夹具中作为阳极,以Au靶作为阴极溅射靶,通入氩气作为溅射气体,打开活动挡板并预溅射Au靶(10-20min),然后在ITO层上溅射沉积Au膜层2得到Au/ITO双层复合薄膜;(4):再将(3)中所得薄膜放回电子束蒸发设备中,重复(2)在所得双层复合薄膜上沉积ITO膜层1,即可获得ITO/Au/ITO复合薄膜。
将制备得到的ITO/Au/ITO复合薄膜放置于电子束辐照设备中,待真空室抽至一定真空度时,在一定功率下,用电子束辐照轰击复合薄膜的表面10min使其改性,并冷却(至室温)一定时间即可获得所述具有可见光波段透射增强特性的ITO/Au/ITO复合薄膜。
其中,所述一定真空度大于5×10-4Pa;所述烘烤温度为300-400℃;所述一定速率为1.0-3.0Å/s;所述一定功率为100-150W;所述一定时间为30min
实施例3
增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法步骤如下:(1):采用电子束蒸发法,石英基片4依次经过丙酮、酒精和去离子水超声波清洗10min后,放置于电子束蒸发设备的镀膜夹具中;(2):将ITO膜料放置于坩埚中;待一定真空度和一定烘烤温度时,对ITO膜料先预蒸发 (10~20min),然后以一定速率在石英基片4上沉积ITO膜层3;(3):待真空室温度降至室温时,取出镀有膜层3的基片放置于直流反应磁控溅射设备的夹具中作为阳极,以Au靶作为阴极溅射靶,通入氩气作为溅射气体,打开活动挡板并预溅射Au靶(10-20min),然后在ITO层上溅射沉积Au膜层2得到Au/ITO双层复合薄膜;(4):再将(3)中所得薄膜放回电子束蒸发设备中,重复(2)在所得双层复合薄膜上沉积ITO膜层1,即可获得ITO/Au/ITO复合薄膜。
将制备得到的ITO/Au/ITO复合薄膜放置于电子束辐照设备中,待真空室抽至一定真空度时,在一定功率下,用电子束辐照轰击复合薄膜的表面15min使其改性,并冷却(至室温)一定时间即可获得所述具有可见光波段透射增强特性的ITO/Au/ITO复合薄膜。
其中,所述一定真空度大于5×10-4Pa;所述烘烤温度为300-400℃;所述一定速率为1.0-3.0Å/s;所述一定功率为100-150W;所述一定时间为30min。
所述步骤(2)中反应气体为氧气;所述反应气体的纯度为99.99%。所述阴极溅射靶材为纯度99.99%以上的金靶。
实施例1至3为用电子束辐照轰击复合薄膜的表面在不同时间下可得相似(可见光波段透射增强)效果,如图2所示3个实施例中制备的ITO/Au/ITO复合薄膜的可见光波段的透过率图谱。
Claims (4)
1.一种增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法,其特征在于,具体包括如下步骤:
1)在电子束蒸发设备中,将石英基片放置于镀膜夹具;
2)在真空度大于5×10-4Pa、300-400℃的烘烤温度下,在以20-40r/min的速率自转的石英基片上采用电子束蒸发法沉积ITO层;
3)待真空室温度降至室温时,取出基片放置于直流反应磁控溅射设备中作为阳极;以Au靶作为阴极溅射靶,以氩气作为溅射气体;预先对金靶溅射10-20min,去除其表面杂质;得到预溅射靶材后,在ITO层上沉积Au层,形成Au/ITO双层复合薄膜;
4)再将制备的双层复合薄膜放回电子束蒸发设备中,重复步骤1)和2)得到ITO/Au/ITO复合薄膜;
5)将制备好的ITO/Au/ITO复合薄膜放置于电子束辐照设备中,待真空室抽至真空度大于5×10-4Pa时,在100-150W的功率下用电子束辐照轰击复合薄膜的表面5-30min使其改性;复合薄膜冷却至室温,即可得到具有可见光波段透射增强特性的ITO/Au/ITO复合薄膜。
2.一种增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法,其特征在于,具体包括如下步骤:
(1)将选定的石英基片依次经过丙酮、酒精和去离子水超声波清洗10min后,将其放置于电子束蒸发设备的镀膜夹具中;
(2) 将ITO膜料放置于坩埚中,待真空室的真空度和烘烤温度达到设定值时,对ITO膜料先预蒸发10~20min, 然后通入反应气体再以1.0-3.0Å/s的速率在石英基片上沉积ITO膜层;
(3)待真空室温度降至室温时,取出镀有膜层的石英基片放置于直流反应磁控溅射设备的夹具中作为阳极与真空室相连,以Au靶作为阴极溅射靶,活动挡板置于基底夹具与金靶材之间,通入氩气作为溅射气体,保持真空室内的工作压强为0.8Pa,打开活动挡板并预溅射Au靶10-20min,然后在ITO膜层上溅射沉积Au膜层,即可获得Au/ITO复合薄膜;
(4)再将Au/ITO复合薄膜放回电子束蒸发设备中,重复步骤(2)在Au膜层上沉积ITO膜层,即可获得ITO/Au/ITO复合薄膜;
(5)将制备得到的ITO/Au/ITO复合薄膜放置于电子束辐照设备中,待真空室抽至大于5×10-4Pa真空度时,在100-150W功率下,用电子束辐照轰击复合薄膜的表面5-15min使其改性,并冷却至室温,即获得具有可见光波段透射增强特性的ITO/Au/ITO复合薄膜。
3.根据权利要求2所述增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法,其特征在于,所述步骤(2)中反应气体为纯度为99.99%的氧气。
4.根据权利要求1或2所述增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法,其特征在于,所述阴极溅射靶材为纯度99.99%以上的金靶。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710064299.0A CN106893984B (zh) | 2017-02-04 | 2017-02-04 | 增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710064299.0A CN106893984B (zh) | 2017-02-04 | 2017-02-04 | 增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106893984A true CN106893984A (zh) | 2017-06-27 |
CN106893984B CN106893984B (zh) | 2019-03-05 |
Family
ID=59198650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710064299.0A Active CN106893984B (zh) | 2017-02-04 | 2017-02-04 | 增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106893984B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107783214A (zh) * | 2017-10-13 | 2018-03-09 | 苏州领锐源奕光电科技有限公司 | 一种中阶梯光栅用铝薄膜的制备方法 |
CN109536932A (zh) * | 2017-09-22 | 2019-03-29 | 株式会社斯库林集团 | 薄膜形成方法及薄膜形成装置 |
CN111334771A (zh) * | 2020-04-24 | 2020-06-26 | 中国科学院兰州化学物理研究所 | 一种电致变色薄膜及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6153271A (en) * | 1999-12-30 | 2000-11-28 | General Vacuum, Inc. | Electron beam evaporation of transparent indium tin oxide |
CN102074654A (zh) * | 2010-11-23 | 2011-05-25 | 中国科学院半导体研究所 | 提高聚合物太阳电池效率的制备方法 |
CN102644055A (zh) * | 2012-04-05 | 2012-08-22 | 东南大学 | 一种氮掺杂二氧化锡薄膜的制备方法 |
CN105002467A (zh) * | 2015-08-18 | 2015-10-28 | 合肥工业大学 | 一种Cu-Ti非晶合金薄膜及其制备方法 |
-
2017
- 2017-02-04 CN CN201710064299.0A patent/CN106893984B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6153271A (en) * | 1999-12-30 | 2000-11-28 | General Vacuum, Inc. | Electron beam evaporation of transparent indium tin oxide |
CN102074654A (zh) * | 2010-11-23 | 2011-05-25 | 中国科学院半导体研究所 | 提高聚合物太阳电池效率的制备方法 |
CN102644055A (zh) * | 2012-04-05 | 2012-08-22 | 东南大学 | 一种氮掺杂二氧化锡薄膜的制备方法 |
CN105002467A (zh) * | 2015-08-18 | 2015-10-28 | 合肥工业大学 | 一种Cu-Ti非晶合金薄膜及其制备方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109536932A (zh) * | 2017-09-22 | 2019-03-29 | 株式会社斯库林集团 | 薄膜形成方法及薄膜形成装置 |
CN107783214A (zh) * | 2017-10-13 | 2018-03-09 | 苏州领锐源奕光电科技有限公司 | 一种中阶梯光栅用铝薄膜的制备方法 |
CN111334771A (zh) * | 2020-04-24 | 2020-06-26 | 中国科学院兰州化学物理研究所 | 一种电致变色薄膜及其制备方法和应用 |
CN111334771B (zh) * | 2020-04-24 | 2021-04-27 | 中国科学院兰州化学物理研究所 | 一种电致变色薄膜及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN106893984B (zh) | 2019-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101294272A (zh) | 柔性衬底上室温溅射沉积氧化铟锡透明导电薄膜的方法 | |
CN105821378B (zh) | 一种铌掺杂二氧化锡透明导电膜及其制备方法 | |
Maniv et al. | Transparent conducting zinc oxide and indium–tin oxide films prepared by modified reactive planar magnetron sputtering | |
CN104178731B (zh) | 一种电致变色wo3薄膜的可控制备方法 | |
US8409694B2 (en) | Coated glass and method for making the same | |
CN101465172A (zh) | 复合结构透明导电膜及其制备方法 | |
TW202139214A (zh) | 透明導電性膜 | |
CN102174689A (zh) | Fzo/金属/fzo透明导电薄膜及其制备方法 | |
CN106893984B (zh) | 增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法 | |
CN105551579A (zh) | 一种可电致变色的多层透明导电薄膜及其制备方法 | |
CN106756792A (zh) | 一种氧化物透明电极薄膜的制备方法 | |
Chiang et al. | Deposition of high-transmittance ITO thin films on polycarbonate substrates for capacitive-touch applications | |
CN108914077A (zh) | 一种基于Nb2O5的透明导电氧化物薄膜及其制备方法 | |
CN106119778A (zh) | 室温溅射沉积柔性azo透明导电薄膜的方法 | |
JP2003105533A (ja) | 透明導電膜の製造方法及び透明導電膜 | |
CN114231903B (zh) | 一种氧化铌/银纳米线双层结构柔性透明导电薄膜及其制备方法 | |
CN109735805A (zh) | 一种表面等离子体吸收增强的铟锡氧化物薄膜的制备方法 | |
CN105908127A (zh) | 一种p型掺杂二氧化锡透明导电膜及其制备方法 | |
CN108511535A (zh) | 一种太阳能电池片及其制备方法 | |
CN112941476B (zh) | 一种二氧化锡/铜/二氧化锡多层透明导电薄膜及其制备方法与应用 | |
US11500257B2 (en) | Inorganic solid-state electrochromic module containing inorganic transparent conductive film | |
CN110408887B (zh) | 晶圆级硅基铝表面的ito透明导电层的制备方法 | |
CN106548929B (zh) | 一种ito基透明导电薄膜近红外波段透射增强的制备方法 | |
CN112941479B (zh) | 一种二氧化锡/银/二氧化锡透明导电膜调整银层厚度的方法及应用 | |
CN107245702A (zh) | 一种采用沉积法制备氧化钛薄膜的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |