CN106890663B - 新型碱性mnc-13介孔分子筛催化裂解生物油脂制备液体燃料油的方法 - Google Patents

新型碱性mnc-13介孔分子筛催化裂解生物油脂制备液体燃料油的方法 Download PDF

Info

Publication number
CN106890663B
CN106890663B CN201710205836.9A CN201710205836A CN106890663B CN 106890663 B CN106890663 B CN 106890663B CN 201710205836 A CN201710205836 A CN 201710205836A CN 106890663 B CN106890663 B CN 106890663B
Authority
CN
China
Prior art keywords
mnc
oil
molecular sieve
mesopore molecular
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710205836.9A
Other languages
English (en)
Other versions
CN106890663A (zh
Inventor
王志萍
李露
于世涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201710205836.9A priority Critical patent/CN106890663B/zh
Publication of CN106890663A publication Critical patent/CN106890663A/zh
Application granted granted Critical
Publication of CN106890663B publication Critical patent/CN106890663B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)

Abstract

本发明涉及一种以新型碱性介孔分子筛催化裂解生物油脂制备液体燃料油的方法,其特征是以自制的含有碱金属元素β沸石为导向剂,以合成的三乙胺类离子液体[HSO3‑(CH2)3‑NEt3][Cl]为模板剂,合成了碱性介孔分子筛K‑MNC‑13,Ca‑MNC‑13,Ba‑MNC‑13,Mg‑MNC‑13。分别采用所合成的四种分子筛为催化剂,在380‑430℃下对生物油脂进行催化裂解反应,生物油脂的裂解率可达90%,液体燃料油的收率可达70%,产物的主要成分分布在C12~C17之间,所得燃料油的性能指标与0号柴油相当。所用的碱性MNC‑13催化剂具有良好的使用寿命。

Description

新型碱性MNC-13介孔分子筛催化裂解生物油脂制备液体燃料 油的方法
技术领域
本发明属于生物质能源转化技术领域,主要涉及以新型碱性MNC-13介孔分子筛为催化剂催化裂解生物油脂制备液体燃料油的方法。
背景技术
生物质由于可以直接转化得到液体燃料油而成为近年研究的热点,目前利用油脂制备液体燃料油的方法有酯交换法,催化加氢法,催化热裂解法。其中催化热裂解法生产工序及设备简单,成本低,且裂解过程中不产生甘油,后处理步骤简单,具有很好的应用前景。催化裂解生物油脂的传统催化剂有Na2CO3,K2CO3等(Bioresour.Technol.2009,100,4867-4870;Bioresour Technol 2010,101,9803-9806),该催化剂不能重复使用,且裂解油分子量分布宽,影响燃料油的品质。微孔分子筛ZSM-5是目前生物质油催化裂解中研究最多的催化剂,受微孔分子筛孔径的限制,裂解得到的产物的分子量分布变窄,但都集中在C10以下的低分子量产物上,同时液体产物的产率较低,催化剂结焦率高、寿命短、再生性能较差(Fuel,2001,80:17-26;The Canadian Journal of Chemical Engineering,2000,78:343-354;Energy,2000,25(6):493-513)。介孔分子筛具有一维开阔的孔道结构,对催化大分子化合物或在重原料方面具有明显的优势,得到的裂解油组成与柴油接近,但裂解油收率较低(Microporous and Mesoporous Materials,2006,96(1-3):93-101)。由此可见,新型催化剂的研究对热裂解法制备液体燃料油意义重大。
发明内容
为了解决现有催化裂解生物质油中催化剂重复使用性能差,所得裂解油品质差、产率低等问题,本发明提供了一种以新型碱性MNC-13介孔分子筛为催化剂催化裂解生物油脂制备液体燃料油的方法,该方法生产的液体燃料油产率高,产物主要为C12~C17的直链烃类化合物,性能稳定,同时催化剂可以重复使用。
为了解决目前介孔分子筛存在的酸度低、稳定性差,以及微孔分子筛孔径小、孔道易堵塞等缺陷,本发明提供了一种以酸功能化离子液体作为模板剂合成新型介孔分子筛的方法。
本发明所采用的生物油脂为橡胶籽油或者餐饮废弃油脂中的任意一种。
本发明所用新型碱性MNC-13介孔分子筛催化剂为自制品,其中K-MNC-13,Ca-MNC-13,Ba-MNC-13,Mg-MNC-13的具体合成步骤如下:将KCl(或CaCl2,或BaCl2,或MgSO4),NaOH,Na2SiO3,SiO2水溶液(质量分数30%)和质量分数为25%的TEAOH的水溶液按照摩尔比为n(KCl或CaCl2,或BaCl2,或MgSO4)/n(SiO2)/n(Na2O)/n(TEAOH)/n(H2O)=2.0/60/2.5/22/800配比混合,搅拌,然后将混合物转移至晶化釜中,在自压条件下140℃溶解4小时,得到含有碱金属元素的澄清β沸石导向剂。将β沸石导向剂和离子液体[HSO3-(CH2)3-NEt3][Cl]加入到蒸馏水中(摩尔配比为n(离子液体)/n(SiO2)//n(H2O)=1.2/1/85),混合搅拌30min,加5ml无水乙醇,40℃搅拌12h,然后移入晶化釜中,置于烘箱中110℃晶化24小时,冷却后抽滤,用去离子水洗涤至中性,60℃干燥12h,550℃焙烧8h,得到分子筛成品。
本发明所用离子液体为自制品,合成方法为:称量61g1.3-丙烷磺内酯,300ml乙酸乙酯于500ml的三口烧瓶,在机械搅拌下常温滴加等摩尔的三乙胺,滴加完毕后缓慢升温至50℃,温度稳定后继续反应4h得乳白色固体,反应完毕抽滤,再用乙酸乙酯润洗两次,抽干得中间体于60℃干燥12h。称取中间体76.69g,溶于300ml蒸馏水,室温磁力搅拌下滴加等摩尔的盐酸,滴加完毕后,先室温反应半小时得澄清溶液,再80℃反应4h。反应后溶液90℃减压蒸馏3h,再于100℃烘箱过夜烘出残留水分得浅黄色粘稠液体即为离子液体。
发明效果
1.采用新型碱性MNC-13介孔分子筛为催化剂,催化性能稳定,在催化裂解时能够利用其特有的择形选择性生成分子量分布窄的液体燃料油,燃料油的主要成分分布在C12~C17之间。生物油脂的裂解率最高可达96.3%以上,液体燃料油的收率最高可达76.5%以上,所得液体燃料油的性能指标与0号柴油相当。
2.该碱性MNC-13介孔分子筛热稳定性强,重复使用性能好。
3.所得催化裂解液体燃料油与0号柴油能够以任意比例互溶。
具体实施方式
以下结合实施例进一步说明,但并非限制本发明所涉及的范围。
实施例1:
K-MNC-13催化剂的制备:首先合成含有碱金属元素的β沸石导向剂,原料摩尔配比为n(KCl)/n(SiO2)/n(Na2O)/n(TEAOH)/n(H2O)=2.0/60/2.5/22/800,合成步骤如下:按照上述配比将KCl,NaOH,Na2SiO3,SiO2水溶液(质量分数30%)和质量分数为25%的TEAOH的水溶液混合,搅拌,然后将混合物转移至晶化釜中,在自压条件下140℃溶解4小时,得到的澄清溶液即为导向剂。将β沸石导向剂和离子液体[HSO3-(CH2)3-NEt3][Cl]加入到蒸馏水中(摩尔配比为n(离子液体)/n(SiO2)//n(H2O)=1.2/1/85),混合搅拌30min,加5ml无水乙醇,40℃搅拌12h,然后移入晶化釜中,置于烘箱中110℃晶化24小时,冷却后抽滤,用去离子水洗涤至中性,60℃干燥12h,550℃焙烧8h,得到分子筛为催化剂,备用。
将10g橡胶籽油和0.33g催化剂K-MNC-13加入带有冷凝管和温度计的反应器中。升温至410℃并保温反应100min。裂解率96.3%,液体产物收率76.5%,气体产物收率19.8%。
实施例2:
实验条件与步骤同实施例1,只是将橡胶籽油改为餐饮废弃油脂,裂解率95.2%,液体产物收率72.0%,气体产物收率23.2%。
实施例3:
Ca-MNC-13催化剂的制备:制备条件与步骤同实施例1,只是将KCl改成CaCl2
实验条件与步骤同实施例1,只是将催化剂K-MNC-13改为催化剂Ca-MNC-13,裂解率92.4%,液体产物收率72.3%,气体产物收率20.1%。
实施例4:
实验条件与步骤同实施例1,只是将橡胶籽油改为餐饮废弃油、催化剂K-MNC-13改为催化剂Ca-MNC-13,裂解率89.3%,液体产物收率65.5%,气体产物收率23.8%。
实施例5:
Ba-MNC-13催化剂的制备:制备条件与步骤同实施例1,只是将KCl改成BaCl2
实验条件与步骤同实施例1,只是将催化剂K-MNC-13改为催化剂Ba-MNC-13,裂解率91.0%,液体产物收率71.1%,气体产物收率19.9%。
实施例6:
实验条件与步骤同实施例1,只是将橡胶籽油改为餐饮废弃油、催化剂K-MNC-13改为催化剂Ba-MNC-13,裂解率87.5%,液体产物收率66.3%,气体产物收率21.2%。
实施例7:
Mg-MNC-13催化剂的制备:制备条件与步骤同实施例1,只是将KCl改成MgCl2
实验条件与步骤同实施例1,只是将催化剂K-MNC-13改为催化剂Mg-MNC-13,裂解率90.5%,液体产物收率69.8%,气体产物收率20.7%。
实施例8:
实验条件与步骤同实施例1,只是将橡胶籽油改为餐饮废弃油、催化剂K-MNC-13改为催化剂Mg-MNC-13,裂解率87.6%,液体产物收率60.6%,气体产物收率27.0%。
实施例9:
实验条件与步骤同实施例1,只是将催化剂改为实施例1中回收的催化剂,进行五次重复回用实验。催化剂的重复回用结果见表1。
表1 K-MNC-13的重复使用结果

Claims (2)

1.新型碱性介孔分子筛,其特征在于:以三乙胺类离子液体[HSO3-(CH2)3-NEt3][Cl]为模板剂,以自制的β沸石为导向剂,原料按照一定配比,合成了新型碱性介孔分子筛,分别为K-MNC-13,Ca-MNC-13,Ba-MNC-13,Mg-MNC-13;所合成的分子筛具有介孔分子筛的特征衍射峰,且具有较好的长程有序性和结晶度;所述β沸石导向剂的具体制备方法为,将KCl、CaCl2、BaCl2或MgSO4和NaOH,Na2SiO3,质量分数30%的SiO2,和质量分数为25%的TEAOH配比混合,使KCl或CaCl2或BaCl2或MgSO4和SiO2,Na2O,TEAOH以及H2O的摩尔比为2.0:60:2.5:22:800,然后进行搅拌,然后将混合物转移至晶化釜中,在自压条件下140℃溶解4小时,得到含有碱金属元素的澄清β沸石导向剂。
2.利用权利要求1所述的碱性介孔分子筛制备液体燃料油的方法,其特征在于:以碱性MNC-13介孔分子筛为催化剂,裂解生物油脂制备液体燃料油;将生物油脂与碱性MNC-13催化剂K-MNC-13、Ca-MNC-13、Ba-MNC-13或Mg-MNC-13按照质量比50:1~20:1的比例加入反应釜中,在380-430℃温度下进行催化裂解,将所产生的蒸汽冷凝,得到暗黄色液体产物,所述催化剂不经任何处理可直接回用。
CN201710205836.9A 2017-03-31 2017-03-31 新型碱性mnc-13介孔分子筛催化裂解生物油脂制备液体燃料油的方法 Active CN106890663B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710205836.9A CN106890663B (zh) 2017-03-31 2017-03-31 新型碱性mnc-13介孔分子筛催化裂解生物油脂制备液体燃料油的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710205836.9A CN106890663B (zh) 2017-03-31 2017-03-31 新型碱性mnc-13介孔分子筛催化裂解生物油脂制备液体燃料油的方法

Publications (2)

Publication Number Publication Date
CN106890663A CN106890663A (zh) 2017-06-27
CN106890663B true CN106890663B (zh) 2019-08-13

Family

ID=59193476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710205836.9A Active CN106890663B (zh) 2017-03-31 2017-03-31 新型碱性mnc-13介孔分子筛催化裂解生物油脂制备液体燃料油的方法

Country Status (1)

Country Link
CN (1) CN106890663B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109575978B (zh) * 2017-09-28 2021-01-08 中国石油化工股份有限公司 一种生物油脂的加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916135A (zh) * 2006-09-06 2007-02-21 湖南长岭石化科技开发有限公司 一种由生物油脂生产燃料油的方法
CN102936512A (zh) * 2012-10-07 2013-02-20 青岛科技大学 碱性mcm-41催化裂解生物油脂制备液体燃料油的方法
CN102942952A (zh) * 2012-10-07 2013-02-27 青岛科技大学 Usy催化裂解生物油脂制备液体燃料油的方法
CN103374401A (zh) * 2012-04-29 2013-10-30 中国石油化工股份有限公司 一种生产优质煤油的加氢方法
CN103923683A (zh) * 2014-04-12 2014-07-16 青岛科技大学 一种离子热合成介孔分子筛催化裂解废聚烯烃回收液体燃油的新方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916135A (zh) * 2006-09-06 2007-02-21 湖南长岭石化科技开发有限公司 一种由生物油脂生产燃料油的方法
CN103374401A (zh) * 2012-04-29 2013-10-30 中国石油化工股份有限公司 一种生产优质煤油的加氢方法
CN102936512A (zh) * 2012-10-07 2013-02-20 青岛科技大学 碱性mcm-41催化裂解生物油脂制备液体燃料油的方法
CN102942952A (zh) * 2012-10-07 2013-02-27 青岛科技大学 Usy催化裂解生物油脂制备液体燃料油的方法
CN103923683A (zh) * 2014-04-12 2014-07-16 青岛科技大学 一种离子热合成介孔分子筛催化裂解废聚烯烃回收液体燃油的新方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Production of Liquid Hydrocarbon Fuel from Catalytic Cracking of Rubber Seed Oil Using New Mesoporous Molecular Sieves";Zhiping Wang et al.;《ACS Substainable Chemistry & Engineering》;20160822;第4卷(第10期);第5594-5599页

Also Published As

Publication number Publication date
CN106890663A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
Linggawati Preparation and characterization of calcium oxide heterogeneous catalyst derived from Anadara granosa shell for biodiesel synthesis
Jazie et al. Egg shell as eco-friendly catalyst for transesterification of rapeseed oil: optimization for biodiesel production
CN102744053B (zh) 复合固体碱CaO-Al2O3及催化废弃植物油制备生物柴油的方法
CN102936512B (zh) 碱性mcm-41催化裂解生物油脂制备液体燃料油的方法
Alves et al. Transesterification of waste frying oils using ZnAl2O4 as heterogeneous catalyst
CN101773860A (zh) 一步水热碳化法合成碳基固体酸催化剂
Alfernando et al. Catalytic cracking of methyl ester from used cooking oil with Ni-ion-exchanged ZSM-5 catalyst
Hidayat et al. Biodiesel production from rice bran oil over modified natural zeolite catalyst
CN101773840B (zh) 一种水热法合成碳硅复合固体酸催化剂的方法
Hasanudin et al. Esterification of Free Fatty Acid in Palm Oil Mill Effluent using Sulfated Carbon-Zeolite Composite Catalyst.
CN106890663B (zh) 新型碱性mnc-13介孔分子筛催化裂解生物油脂制备液体燃料油的方法
Hidayat et al. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst
CN105400540B (zh) 一种脂肪醇生产航空燃料的方法
EP2917199B1 (en) Process for manufacturing biofuels
CN107720770B (zh) 具有mfi结构的烯烃水合分子筛催化剂的原位合成方法
Jiang et al. Catalytic cracking of acidified oil and modification of pyrolytic oils from soap stock for the production of a high-quality biofuel
CN102876466B (zh) 一种碱性离子液体催化酯交换反应的方法
HAJY et al. Efficient Synthesis of biodiesel from waste cooking oil catalysed by Al2O3 impregnated with NaOH
CN103241746B (zh) 一种用于乙醇转化制乙烯的改性分子筛的原位合成方法
CN107890874B (zh) 一种催化制备生物柴油的煤基固体酸催化剂及其制备方法
CN102001942A (zh) 一种乳酸酯类催化脱水制备丙烯酸酯的方法
Jamilah et al. Synthesis and characterization of mesoporous Co/ZSM5 catalyst and activity study on transesterification reaction
Nizar et al. The Correlation of Biodiesel Physical Properties and Titanium Tetrahedral Coordination in Silica-Titania Prepared by Different Moles Ratio of Titania Precursors
CN107353950A (zh) 一种柴油抗磨剂的制备方法
JP5864724B2 (ja) バイオディーゼルの生産のための不均一系触媒の生産方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant