CN106887409B - 互补纳米线半导体器件及其制造方法 - Google Patents

互补纳米线半导体器件及其制造方法 Download PDF

Info

Publication number
CN106887409B
CN106887409B CN201510943725.9A CN201510943725A CN106887409B CN 106887409 B CN106887409 B CN 106887409B CN 201510943725 A CN201510943725 A CN 201510943725A CN 106887409 B CN106887409 B CN 106887409B
Authority
CN
China
Prior art keywords
nanowire
substrate
semiconductor device
complementary
active region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510943725.9A
Other languages
English (en)
Other versions
CN106887409A (zh
Inventor
肖德元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zing Semiconductor Corp
Original Assignee
Zing Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zing Semiconductor Corp filed Critical Zing Semiconductor Corp
Priority to CN201510943725.9A priority Critical patent/CN106887409B/zh
Priority to TW105118031A priority patent/TWI585832B/zh
Publication of CN106887409A publication Critical patent/CN106887409A/zh
Application granted granted Critical
Publication of CN106887409B publication Critical patent/CN106887409B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys

Abstract

本发明提出了一种互补纳米线半导体器件及其制造方法,采用多次热氧化‑去除氧化层工艺对第一纳米线进行处理时,热氧化法会与第一纳米线中的硅进行反应生成氧化层,可以降低第一纳米线中硅的含量,提高锗的含量,进而提高半导体器件的性能;此外,采用本发明中的技术方案,能够通过较为简单的工艺形成圆柱形的第二纳米线,降低了制造难度。

Description

互补纳米线半导体器件及其制造方法
技术领域
本发明涉及半导体制造领域,尤其涉及一种互补纳米线半导体器件及其制造方法。
背景技术
具有高迁移率的沟道材料(例如SiGe、Ge和III-V族材料)的窄鳍形结构的FinFET器件或纳米线环绕栅极器件能够在提供所需的静电控制和开启速度方面代替互补型硅器件。
由于InGaAs具有很高电子迁移率,因此,在nMOSFET通道的材料选择中,InGaAs一直被视为在未来的超低功耗、高性能CMOS中极具潜力的材料之一。由于Ge在尺寸急剧缩小的MOSFET中具有良好的空穴传输能力,其通常被视为在pMOSFET沟道中极具潜力的材料之一。在3D器件结构例如三栅结构和环绕栅结构中通常都是必用的材质。
在美国公开的专利US20100164102A1中,其公开了在硅上鳍形结构中使用锗纳米线的结构,在其公开的内容中,锗硅外延线包围在鳍部顶端,因此所形成的锗硅外延线为具有硅核的外延线,虽然通过后续的氧化退火处理,能够使锗向中心聚集以形成锗纳米线,但是由于内核硅含量较高,因此提高锗纳米线中锗含量的工艺难度较大,因此所形成的半导体器件中,纳米线内锗含量较低,从而影响所形成的半导体器件的性能。
发明内容
本发明的目的在于提供一种互补纳米线半导体器件及其制造方法,能够提高纳米线内锗的含量,从而提高器件的性能。
为了实现上述目的,本发明提出了一种互补纳米线半导体器件的制造方法,包括步骤:
提供基底,所述基底上设有NMOS有源区域、PMOS有源区域以及隔离区;
在所述NMOS有源区域和PMOS有源区域暴露出的基底上形成多边体的第一纳米线,所述第一纳米线的材质为锗硅晶体材料;
采用选择性腐蚀方法减薄所述隔离区和基底,使所述第一纳米线悬空于所述基底上方;
在所述NMOS有源区域上的第一纳米线表面形成一层III-V族半导体晶体材料;
对所述PMOS有源区域上的第一纳米线进行多次热氧化-去除氧化层工艺处理,使所述第一纳米线变为圆柱形的第二纳米线;
形成覆盖在所述第一纳米线、第二纳米线和基底表面的介质层;
在所述基底上形成栅极,所述栅极包围所述第一纳米线、第二纳米线和介质层。
进一步的,在所述的互补纳米线半导体器件的制造方法中,所述热氧化-去除氧化层工艺步骤包括:
采用高温热氧化法在所述第一纳米线形成氧化层;
刻蚀去除位于所述第一纳米线表面的氧化层,以使第一纳米线圆形化。
进一步的,在所述的互补纳米线半导体器件的制造方法中,将所述热氧化-去除氧化层工艺重复2~4次。
进一步的,在所述的互补纳米线半导体器件的制造方法中,在重复完毕热氧化-去除氧化层工艺后,对所述第二纳米线进行氢气氛围下的高温退火处理。
进一步的,在所述的互补纳米线半导体器件的制造方法中,所述第一纳米线或第二纳米线中锗的质量百分比含量范围为15%~95%。
进一步的,在所述的互补纳米线半导体器件的制造方法中,采用CVD、MOCVD、MBE或ALD工艺形成所述第一纳米线。
进一步的,在所述的互补纳米线半导体器件的制造方法中,所述第一纳米线的长度范围为2纳米~50纳米。
进一步的,在所述的互补纳米线半导体器件的制造方法中,所述第一纳米线横截面为棱形或六边形。
进一步的,在所述的互补纳米线半导体器件的制造方法中,所述第一纳米线横截面对角线的长度范围为2纳米~5纳米。
进一步的,在所述的互补纳米线半导体器件的制造方法中,所述III-V族半导体晶体材料为InGaAs或InAs。
进一步的,在所述的互补纳米线半导体器件的制造方法中,采用选择性腐蚀方法减薄所述隔离区和基底的步骤包括:
采用湿法刻蚀对所述隔离区进行回刻蚀,暴露出部分基底;
采用四甲基氢氧化铵对暴露出的基底进行选择性刻蚀,使所述第一纳米线悬空。
进一步的,在所述的互补纳米线半导体器件的制造方法中,在所述NMOS有源区域上的第一纳米线表面形成一层III-V族半导体晶体材料的步骤包括:
在所述PMOS有源区域上的第一纳米线处形成硬掩膜层;
采用CVD、MOCVD、MBE或ALD工艺在所述NMOS有源区域上的第一纳米线表面形成所述III-V族半导体晶体材料;
去除所述硬掩膜层。
在本发明中,还提出了一种互补纳米线半导体器件,采用如上文所述的互补纳米线半导体器件的制造方法制备而成,包括:基底、隔离层、第一纳米线、第二纳米线、介质层及栅极,其中,所述隔离层位于所述基底内,所述第一纳米线表面形成有III-V族半导体晶体材料,所述第一纳米线、第二纳米线悬空在所述基底上,所述介质层形成在所述基底、第一纳米线和第二纳米线表面,所述栅极形成在所述基底上,并包围所述第一纳米线、第二纳米线和介质层,所述第一纳米线的横截面为多边形,所述第二纳米线的横截面为圆形。
与现有技术相比,本发明的有益效果主要体现在:采用多次热氧化-去除氧化层工艺对第一纳米线进行处理时,热氧化法会与第一纳米线中的硅进行反应生成氧化层,可以降低第一纳米线中硅的含量,提高锗的含量,进而提高半导体器件的性能;此外,采用本发明中的技术方案,能够通过较为简单的工艺形成圆柱形的第二纳米线,降低了制造难度。
附图说明
图1为本发明一实施例中互补纳米线半导体器件的制造方法的流程图;
图2至图10为本发明一实施例中形成互补纳米线半导体器件过程中的剖面示意图。
具体实施方式
下面将结合示意图对本发明的互补纳米线半导体器件及其制造方法进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。
为了清楚,不描述实际实施例的全部特征。在下列描述中,不详细描述公知的功能和结构,因为它们会使本发明由于不必要的细节而混乱。应当认为在任何实际实施例的开发中,必须做出大量实施细节以实现开发者的特定目标,例如按照有关系统或有关商业的限制,由一个实施例改变为另一个实施例。另外,应当认为这种开发工作可能是复杂和耗费时间的,但是对于本领域技术人员来说仅仅是常规工作。
在下列段落中参照附图以举例方式更具体地描述本发明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
请参考图1,在本实施例中,提出了一种互补纳米线半导体器件的制造方法,包括步骤:
S100:提供基底,所述基底上设有NMOS有源区域、PMOS有源区域以及隔离区;
S200:在所述NMOS有源区域和PMOS有源区域暴露出的基底上形成多边体的第一纳米线,所述第一纳米线的材质为锗硅晶体材料;
S300:采用选择性腐蚀方法减薄所述隔离区和基底,使所述第一纳米线悬空于所述基底上方;
S400:在所述NMOS有源区域上的第一纳米线表面形成一层III-V族半导体晶体材料;
S500:对所述PMOS有源区域上的第一纳米线进行多次热氧化-去除氧化层工艺处理,使所述第一纳米线变为圆柱形的第二纳米线;
S600:形成覆盖在所述第一纳米线、第二纳米线和基底表面的介质层;
S700:在所述基底上形成栅极,所述栅极包围所述第一纳米线、第二纳米线和介质层。
具体的,请参考图2,在本实施例中,所述基底100为硅片等半导体衬底,在所述基底100中形成有隔离区200,所述隔离区200通常为二氧化硅材质的浅沟道隔离层(STI);同时,在所述基底100上设有NMOS有源区域(以下简称NMOS区)以及PMOS有源区域(以下简称PMOS区),后续会在NMOS区形成NMOS器件,在PMOS区形成PMOS器件。
请参考图3,在步骤S200中,在暴露出的基底100上形成多边体的第一纳米线300,其中,所述第一纳米线300横截面为棱形或六边形,其材质为锗硅晶体材料,优选的,第一纳米线300中锗的质量百分比含量范围为15%~95%,例如是30%,并且所述第一纳米线300可以采用CVD、MOCVD、MBE或ALD选择性外延工艺形成,其第一纳米线的长度范围为2纳米~50纳米,例如是20纳米,所述第一纳米线300横截面对角线的长度范围为2纳米~5纳米,例如是3纳米。
请参考图4和图5,采用选择性腐蚀方法减薄所述隔离区200和基底100的步骤包括:
采用湿法刻蚀对所述隔离区200进行回刻蚀(Recess),暴露出部分基底100,如图4所示;
采用四甲基氢氧化铵(TMAH)对暴露出的基底100进行选择性刻蚀,使所述第一纳米线300悬空,如图5所示。
请参考图6,在所述NMOS有源区域上的第一纳米线表面形成一层III-V族半导体晶体材料的步骤包括:
在所述PMOS有源区域上的第一纳米线300处形成硬掩膜层400,所述硬掩膜层400材质为氮化硅,其为遮挡住PMOS有源区域上的第一纳米线300;采用CVD、MOCVD、MBE或ALD工艺在所述NMOS有源区域上的第一纳米线300表面形成所述III-V族半导体晶体材料500;接着,去除所述硬掩膜层400,如图7所示。
其中,所述III-V族半导体晶体材料500优选为InGaAs或InAs,其采用CVD、MOCVD、MBE或ALD外延工艺形成在NMOS有源区域上的第一纳米线300表面。
请继续参考图7,在所述PMOS区上的第一纳米线300的表面采用高温热氧化法形成氧化层600,其中氧化层600为二氧化硅,为氧气与锗硅中的硅发生的反应;接着,刻蚀去除位于所述第一纳米线300表面的氧化层600,以使第一纳米线300圆形化,形成第二纳米线310,如图8所示。为了使第一纳米线300圆形化更加良好,通常可以重复进行2至4次热氧化-去除氧化层工艺。
此外,在重复完毕热氧化-去除氧化层工艺形成第二纳米线310后,对所述第二纳米线310进行氢气氛围下的高温退火处理。通过上述的热氧化-去除氧化层工艺及高温退火工艺之后,能够降低硅在第二纳米线310内的含量,提高锗的相对含量,从而能够提高形成的器件的性能,在第二纳米线310中锗的质量百分比含量范围为15%~95%,例如是50%。
请参考图9,在所述第一纳米线表面的III-V族半导体晶体材料500、第二纳米线310和基底100及隔离层200的表面上形成介质层700,其中,介质层700为高k值介质层,后续作为栅介质层。
请参考图10,在所述介质层700的表面形成栅极800,其中栅极为金属栅极,所述栅极800包围所述第一纳米线300和第二纳米线310。
在本实施例的另一方面,还提出了一种互补纳米线半导体器件,采用如上文所述的互补纳米线半导体器件的制造方法制备而成,包括:基底、隔离层、第一纳米线、第二纳米线、介质层及栅极,其中,所述隔离层位于所述基底内,所述第一纳米线表面形成有III-V族半导体晶体材料,所述第一纳米线、第二纳米线悬空在所述基底上,所述介质层形成在所述基底、第一纳米线和第二纳米线表面,所述栅极形成在所述基底上,并包围所述第一纳米线、第二纳米线和介质层,所述第一纳米线的横截面为多边形,所述第二纳米线的横截面为圆形。
综上,在本发明实施例提供的互补纳米线半导体器件及其制造方法中,采用多次热氧化-去除氧化层工艺对第一纳米线进行处理时,热氧化法会与第一纳米线中的硅进行反应生成氧化层,可以降低第一纳米线中硅的含量,提高锗的含量,进而提高半导体器件的性能;此外,采用本发明中的技术方案,能够通过较为简单的工艺形成圆柱形的第二纳米线,降低了制造难度。
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

Claims (11)

1.一种互补纳米线半导体器件的制造方法,其特征在于,包括步骤:
提供基底,所述基底上设有NMOS有源区域、PMOS有源区域以及隔离区;
在所述NMOS有源区域和PMOS有源区域暴露出的基底上形成横截面为六边形的第一纳米线,所述第一纳米线的材质为锗硅晶体材料;
采用湿法刻蚀对所述隔离区进行回刻蚀,暴露出部分基底;采用四甲基氢氧化铵对暴露出的基底进行选择性刻蚀,使所述第一纳米线悬空于所述基底上方;
在所述NMOS有源区域上的第一纳米线表面形成一层III-V族半导体晶体材料;
对所述PMOS有源区域上的第一纳米线进行多次热氧化-去除氧化层工艺处理,使所述第一纳米线变为圆柱形的第二纳米线;
形成覆盖在所述第一纳米线、第二纳米线和基底表面的介质层;
在所述基底上形成栅极,所述栅极包围所述第一纳米线、第二纳米线和介质层。
2.如权利要求1所述的互补纳米线半导体器件的制造方法,其特征在于,所述热氧化-去除氧化层工艺步骤包括:
采用高温热氧化法在所述第一纳米线形成氧化层;
刻蚀去除位于所述第一纳米线表面的氧化层,以使第一纳米线圆形化。
3.如权利要求2所述的互补纳米线半导体器件的制造方法,其特征在于,将所述热氧化-去除氧化层工艺重复2~4次。
4.如权利要求3所述的互补纳米线半导体器件的制造方法,其特征在于,在重复完毕热氧化-去除氧化层工艺后,对所述第二纳米线进行氢气氛围下的高温退火处理。
5.如权利要求1所述的互补纳米线半导体器件的制造方法,其特征在于,所述第一纳米线或第二纳米线中锗的质量百分比含量范围为15%~95%。
6.如权利要求1所述的互补纳米线半导体器件的制造方法,其特征在于,采用CVD、MOCVD、MBE或ALD工艺形成所述第一纳米线。
7.如权利要求1所述的互补纳米线半导体器件的制造方法,其特征在于,所述第一纳米线的长度范围为2纳米~50纳米。
8.如权利要求1所述的互补纳米线半导体器件的制造方法,其特征在于,所述第一纳米线横截面对角线的长度范围为2纳米~5纳米。
9.如权利要求1所述的互补纳米线半导体器件的制造方法,其特征在于,所述III-V族半导体晶体材料为InGaAs或InAs。
10.如权利要求1所述的互补纳米线半导体器件的制造方法,其特征在于,在所述NMOS有源区域上的第一纳米线表面形成一层III-V族半导体晶体材料的步骤包括:
在所述PMOS有源区域上的第一纳米线处形成硬掩膜层;
采用CVD、MOCVD、MBE或ALD工艺在所述NMOS有源区域上的第一纳米线表面形成所述III-V族半导体晶体材料;
去除所述硬掩膜层。
11.一种互补纳米线半导体器件,采用如权利要求1至10任一项所述的互补纳米线半导体器件的制造方法制备而成,其特征在于,包括:基底、隔离层、第一纳米线、第二纳米线、介质层及栅极,其中,所述隔离层位于所述基底内,所述第一纳米线表面形成有III-V族半导体晶体材料,所述第一纳米线、第二纳米线悬空在所述基底上,所述介质层形成在所述基底、第一纳米线和第二纳米线表面,所述栅极形成在所述基底上,并包围所述第一纳米线、第二纳米线和介质层,所述第一纳米线的横截面为六边形,所述第二纳米线的横截面为圆形。
CN201510943725.9A 2015-12-15 2015-12-15 互补纳米线半导体器件及其制造方法 Active CN106887409B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510943725.9A CN106887409B (zh) 2015-12-15 2015-12-15 互补纳米线半导体器件及其制造方法
TW105118031A TWI585832B (zh) 2015-12-15 2016-06-07 互補奈米線半導體元件及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510943725.9A CN106887409B (zh) 2015-12-15 2015-12-15 互补纳米线半导体器件及其制造方法

Publications (2)

Publication Number Publication Date
CN106887409A CN106887409A (zh) 2017-06-23
CN106887409B true CN106887409B (zh) 2020-02-21

Family

ID=59175010

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510943725.9A Active CN106887409B (zh) 2015-12-15 2015-12-15 互补纳米线半导体器件及其制造方法

Country Status (2)

Country Link
CN (1) CN106887409B (zh)
TW (1) TWI585832B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284212B (zh) * 2021-06-02 2023-12-26 青岛昇瑞光电科技有限公司 FinFET结构及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011849A (zh) * 2011-12-23 2014-08-27 英特尔公司 Cmos纳米线结构
CN104752200A (zh) * 2013-12-27 2015-07-01 中芯国际集成电路制造(上海)有限公司 晶体管及其制造方法
CN104813443A (zh) * 2012-12-20 2015-07-29 英特尔公司 纳米级结构上的外延膜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032191A2 (en) * 2002-09-30 2004-04-15 Nanosys, Inc. Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
US7851790B2 (en) * 2008-12-30 2010-12-14 Intel Corporation Isolated Germanium nanowire on Silicon fin
CN101783367B (zh) * 2010-02-11 2012-10-17 复旦大学 一种基于三五族元素的纳米线mos晶体管及其制备方法
CN103999226B (zh) * 2011-12-19 2017-02-15 英特尔公司 在栅绕式架构中的锗和iii‑v纳米线及纳米带的cmos实现
KR102072181B1 (ko) * 2012-03-31 2020-03-02 롱지튜드 플래쉬 메모리 솔루션즈 리미티드 비-휘발성 전하 트랩 메모리 디바이스들 및 로직 cmos 디바이스들의 집적
US9129827B2 (en) * 2012-04-13 2015-09-08 Intel Corporation Conversion of strain-inducing buffer to electrical insulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011849A (zh) * 2011-12-23 2014-08-27 英特尔公司 Cmos纳米线结构
CN104813443A (zh) * 2012-12-20 2015-07-29 英特尔公司 纳米级结构上的外延膜
CN104752200A (zh) * 2013-12-27 2015-07-01 中芯国际集成电路制造(上海)有限公司 晶体管及其制造方法

Also Published As

Publication number Publication date
TW201721727A (zh) 2017-06-16
CN106887409A (zh) 2017-06-23
TWI585832B (zh) 2017-06-01

Similar Documents

Publication Publication Date Title
US9514995B1 (en) Implant-free punch through doping layer formation for bulk FinFET structures
KR101667892B1 (ko) 실리콘에서 실리콘 게르마늄으로의 박막 트랜지스터 엘리먼트들의 변환
US8936972B2 (en) Epitaxially thickened doped or undoped core nanowire FET structure and method for increasing effective device width
US9324843B2 (en) High germanium content silicon germanium fins
US10468505B2 (en) Cylindrical germanium nanowire device
CN105810643B (zh) 制造Si和SiGe鳍片、制造CMOS器件的方法以及CMOS器件
US11164941B2 (en) Semiconductor structure and fabrication method
TWI659537B (zh) 形成於全域或局部隔離之基板上的三維鍺基半導體裝置(三)
KR102216424B1 (ko) 유효 게이트 길이를 증가시킴으로써 트랜지스터 채널에 걸쳐 게이트 제어를 개선하는 기술들
US20160049489A1 (en) Integrated circuits with nanowires and methods of manufacturing the same
US10411096B2 (en) Encapsulated nanostructures and devices containing encapsulated nanostructures
US20160225676A1 (en) Methods of forming fin isolation regions under tensile-strained fins on finfet semiconductor devices
CN105552030A (zh) 纳米线结构的制造
US9070712B2 (en) Methods for manufacturing a field-effect semiconductor device
US9147696B2 (en) Devices and methods of forming finFETs with self aligned fin formation
US20170179275A1 (en) Fin-type semiconductor structure and method for forming the same
CN105990441B (zh) 半导体器件及其制造方法
CN103325787B (zh) Cmos器件及其制造方法
CN106887409B (zh) 互补纳米线半导体器件及其制造方法
US9496341B1 (en) Silicon germanium fin
US9419103B2 (en) Stress modulation in field effect transistors in reducing contact resistance and increasing charge carrier mobility
US9230802B2 (en) Transistor(s) with different source/drain channel junction characteristics, and methods of fabrication
WO2014012263A1 (zh) 半导体器件及其制造方法
US8802535B2 (en) Doped core trigate FET structure and method
CN108172546B (zh) 一种cmos纳米线及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant