CN106885792A - 一种用于pH检测的共轭聚合物荧光传感探针的制备方法 - Google Patents

一种用于pH检测的共轭聚合物荧光传感探针的制备方法 Download PDF

Info

Publication number
CN106885792A
CN106885792A CN201710014221.8A CN201710014221A CN106885792A CN 106885792 A CN106885792 A CN 106885792A CN 201710014221 A CN201710014221 A CN 201710014221A CN 106885792 A CN106885792 A CN 106885792A
Authority
CN
China
Prior art keywords
conjugated polymer
sense probe
fluorescence sense
detection
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710014221.8A
Other languages
English (en)
Other versions
CN106885792B (zh
Inventor
鲍碧清
汪联辉
韦伟
许煜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201710014221.8A priority Critical patent/CN106885792B/zh
Publication of CN106885792A publication Critical patent/CN106885792A/zh
Application granted granted Critical
Publication of CN106885792B publication Critical patent/CN106885792B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3422Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms conjugated, e.g. PPV-type
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种用于pH检测的共轭聚合物荧光传感探针的制备方法,属于光电材料制备领域。该共轭聚合物荧光传感探针是以共轭聚合物荧光纳米粒子为敏感材料,多巴胺为识别基团通过羧基和氨基之间缩合反应制备而成。该共轭聚合物荧光传感探针可用于pH检测:在碱性条件下,该共轭聚合物荧光传感探针中的多巴胺与共轭聚合物纳米粒子之间会发生电子转移和能量转移,从而使共轭聚合物荧光猝灭;在酸性条件下,共轭聚合物的荧光恢复,从而可以实现对pH可逆循环的检测。该共轭聚合物荧光传感探针用于pH检测的方法简便快捷、成本低,可广泛运用于分子生物学以及各种生化分析中。

Description

一种用于pH检测的共轭聚合物荧光传感探针的制备方法
技术领域
本发明属于涉及光电材料制备领域,更具体地说,涉及一种用于pH检测的共轭聚合物荧光传感探针的制备方法。
背景技术
共轭聚合物是一类具有特殊光、电性质的高分子化合物,近年来受到了科学家们的广泛关注。共轭聚合物是指在空闻结构上有长程π键共轭探针的聚合物,在聚合物共轭探针中,长程π电子共轭不仅大大缩小了成键和反键能带间的能隙(一般为1.5~3eV),而且使两个能带增宽,能带内的轨道数增加,轨道间能隙减小,载流子(电子和空穴)在能带内可以自由移动,因此,共轭聚合物的共轭骨架允许电子或能量在整条链上自由流动,从而具有“分子导线”功能。即受激发产生的激子可以沿共轭主链迅速迁移。
共轭聚合物纳米颗粒(CPNs)作为荧光探针展现出优异的特性。但是表面没有官能团的CPNs在化学/生物检测的应用中受到很大的限制,所以为了使CPNs在生物检测及成像领域的广泛应用首先要解决的问题是使CPNs表面带有官能团来偶联其它分子或基团。两亲聚合物共沉淀法是一种简单有效功能化聚合物纳米颗粒的方法。这种方法能够制备出颗粒小、亮度高的荧光探针,在识别标记目标细胞或分子时效果尤其显著。此种功能化共轭聚合物荧光材料,具有结构多样性、良好的生物相容性、荧光强度高、发光时间长和光化学稳定性好等特性。
常见的用于pH检测的方法包括电化学、核磁共振、吸收光谱法和荧光探针方法,测定pH值的传统手段是应用pH试纸和含玻璃电极的pH计。pH试纸不够精确且不能对生物体的内部进行测量,而玻璃电极的计有比较明显的缺点:电化学干扰以及机械损伤,也不适于生物体内监测。相对于微电极,核磁共振以及吸收光谱法,荧光光谱法在对细胞内时空分布上的检测更具有优势。其中,荧光探针法因其高选择性和灵敏度以及对细胞无损伤等优点得到了广泛的研究及应用。因此,发展高选择性和灵敏度以及可逆性的荧光探针是非常重要的。
发明内容
传统探针操作复杂、所需设备复杂、荧光强度低、低灵敏度的问题,本发明提供了一种用于pH检测的共轭聚合物荧光传感探针的制备方法,它可以克服传统荧光生物传感器中荧光强度低、操作复杂、灵敏度低的问题。
本发明的目的通过以下技术方案实现。
用于pH检测的共轭聚合物荧光传感探针的制备方法,其特征在于,其步骤如下:
S1合成制备聚芴乙烯撑类共轭聚合物PFV;
S2共轭聚合物材料PFV与聚(苯乙烯-co-顺丁烯二酸酐)(PSMA)共沉淀制备成纳米粒子;
S3共轭聚合物纳米粒子与多巴胺反应,超滤离心后制备成探针;
S4将探针置于不同pH的缓冲溶液中,以435nm为激发波长,进行荧光检测,根据荧光强度对pH进行检测。
更进一步的,所述步骤S1中共轭聚合物PFV是利用Witting反应合成得到,分子量为20139g/mol。
更进一步的,所述步骤S1中共轭聚合物PFV吸收波长为435nm,发射波长为480nm。
更进一步的,所述步骤S1中共轭聚合物PFV的结构式为:
更进一步的,所述步骤S2中共沉淀法是取1mL 0.1mg/mL的PFV/THF和200uL0.1mg/mL的PSMA/THF混合,加THF至6mL,分三次每次取2mL在超声状态下快速加入到10mL超纯水中,超声5min,三次合并一起旋蒸浓缩至5mL,0.22μm水系过滤头过滤,得到PFV/PSMA共轭聚合物纳米颗粒,避光4℃保存。
更进一步的,所述步骤S3中共轭聚合物纳米粒子与多巴胺反应的催化剂为1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC·HCl)。
更进一步的,所述步骤S3中所用反应液为0.04mol/L,pH=5.0的BR缓冲液,反应条件为常温避光。
更进一步的,所述步骤S3中超滤离心条件为80s,4500rpm,超滤离心三次后定容至250μL。
更进一步的,所述步骤S4中荧光检测是用荧光分光光度计进行检测,激发波长在共轭聚合物最大紫外-可见吸收峰435nm处,发射波长扫描范围为440~650nm。
更进一步的,所述步骤S4中荧光检测方法是将共轭聚合物传感探针加入到不同pH的BR缓冲溶液中进行荧光发射光谱的扫描。
相比于现有技术,本发明的优点在于:
(1)本发明选用可激发荧光的共轭聚合物作为敏感材料,以多巴胺作为分子识别元件,以荧光检测为主要分析手段,通过多巴胺与共轭聚合物纳米粒子之间的电子转移和能量转移,能够有效快速的对pH值实现检测;
(2)本发明利用PSMA与共轭聚合物共沉淀法制备得纳米粒子,由于纳米粒子中的PSMA具有双亲性,使其具有很好的生物相容性,可用于细胞内检测;
(3)本发明利用了共轭聚合物的分子导线、荧光特征及多巴胺对pH值的循环响应的能力,可以克服传统检测方法中操作复杂、成本高的缺点;
(4)本发明选用的共轭聚合物具有双光子吸收作用,相对于传统的单光子吸收有重大优势,对样品伤害较小,双光子的辐射光源一般在可见-近红外区,在介质中的穿透性好,在双光子荧光显微技术、双光子上转换激光、光限幅、双光子三维微加工、双光子三维光学存储、双光子光动力学治疗等方面展示出良好的应用前景;
(5)本发明制备方法简单,不需要复杂的设备,可广泛应用于分子生物学、生物传感器等领域,实现对生物分子,小分子,以及金属离子的检测。
附图说明
图1是共轭聚合物PFV的结构式;
图2是多巴胺的结构式;
图3是利用多巴胺对共轭聚合物猝灭作用pH检测的工作原理图;
图4是基于共轭聚合物的荧光检测方法对不同pH进行检测的荧光光谱图;
图5是荧光强度与pH之间的线性关系;
图6是不同多巴胺浓度对荧光的影响;
图7是探针对pH响应的循环测试图,BR缓冲溶液分别在pH=5.0和pH=9.0之间循环调节。
具体实施方式
下面结合说明书附图和具体的实施例,对本发明作详细描述。
实施例1
结合图1、2和3,具体介绍共轭聚合物荧光传感探针的制备及其对pH的检测原理。
以共轭聚合物荧光纳米粒子作为敏感材料,修饰小分子作为识别基团,通过小分子与共轭聚合物纳米粒子之间的电子转移和能量转移,从而实现对pH的高灵敏检测,如图3所示,其流程如下:
1.制备共轭聚合物材料PFV,PFV的结构式如图1所示,用四氢呋喃溶解到浓度为0.1mg/mL,避光待用。反应步骤如下:
单体1(9,9-二辛基-2,7-二醛基芴)的制备:100mL两口圆底烧瓶,加入磁子,原料9,9-二辛基-2,7-二溴基芴A(1.3g,2.37mmol),加上橡胶塞,贴封口膜,抽真空插气球鼓氮气重复3~4次,注射打入20mL THF使原料溶解。另外在反应锅中加入丙酮,慢慢加入干冰,一直到不沸腾为止。把反应瓶放入锅中,搅拌。注射器逐滴加入2.5mL n-BuLi到反应瓶中,反应15min后,加入DMF(386μL,365mg)。继续加干冰,维持-78℃2h,恢复室温反应过夜。处理:二氯甲烷萃取,PE:DCM=2:1过柱子,得产物336mg。
单体2(1,4-二(磷酸二乙酯基)苯)的制备:100mL单口圆底烧瓶,加入磁子,原料1,4-二(溴甲基)苯B(1.5g,6.25mmol),加入15mL亚磷酸三乙酯,120℃回流24h。处理:搭建减压蒸馏装置,减压蒸馏大约3h后,得少量粘稠液体,用正己烷沉降,析出灰白色固体,烘干。
聚芴乙烯撑类聚合物PFV的制备:50mL的反应瓶中加入M1(89.332mg,0.2mmol),M2(75.668mg,0.2mmol),叔丁醇钾(89.6mg,0.8mmol),贴封口膜,抽真空鼓氮气重复3~4次,加入12mL蒸馏过的THF,反应环境抽真空,然后气球里鼓满氮气,插在反应瓶的橡皮塞上,保持无水无氧的环境,常温反应4~6h。处理:反应液倒入50mL稀盐酸中淬灭,二氯甲烷萃取,旋浓,甲醇沉降,有大量黄色絮状出现,过滤干燥。
反应方程式如下:
1)
2)
3)
2.取1mL 0.1mg/mL的PFV/THF和200uL 0.1mg/mL的PSMA/THF混合,加THF至6mL,分三次每次取2mL在超声状态下快速加入到10mL超纯水中,超声5min,三次合并一起旋蒸浓缩至5mL,0.22μm水系过滤头过滤,得到20μg/mL的PFV/PSMA CPNs,避光4℃保存。
3.分别加入340μL PBS,100μL PFV/PSMA CPNs,50μL多巴胺(DA),10μL EDC常温避光400rpm振荡反应过夜12~18h,多巴胺(DA)的结构式如图2所示。
4.超滤离心(80s,4500rpm)三次除去小分子,定容至250μL,即得到荧光探针。
5.用0.04mol/L磷酸、硼酸和醋酸配置不同pH的BR缓冲溶液,使用时用0.2mol/LNaOH溶液在酸度计上调至所需pH值,pH范围分别为5.0、6.0、7.0、8.0、9.0。
6.分别向上述配置好的不同pH缓冲溶液中加入50μL探针溶液(10μg/μL),并且混合均匀后检测荧光光谱。
共轭聚合物荧光传感探针的制备。
在离心管中分别加入100μL PFV/PSMA纳米粒子,50μL多巴胺(DA),10μL EDC,340μL PBS,常温避光400rpm振荡反应过夜12~18h。然后超滤离心(80s,4500rpm)三次除去小分子,定容至250μL,即得荧光传感探针。
检测不同pH值的缓冲溶液。
用0.04mol/L磷酸、硼酸和醋酸准确配置不同pH的BR缓冲溶液,使用时用0.2mol/LNaOH溶液在酸度计上调至所需pH值,pH范围分别为5.0、6.0、7.0、8.0、9.0。
取50μL制备好的探针溶液(8μg/mL)分别加入到不同pH值的BR缓冲溶液中,混合均匀后测荧光光谱,结果如图4所示,从图4中可以看出随着pH的增大,480nm处的荧光逐渐减弱,这是由于在碱性条件下,多巴胺变成多巴醌,多巴醌对共轭聚合物纳米粒子有猝灭作用,导致480nm处的荧光减弱。图5中可以看出不同pH的荧光探针最大发射波长具有很好的线性关系。
不同浓度多巴胺对荧光强度的影响。
分别制备偶联不同浓度多巴胺的探针,多巴胺浓度分别是0μmol/L、10μmol/L、50μmol/L、120μmol/L、240μmol/L、480μmol/L、960μmol/L,制得溶液避光4℃保存。
取50μL制备好的不同多巴胺浓度探针分别加入到pH=7.0的BR缓冲溶液中,混合均匀后测荧光光谱,结果如图6所示,随着多巴胺浓度的逐渐增大,480nm处的荧光逐渐减弱,说明连接的多巴胺越多,对共轭聚合物纳米粒子的猝灭效果越明显。
共轭聚合物传感探针对pH的循环响应。
准确配置pH=9.0的BR缓冲溶液,取50μL制备好的探针加入到pH=9.0的BR缓冲溶液中,混合均匀后测荧光光谱。
用稀盐酸调节溶液pH=5.0,混合均匀后测荧光光谱。
用稀氢氧化钠调节溶液pH=9.0,混合均匀后测荧光光谱,如此循环反复5次。从图7中可以看出随着pH的变化,480nm处的荧光也随之循环变化,并且荧光强度没有发生变化,因此具有很好的循环效果。
以上示意性地对本发明创造及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明创造的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本专利的保护范围。

Claims (10)

1.一种用于pH检测的共轭聚合物荧光传感探针的制备方法,其特征在于,其步骤如下:
S1合成制备聚芴乙烯撑类共轭聚合物PFV;
S2共轭聚合物材料PFV与聚(苯乙烯-co-顺丁烯二酸酐)(PSMA)共沉淀制备成纳米粒子;
S3共轭聚合物纳米粒子与多巴胺反应,超滤离心后制备成探针;
S4将探针置于不同pH的缓冲溶液中,以435nm为激发波长,进行荧光检测,根据荧光强度对pH进行检测。
2.根据权利要求1所述的一种用于pH检测的共轭聚合物荧光传感探针的制备方法,其特征在于,所述步骤S1中共轭聚合物PFV分子量为20139g/mol。
3.根据权利要求1所述的一种用于pH检测的共轭聚合物荧光传感探针的制备方法,其特征在于,所述步骤S1中共轭聚合物PFV吸收波长为435nm,发射波长为480nm。
4.根据权利要求1所述的一种用于pH检测的共轭聚合物荧光传感探针的制备方法,其特征在于,所述步骤S1中共轭聚合物PFV的结构式为:
5.根据权利要求1所述的一种用于pH检测的共轭聚合物荧光传感探针的制备方法,其特征在于,所述步骤S2中共沉淀法是取1mL0.1mg/mL的PFV/THF溶液和200μL0.1mg/mL的PSMA/THF溶液混合,加THF至6mL,分三次每次取2mL在超声状态下快速加入到10mL超纯水中,超声5min,三次合并一起旋转浓缩至5mL,0.22μm水系过滤头过滤,得到PFV/PSMA共轭聚合物纳米颗粒,避光4℃保存。
6.根据权利要求1所述的一种用于pH检测的共轭聚合物荧光传感探针的制备方法,其特征在于,所述步骤S3中共轭聚合物纳米粒子与多巴胺反应的催化剂为1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC·HCl)。
7.根据权利要求1所述的一种用于pH检测的共轭聚合物荧光传感探针的制备方法,其特征在于,所述步骤S3中所用反应液为0.04mol/L,pH=5.0的BR缓冲液,反应条件为常温避光。
8.根据权利要求1所述的一种用于pH检测的共轭聚合物荧光传感探针的制备方法,其特征在于,所述步骤S3中超滤离心条件为80s,4500rpm,超滤离心三次后定容至250μL。
9.根据权利要求1所述的一种用于pH检测的共轭聚合物荧光传感探针的制备方法,其特征在于,所述步骤S4中荧光检测是用荧光分光光度计进行检测,激发波长在共轭聚合物最大紫外-可见吸收峰435nm处,发射波长扫描范围为440~650nm。
10.根据权利要求1所述的一种用于pH检测的共轭聚合物荧光传感探针的制备方法,其特征在于,所述步骤S4中荧光检测方法是将共轭聚合物传感探针加入到不同pH的BR缓冲溶液中进行荧光发射光谱的扫描。
CN201710014221.8A 2017-01-09 2017-01-09 一种用于pH检测的共轭聚合物荧光传感探针的制备方法 Active CN106885792B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710014221.8A CN106885792B (zh) 2017-01-09 2017-01-09 一种用于pH检测的共轭聚合物荧光传感探针的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710014221.8A CN106885792B (zh) 2017-01-09 2017-01-09 一种用于pH检测的共轭聚合物荧光传感探针的制备方法

Publications (2)

Publication Number Publication Date
CN106885792A true CN106885792A (zh) 2017-06-23
CN106885792B CN106885792B (zh) 2019-08-02

Family

ID=59176645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710014221.8A Active CN106885792B (zh) 2017-01-09 2017-01-09 一种用于pH检测的共轭聚合物荧光传感探针的制备方法

Country Status (1)

Country Link
CN (1) CN106885792B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455761A (zh) * 2019-08-19 2019-11-15 齐鲁工业大学 一种基于共轭聚合物纳米粒子和金纳米棒的荧光探针及其应用
CN111829999A (zh) * 2020-07-23 2020-10-27 重庆大学 钙钛矿荧光微球和多巴胺体系的应用方法
CN111978952A (zh) * 2020-08-26 2020-11-24 链行走新材料科技(广州)有限公司 非共轭的荧光交替共聚物在制备荧光材料中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8759381B1 (en) * 2007-07-06 2014-06-24 University Of Central Florida Research Foundation, Inc. Two-photon absorbing water soluble fluorescent probe as a near-neutral pH indicator
CN104744673A (zh) * 2013-12-31 2015-07-01 中国人民解放军军事医学科学院微生物流行病研究所 一种水溶性荧光共轭聚合物及其制备方法
CN105542757A (zh) * 2015-12-18 2016-05-04 湖南科技大学 一种pH响应的荧光银纳米簇、制备方法和用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8759381B1 (en) * 2007-07-06 2014-06-24 University Of Central Florida Research Foundation, Inc. Two-photon absorbing water soluble fluorescent probe as a near-neutral pH indicator
CN104744673A (zh) * 2013-12-31 2015-07-01 中国人民解放军军事医学科学院微生物流行病研究所 一种水溶性荧光共轭聚合物及其制备方法
CN105542757A (zh) * 2015-12-18 2016-05-04 湖南科技大学 一种pH响应的荧光银纳米簇、制备方法和用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHANGFENG WU ET AL.: "Energy Transfer in a Nanoscale Multichromophoric System: Fluorescent Dye-Doped Conjugated Polymer Nanoparticles", 《J.PHYS.CHEM.C》 *
FANGMAO YE ET AL.: "A compact and highly fluorescent orange-emitting polymer dot for specific subcellular imaging", 《CHEM. COMMUN.》 *
鲍碧清 等: "共轭聚合物荧光纳米粒子研究进展", 《中国科学:化学》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455761A (zh) * 2019-08-19 2019-11-15 齐鲁工业大学 一种基于共轭聚合物纳米粒子和金纳米棒的荧光探针及其应用
CN111829999A (zh) * 2020-07-23 2020-10-27 重庆大学 钙钛矿荧光微球和多巴胺体系的应用方法
CN111978952A (zh) * 2020-08-26 2020-11-24 链行走新材料科技(广州)有限公司 非共轭的荧光交替共聚物在制备荧光材料中的应用
CN111978952B (zh) * 2020-08-26 2023-08-08 链行走新材料科技(广州)有限公司 非共轭的荧光交替共聚物在制备荧光材料中的应用

Also Published As

Publication number Publication date
CN106885792B (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
Feng et al. Silole-containing polymer nanodot: an aqueous low-potential electrochemiluminescence emitter for biosensing
Wang et al. A Hydrogen‐Bonded‐Supramolecular‐Polymer‐Based Nanoprobe for Ratiometric Oxygen Sensing in Living Cells
Lin et al. Electron transfer quenching by nitroxide radicals of the fluorescence of carbon dots
Lim et al. Dye-condensed biopolymeric hybrids: chromophoric aggregation and self-assembly toward fluorescent bionanoparticles for near infrared bioimaging
CN108623510A (zh) 一种靶向线粒体近红外发射的粘度荧光探针及其合成方法
AU2006321854A1 (en) Optical determination of glucose utilizing boronic acid adducts-II
Liu et al. Bright far-red/near-infrared fluorescent conjugated polymer nanoparticles for targeted imaging of HER2-positive cancer cells
US8507290B2 (en) Water-soluble silsesquioxanes as organic quantum dots for sensing and imaging
CN106084873B (zh) 一种高效近红外荧光材料及其生物应用
CN106885792B (zh) 一种用于pH检测的共轭聚合物荧光传感探针的制备方法
Guo et al. Aggregation-induced electrochemiluminescence of tetraphenylbenzosilole derivatives in an aqueous phase system for ultrasensitive detection of hexavalent chromium
Tang et al. A smartphone-integrated optical sensing platform based on Lycium ruthenicum derived carbon dots for real-time detection of Ag+
CN107903893A (zh) 一种具有近红外吸收和近红外发光特性的改性碳纳米点、其制备方法及其应用
Munyemana et al. Discriminative detection of dopamine and tyrosinase based on polydopamine dots triggered by Fenton-like activity of Mn3O4 nanoparticles
Wang et al. Low-triggering-potential electrochemiluminescence from a luminol analogue functionalized semiconducting polymer dots for imaging detection of blood glucose
Deng et al. PDA–PEI-Copolymerized Nanodots with Tailorable Fluorescence Emission and Quenching Properties for the Sensitive Ratiometric Fluorescence Sensing of miRNA in Serum
Adegoke et al. Conjugation of mono-substituted phthalocyanine derivatives to CdSe@ ZnS quantum dots and their applications as fluorescent-based sensors
CN109438425B (zh) 一种近红外荧光染料、其制备方法及应用
CN109100340B (zh) 一种硫化镉量子点修饰的可植入传感器的制备方法
CN110596082A (zh) 用于检测痕量铀酰离子的探针及基于其的便携式ecl检测器
CN105300948B (zh) 一种赭曲霉毒素上转换荧光传感材料及其制备方法
CN110426377B (zh) 分子印迹聚合物材料及制备和在检测肾上腺素方面的应用
CN105949444B (zh) 基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感器件制备方法
Gao et al. Fluorescent sensor based on a novel conjugated polyfluorene derivative
Yu et al. Fluorescent probes for selective probing thiol-containing amino acids

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170623

Assignee: Jiangsu Nanyou October Science Park Management Co.,Ltd.

Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS

Contract record no.: X2022980007683

Denomination of invention: Preparation of conjugated polymer fluorescent sensing probe for pH detection

Granted publication date: 20190802

License type: Common License

Record date: 20220613

EE01 Entry into force of recordation of patent licensing contract