CN105949444B - 基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感器件制备方法 - Google Patents

基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感器件制备方法 Download PDF

Info

Publication number
CN105949444B
CN105949444B CN201610320466.9A CN201610320466A CN105949444B CN 105949444 B CN105949444 B CN 105949444B CN 201610320466 A CN201610320466 A CN 201610320466A CN 105949444 B CN105949444 B CN 105949444B
Authority
CN
China
Prior art keywords
conjugated polymer
particle
hyperbranched conjugated
polymer nano
fluorescence membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610320466.9A
Other languages
English (en)
Other versions
CN105949444A (zh
Inventor
文阳平
丁万川
徐景坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi praefeng Ecological Technology Co.,Ltd.
Original Assignee
Jiangxi Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Agricultural University filed Critical Jiangxi Agricultural University
Priority to CN201610320466.9A priority Critical patent/CN105949444B/zh
Publication of CN105949444A publication Critical patent/CN105949444A/zh
Application granted granted Critical
Publication of CN105949444B publication Critical patent/CN105949444B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/121Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from organic halides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/132Morphological aspects branched or hyperbranched
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/522Luminescence fluorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/94Applications in sensors, e.g. biosensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明涉及一种基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感器件制备方法,所制备的超支化共轭聚合物纳米粒子是通过细乳液Suzuki聚合的方法获得,纳米粒子的平均粒径为10.6 nm并具有较高的荧光量子产率。将可分散超支化共轭聚合物纳米粒子通过旋涂的方法在玻璃基底表面制备荧光薄膜传感器件。本发明所制备的薄膜传感器件对Fe3+有较高的识别能力和灵敏度及可逆性,具有潜在的应用价值,同时所制备的Fe3+荧光薄膜传感器件可实现逻辑门应用,具有良好的应用前景。

Description

基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感 器件制备方法
技术领域
本发明属于荧光分子传感器领域,涉及一种基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感器件的制备方法。
背景技术
铁广泛存在于自然界中,是生物系统中重要的元素之一,它在细胞水平中许多生物和化学过程、红细胞中血红蛋白的形成和活体组织中存储及运输氧方面起着至关重要的作用。在大部分的有机体中,铁离子是必不可缺少的。铁离子在新陈代谢混乱中会导致贫血以及肝肾的损坏,最后导致癌症、肝硬化、关节炎、糖尿病或心率失调。而且铁离子在植物体的光合作用、呼吸作用、生物固氮、矿质元素的吸收与利用中也起着重要作用。由于铁离子在新陈代谢过程中和生物材料及其生物体中所起的重要作用,因此,发展具有高选择性和敏感性的铁离子传感材料成为一个重要的课题。
铁离子(Fe3+)的传统检测方法有:原子吸收光谱法、伏安法、比色法、滴定法、PVC膜电极法,这些方法都有一定的缺陷,如:1、对Fe3+检测的专一性差;2、检测的所需的时间过长;3、敏感性差。继而化学传感器检测铁离子已经成为人们主要的研究方向。其中荧光传感器已成为研究热点,它是利用荧光来表达传感分子与分析对象作用后的化学信息变化,具有方便快捷、高选择性和高灵敏度等优点。其原理是通过将对被分析物的识别信息转换为荧光基团的光物理性质的改变,如荧光增强或减弱、光谱移动、荧光寿命变化等,实现对被分析物的检测。而荧光聚合物表现出的特殊“分子导线效应”(即光或电激发产生的激子或载流子可沿整个分子流动,整个分子类似于一根导线,使其能在不改变功能基团与识别分子结合常数的情况下成百倍地放大响应信号),使其有了更高的灵敏度。正因为荧光检测技术的这些优点使其在分析化学、生物化学等领域被广泛应用。
目前铁离子(Fe3+)的荧光检测多是在均相中进行,但从实际应用的角度出发,固态薄膜要优于溶液。相对于均相传感器来说,薄膜传感器具有可重复使用性、基本不污染待测体系以及易于器件化等优势。在最近几年,对共轭聚合物纳米粒子的潜在运用的研究与日俱增。共轭聚合物纳米粒子已经成为一种极好的荧光纳米材料,具有较高的亮度、极好的光稳定性和良好的生物兼容性。然而,当前大部分共轭聚合物纳米粒子都是由三维刚性结构组成,是一种不溶的固体粉末。这将限制它们在可加工性方面尤其是薄膜器件制备方面的运用。采用细乳液Suzuki聚合的超支化共轭聚合物纳米粒子已经成为一类具有稳定的形貌和溶液可加工性的共轭聚合物纳米粒子,这将为制备薄膜器件提供可能。
发明内容
本发明的目的是提供一种基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感器件制备方法。
本发明的基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感器件制备方法,包括以下步骤:采用单体1和单体2,在碱和钯催化剂催化的条件下,在油/水型细乳液中进行Suzuki聚合反应,并以封端剂进行封端反应,制备出可分散在有机相中的超支化共轭聚合物荧光纳米粒子;
所述的单体1和单体2,分别为具有双溴单体和三硼酸酯单体,其结构如下:
单体1 ,单体2
所述在油/水型细乳液中进行Suzuki缩聚反应的具体步骤如下:在无氧条件下进行,水用量为90 mL;油相为甲苯,用量为6 mL ;乳化剂为十六烷基三甲基溴化铵(CTAB),用量为16 mmol;催化剂为四三苯基膦合钯(Pd(PPh3)4),用量为2.8 mg;碳酸钾水溶液浓度为2mol/L,用量为3 mL;反应温度为80 ℃,反应时间为24 h。随后所用的封端试剂为硼酸封端剂苯硼酸和溴代封端剂溴苯。所制备的超支化共轭聚合物纳米粒子是一种完全无乳化剂的,并能够分散在四氢呋喃、二氯甲烷、氯仿或甲苯中的,平均直径为10.6纳米的粒子。
可分散超支化共轭聚合物纳米粒子薄膜传感器的制备方法:0.1 mg/mL的超支化共轭聚合物纳米粒子的四氢呋喃溶液通过旋涂的方法得到薄膜传感器,旋涂时的转速为1000 rpm。
本发明制备方法制备的基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感器件,对Fe3+具有特异性响应,同时在荧光检测中具有高灵敏度和高选择性响应,且对Fe3 +的检测过程具有可逆性,可实现薄膜的重复使用。
本发明所制备的薄膜传感器可在逻辑门得到应用。
附图说明
图 1 所制备可分散超支化共轭聚合物荧光纳米粒子在四氢呋喃中和作为薄膜时的紫外吸收光谱和荧光光谱;
图 2 所制备可分散超支化共轭聚合物荧光纳米粒子透射电子显微镜图像及纳米粒子尺寸分布柱状图;
图 3 所制备可分散超支化共轭聚合物荧光纳米粒子薄膜的荧光光谱随Fe3+浓度的变化;
图 4 所制备可分散超支化共轭聚合物荧光纳米粒子薄膜的荧光强度对不同金属离子的响应;
图 5 所制备可分散超支化共轭聚合物荧光纳米粒子薄膜对Fe3+检测过程的可逆性图;
图 6 IMP逻辑门的真值表及逻辑电路图。
具体实施方式
一种可分散超支化共轭聚合物荧光纳米粒子的制备:单体1是从商业中获得,单体2的合成制备过程如下:
(1)三(四溴苯基)胺的制备:10.6 g三苯基胺溶于43 mL的氯仿中并将体系温度降至0℃,然后在避光的条件下逐滴加入液溴。待液溴完全加入后继续反应一小时,粗产物倒入体积比为1:1的水-乙醇体系中沉淀。过滤出白色固体溶解在20 mL的热氯仿中,向体系中加入50 mL热乙醇在-18℃的条件下过夜重结晶。最后过滤出沉淀并在真空干燥箱中干燥,得到三(四溴苯基)胺18.0 g。1H NMR (CDCl3): δ = 7.35 (d, 6H), 6.92 (d, 6H); 13CNMR (CDCl3): δ= 146.06, 132.52, 125.62, 116.07。
(2)单体2 三(4-(4,4,5,5-四甲基-1,3,2-二氧杂硼)苯基)胺的制备: 0.96 g 三(4-溴苯基)胺的四氢呋喃溶液温度降至-78℃,6 mmol正丁基锂加入到上述体系中,在-80℃下搅拌一小时后2-异丙氧基-4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷加入。在出去溶剂之前将反应体系恢复到室温,除去溶剂的剩余物溶于氯仿中,然后倒入水中,并用三氯甲烷萃取水相三次。合并有机相在硫酸镁中干燥,而后浓缩有机相至1 mL。向浓缩的有机相中加入10 mL的热乙醇并保持体系在-18℃下过夜重结晶。过滤沉淀并在真空干燥箱中干燥,得到单体2 700 mg。1H NMR (CDCl3): δ= 7.68 (d, 6H), 7.07 (d, 6H), 1.34 (s, 36H);13C NMR (CDCl3): δ= 149.81, 135.93, 123.50, 83.68, 24.88。
可分散超支化共轭聚合物荧光纳米粒子的合成路线如下所示:
氩气氛围下,在250 mL的双口瓶中,将CTAB 5.82 g (16 mmol) 完全溶解在90 mL除氧去离子水中,单体三(4-(4,4,5,5-四甲基-1,3,2-二氧杂硼)苯基)胺149 mg (0.24mmol),9,9-二己基-2,7-二溴芴177 mg (0.36mmol) 和催化剂Pd(PPh3)4 2.8 mg溶解在6mL除氧的甲苯中。将单体和催化剂的甲苯溶液用注射器转移到搅拌的CTAB溶液中。将反应器置于超声水浴中,超声振荡20 min后,在搅拌状态下加入3 mL 浓度为2M 的K2CO3水溶液,再继续超声10 min。所得反应细乳液置于80℃的油浴中,搅拌反应24 h。加入封端剂苯硼酸,反应4 h后,加入另一封端剂溴苯继续反应4 h。冷却后,反应乳液倒入200 mL饱和NaCl水溶液中,用二氯甲烷多次萃取。合并有机相,并用旋转蒸发仪浓缩,除去大部分溶剂。少量剩余溶液沉降到200 mL甲醇中,离心分离出固体。将固体置于甲醇中超声洗涤20 min,再离心分离出固体,并此操作重复三次。最后,在70℃下真空干燥12 h,得到超支化共轭聚合物荧光纳米粒子135 mg。
荧光薄膜传感器件的制备方法:配置可分散超支化共轭聚合物荧光纳米粒子的浓度为0.1 mg/mL的四氢呋喃溶液,将纳米粒子通过旋涂的方式涂在玻璃基底上,旋涂时的转速为1000 rpm。所得到的薄膜置于60 ℃真空干燥箱里干燥4 h即可获得荧光薄膜传感器件。
荧光薄膜传感器件对Fe3+的检测:将薄膜置于装有2 mL的乙醇的比色皿中,然后加入不同浓度的Fe3+,其浓度在5.0 × 10-6 M – 1.5 × 10-3 M 有良好的猝灭效应,而且内荧光强度与加入的Fe3+浓度具有很好的线性关系。此外,制备的可分散超支化共轭聚合物荧光纳米粒子薄膜对Fe3+有很强的选择性,而且对Hg2+、Ba2+、Mn2+、Pb2+、Ni2+、Al3+、Co2+、Zn2+、Cd2+、Mg2+、Pd2+等金属离子几乎无荧光淬灭现象。此外,猝灭后的薄膜使用EDTA水溶液处理之后,使用去离子水清洗几次,再次测量薄膜的荧光强度,大部分猝灭的荧光强度得到恢复,表明薄膜对Fe3+的检测过程具有良好的可逆性。
Fe3+荧光薄膜传感器件的逻辑门应用:可分散超支化共轭聚合物荧光纳米粒子薄膜对Fe3+检测的逻辑门应用:将Fe3+和EDTA作为“Input”,高的荧光强度产生“Output”为1,弱的荧光强度产生“Output”为0。

Claims (4)

1.一种基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感器件制备方法,其特征在于:它包含以下几个步骤:
(1)将单体1和单体2在碱和钯催化剂催化的条件下,在油/水型细乳液中进行Suzuki聚合反应,并以封端剂进行封端反应,制备出可分散在有机相中的超支化共轭聚合物荧光纳米粒子;
(2)将分散在有机相中的超支化聚合物纳米粒子通过旋涂的方法在玻璃基底上制备荧光薄膜传感器件:
所述单体1为所述单体2为
所述的封端试剂为硼酸封端剂苯硼酸和溴代封端剂溴苯。
2.根据权利要求1所述的基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感器件制备方法,其特征在于:所述在油/水型细乳液中进行Suzuki聚合反应的具体步骤为:在无氧条件下进行,水的用量是90mL;油相甲苯的用量为6mL;乳化剂为十六烷基三甲基溴化铵,用量为16mmol;催化剂为四三苯基膦钯,用量为2.8mg;碳酸钾水溶液浓度为2mol/L,体积为3mL;反应温度为80℃,反应时间为24h。
3.根据权利要求1所述的基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感器件制备方法,其特征在于,超支化共轭聚合物纳米粒子分散液浓度为0.1mg/mL,旋涂的转速为1000rpm。
4.根据权利要求1所述的基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感器件制备方法制备的荧光薄膜传感器件在逻辑门上应用。
CN201610320466.9A 2016-05-16 2016-05-16 基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感器件制备方法 Active CN105949444B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610320466.9A CN105949444B (zh) 2016-05-16 2016-05-16 基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感器件制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610320466.9A CN105949444B (zh) 2016-05-16 2016-05-16 基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感器件制备方法

Publications (2)

Publication Number Publication Date
CN105949444A CN105949444A (zh) 2016-09-21
CN105949444B true CN105949444B (zh) 2018-03-13

Family

ID=56911732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610320466.9A Active CN105949444B (zh) 2016-05-16 2016-05-16 基于可分散超支化共轭聚合物纳米粒子的Fe3+荧光薄膜传感器件制备方法

Country Status (1)

Country Link
CN (1) CN105949444B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106770077B (zh) * 2016-10-26 2019-04-26 江西农业大学 检测氟离子的荧光薄膜传感器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547003A (zh) * 2003-12-14 2004-11-17 浙江大学 用于检测Fe3+的薄膜光寻址电位传感器及其制备方法
CN105111414A (zh) * 2015-09-30 2015-12-02 山西大学 一种含有芴环的共轭聚合物及其制备方法和应用
CN105254853A (zh) * 2015-10-16 2016-01-20 中国科学院长春应用化学研究所 一种水分散超支化共轭聚合物荧光纳米粒子及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547003A (zh) * 2003-12-14 2004-11-17 浙江大学 用于检测Fe3+的薄膜光寻址电位传感器及其制备方法
CN105111414A (zh) * 2015-09-30 2015-12-02 山西大学 一种含有芴环的共轭聚合物及其制备方法和应用
CN105254853A (zh) * 2015-10-16 2016-01-20 中国科学院长春应用化学研究所 一种水分散超支化共轭聚合物荧光纳米粒子及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
电子型导电高分子生化传感器的构建及其农业应用基础研究;文阳平;《中国博士学位论文全文数据库 农业科技辑》;20131215(第12期);第203-208页 *

Also Published As

Publication number Publication date
CN105949444A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
Yu et al. Double-color lanthanide metal–organic framework based logic device and visual ratiometric fluorescence water microsensor for solid pharmaceuticals
Liu et al. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications
Park et al. Multicolor emitting block copolymer-integrated graphene quantum dots for colorimetric, simultaneous sensing of temperature, pH, and metal ions
Xie et al. Graphene quantum dots as smart probes for biosensing
Dong et al. Dual-emission of lanthanide metal–organic frameworks encapsulating carbon-based dots for ratiometric detection of water in organic solvents
Xiong et al. Two-dimensional graphitic carbon nitride nanosheets for biosensing applications
Xu et al. Low-cost synthesis of carbon nanodots from natural products used as a fluorescent probe for the detection of ferrum (III) ions in lake water
Zhang et al. Blue/yellow emissive carbon dots coupled with curcumin: a hybrid sensor toward fluorescence turn-on detection of fluoride ion
Wang et al. Ultrastable amine, sulfo cofunctionalized graphene quantum dots with high two-photon fluorescence for cellular imaging
Jia et al. Solid state effective luminescent probe based on CdSe@ CdS/amphiphilic co-polyarylene ether nitrile core-shell superparticles for Ag+ detection and optical strain sensing
Xiao et al. Fluorescent carbon dots: facile synthesis at room temperature and its application for Fe 2+ sensing
Zhang et al. Rapid synthesis of N, S co-doped carbon dots and their application for Fe 3+ ion detection
Mishra et al. Aqueous growth of gold clusters with tunable fluorescence using photochemically modified lipoic acid-based ligands
CN107552806B (zh) 一种可大规模制备的具有尺寸与分散性可控的Fe3O4@Au核@壳结构纳米棒的制备方法
Li et al. One-pot synthesis of aqueous soluble and organic soluble carbon dots and their multi-functional applications
Wang et al. Nitrogen and boron-incorporated carbon dots for the sequential sensing of ferric ions and ascorbic acid sensitively and selectively
Lin et al. A highly zinc-selective ratiometric fluorescent probe based on AIE luminogen functionalized coordination polymer nanoparticles
CN110194822B (zh) 一种基于单臂TPE分子的温敏型双荧光Pdots的制备及应用
CN101089615A (zh) 一种磁性表面增强拉曼散射标记的制备方法
Xu et al. A ratiometric nanosensor based on lanthanide-functionalized attapulgite nanoparticle for rapid and sensitive detection of bacterial spore biomarker
Luo et al. Coordination polymer nanobelts for nucleic acid detection
Shi et al. Straw-sheaf-like terbium-based coordination polymer architectures: microwave-assisted synthesis and their application as selective luminescent probes for heavy metal ions
Gai et al. Surface charge tuning of functionalized silica cross-linked micellar nanoparticles encapsulating a donor–acceptor dye for Fe (III) sensing
Liu et al. Synthesis of carbon quantum dots from lac dye for silicon dioxide imaging and highly sensitive ethanol detecting
Li et al. Dual-emission carbon dots-copper nanoclusters ratiometric photoluminescent nano-composites for highly sensitive and selective detection of Hg2+

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200925

Address after: 330000 room 452, building 1, No. 5, changnanyuan 5th Road, Changnan Industrial Park, Qingyunpu District, Nanchang City, Jiangxi Province

Patentee after: Jiangxi praefeng Ecological Technology Co.,Ltd.

Address before: 1101 No. 330045 Jiangxi city of Nanchang province Zhimin Road Economic Development Zone

Patentee before: JIANGXI AGRICULTURAL University

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Preparation of Fe3 +fluorescent thin film sensor based on dispersible hyperbranched conjugated polymer nanoparticles

Effective date of registration: 20220126

Granted publication date: 20180313

Pledgee: Jiangxi branch of Bank of China Ltd.

Pledgor: Jiangxi praefeng Ecological Technology Co.,Ltd.

Registration number: Y2022980001204

PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20230328

Granted publication date: 20180313

Pledgee: Jiangxi branch of Bank of China Ltd.

Pledgor: Jiangxi praefeng Ecological Technology Co.,Ltd.

Registration number: Y2022980001204