CN106881086A - 镓酸盐尖晶石负载纳米金催化剂的制备及催化剂和应用 - Google Patents

镓酸盐尖晶石负载纳米金催化剂的制备及催化剂和应用 Download PDF

Info

Publication number
CN106881086A
CN106881086A CN201510923021.5A CN201510923021A CN106881086A CN 106881086 A CN106881086 A CN 106881086A CN 201510923021 A CN201510923021 A CN 201510923021A CN 106881086 A CN106881086 A CN 106881086A
Authority
CN
China
Prior art keywords
catalyst
hours
gallate spinel
nanometer gold
gallate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510923021.5A
Other languages
English (en)
Other versions
CN106881086B (zh
Inventor
李为臻
任国庆
刘凯鹏
张涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201510923021.5A priority Critical patent/CN106881086B/zh
Publication of CN106881086A publication Critical patent/CN106881086A/zh
Application granted granted Critical
Publication of CN106881086B publication Critical patent/CN106881086B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/896Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了抗高温烧结镓酸盐尖晶石负载纳米金催化剂及其制备方法和应用催化剂通过先后浸渍金前驱体和助剂前驱体并进行预处理活化制备,包括以下步骤:(1)将一定量的镓酸盐尖晶石载体浸渍于适量金前驱体溶液中1‑12小时后,于60‑120℃干燥6‑12小时,再在300℃焙烧5小时后,得到镓酸盐尖晶石负载纳米金催化剂;(2)将一定量上述镓酸盐尖晶石负载纳米金催化剂浸渍于适量助剂前驱体溶液中1‑12小时后,于60‑120℃干燥6‑12小时,再在500℃焙烧5小时后,得到含有氧化物助剂的镓酸盐尖晶石负载纳米金催化剂。本发明中催化剂具有很好的抗高温烧结性能,经过1100℃焙烧后,多数金颗粒尺寸仍保持3nm以下。

Description

镓酸盐尖晶石负载纳米金催化剂的制备及催化剂和应用
技术领域
本发明属于催化剂技术领域,涉及抗高温烧结镓酸盐尖晶石负载纳米金催化剂及其制备方法和应用。
技术背景
负载型金催化剂中金纳米粒子具有显著的尺寸效应,当金纳米粒子尺寸为2-5nm时,纳米金催化剂对有机物的加氢、选择氧化、环氧化反应,以及CO氧化和NO还原等很多反应中都表现出很好的活性。然而,该尺寸范围的金纳米粒子的热稳定性以及反应稳定性较差,易发生颗粒高温烧结长大从而导致催化剂不可逆失活,限制了金催化剂的实际应用。提高纳米金催化剂的热稳定性即抗高温烧结能力是实现其推广应用的关键。
目前,提高纳米金催化剂热稳定性的方法主要有1)利用介孔材料的孔道或者氧化物膜隔离和限制金纳米粒子的迁移长大;2)利用杂离子对载体表面进行化学修饰以提高金纳米粒子与载体表面的相互作用;3)与其他高熔点的过渡金属形成合金以降低金的迁移能力。范杰等(CN102211037B)使用特定介孔结构的FDU-12介孔分子筛为载体,将均一的金纳米颗粒负载于超大的笼状介孔孔道中,通过提高纳米颗粒的负载量(5wt%),提高金纳米颗粒的抗烧结性能,催化剂在350-650℃条件下热处理5-24小时没有发现严重的烧结现象。安立敦等(CN100389873)利用Cu和Fe或Co或Ni修饰的Al2O3或TiO2/Al2O3负载金颗粒,300℃氢气还原1h,室温下空气中放置1年后仍保持较高活性。丁轶等(CN103785380A)采用先合成金/银/铂层状结构纳米颗粒,再通过硝酸腐蚀银,制备了无负载的纳米金粒子被多孔铂外壳所包裹的催化剂,纳米金粒子不仅保持较高的活性和稳定性,而且也避免了载体对纳米金粒子的影响。
上述方法从不同的方面可一定程度上改善金纳米粒子的热稳定性,但是,具有高温(大于800℃)长时间(大于24小时)稳定性的金纳米催化剂仍然未见报道。
发明内容
本发明公开了抗高温烧结镓酸盐尖晶石负载纳米金催化剂及其制备方法,解决了纳米金催化剂高温烧结以及由其引起的催化剂失活问题,为纳米金催化剂在高温条件下的应用提供了成功范例。
为了达到上述目的,本发明采用的技术方案是,抗高温烧结镓酸盐尖晶石负载纳米金催化剂及其制备方法,包括以下步骤:
步骤1,将一定量的镓酸盐尖晶石载体浸渍于适量金前驱体溶液中12小时后,于80℃干燥12小时,再在300℃焙烧5小时后,得到镓酸盐尖晶石负载纳米金催化剂;
步骤2,将一定量上述镓酸盐尖晶石负载纳米金催化剂浸渍于适量助剂前驱体溶液中12小时后,于120℃干燥12小时,再在500℃焙烧5小时后,得到含有氧化物助剂的镓酸盐尖晶石负载纳米金催化剂。
金的颗粒大小主要为0.5~3nm,以催化剂总重量计,金的含量在0.001wt%~10wt%,助剂的含量为0-50wt%。本发明中催化剂具有很好的抗高温烧结性能,经过1100℃焙烧后,多数金颗粒尺寸仍保持3nm以下。优选催化剂对一氧化碳催化氧化,甲烷催化燃烧和高温水汽变换反应等一系列氧化还原反应都具有良好的催化活性和稳定性。该发明开发了一类应用广泛的抗高温烧结负载型纳米金催化剂。
本发明包扩了不含和含有氧化物助剂的镓酸盐尖晶石负载纳米金催化剂。结果表明,按照本发明方案制备的纳米金催化剂热稳定性高,对一氧化碳催化氧化,甲烷催化燃烧和高温水汽变换反应等一系列氧化还原反应都具有良好的催化活性和稳定性。
附图说明
图1为采用本发明所述方法实施例1、2和3制备的Au/MgGa2O4-300℃-5h,Au/NiGa2O4-300℃-5h和Au/ZnGa2O4-300℃-5h催化剂的电镜图片。
图2为采用本发明所述方法实施例4、5和6制备的Au/MgGa2O4-800℃-7day,Au/NiGa2O4-800℃-7day和Au/ZnGa2O4-800℃-7day催化剂的电镜图片。
图3为采用本发明所述方法实施例7和8制备的Au/MgGa2O4-1100℃-5h和Au/MgGa2O4-1200℃-5h催化剂的电镜图片。
图4为比较实施例9和10制备的Au/Al2O4-800℃-5h和Au/MgO-800℃-5h样品的电镜图片。
图5为实施例1(Au/MgGa2O4-300℃-5h),实施例11(CeO2/[Au/MgGa2O4-800℃-5h]),13(Fe2O3/[Au/MgGa2O4-800℃-5h])和由实施例1进一步焙烧获得的Au/MgGa2O4-800℃-5h催化剂催化CO的氧化反应结果图。
图6为实施例1(Au/MgGa2O4-300℃-5h),实施例11(CeO2/[Au/MgGa2O4-800℃-5h])和由实施例1进一步焙烧获得的Au/MgGa2O4-800℃-5h,以及比较实施例21催化剂(Au/CeO2-RRCe-2)催化甲烷燃烧反应结果图。
图7为实施例1(Au/MgGa2O4-300℃-5h),实施例11(CeO2/[Au/MgGa2O4-800℃-5h])和由实施例1进一步焙烧获得的Au/MgGa2O4-800℃-5h,以及比较实施例21催化剂(Au/CeO2-RRCe-2)催化水汽变换反应结果图。
图8为实施例11(CeO2/[Au/MgGa2O4-800℃-5h]),实施例12(K2O/[Au/MgGa2O4-800℃-5h])和由实施例1进一步焙烧获得的Au/MgGa2O4-800℃-5h,以及比较实施例21催化剂(Au/CeO2-RRCe-2)进行水汽变换反应CO转化率随时间变化图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步说明,但本发明并不仅限于此。
实施例1-3
实施例1-3说明采用本发明提供的方法,分别采用镓酸镁,镓酸镍和镓酸锌负载金制备镓酸盐尖晶石负载的金纳米催化剂情况。具体制备方法如下:分别称取3g镓酸镁,镓酸镍和镓酸锌载体,缓慢加入到50mL溶有0.125g氯金酸的水溶液中,室温下搅拌12小时后,过滤,所得固体置于80℃干燥12小时,再在300℃焙烧5小时后,分别得到镓酸镁,镓酸镍和镓酸锌负载的纳米金催化剂,分别记作Au/MgGa2O4-300℃-5h,Au/NiGa2O4-300℃-5h和Au/ZnGa2O4-300℃-5h,其中绝大多数金纳米粒子尺寸都小于3nm。电感耦合高频等离子体(ICP)定量元素分析得金的质量分数分别为1.2wt%,1.1wt%和1.2wt%,约为理论金加入量的一半。图1(a),(b)和(c)分别为采用本发明所述方法实施例1、2和3制备的Au/MgGa2O4-300℃-5h,Au/NiGa2O4-300℃-5h和Au/ZnGa2O4-300℃-5h催化剂的电镜图片。
实施例4-6
实施例4-6说明采用本发明提供的方法制备镓酸盐尖晶石负载的金纳米催化剂的在高温长时间老化中热稳定性情况。将实施例1-3所得的Au/MgGa2O4-300℃-5h,Au/NiGa2O4-300℃-5h和Au/ZnGa2O4-300℃-5h样品置于马弗炉中,以5℃/min升温速率升温到800℃,保持7天,得到老化后样品Au/MgGa2O4-800℃-7day,Au/NiGa2O4-800℃-7day和Au/ZnGa2O4-800℃-7day,其中仍保留有大量小于3nm的金纳米粒子。图2(a),(b)和(c)分别为采用本发明所述方法实施例4、5和6制备的Au/MgGa2O4-800℃-7day,Au/NiGa2O4-800℃-7day和Au/ZnGa2O4-800℃-7day催化剂的电镜图片。
实施例7-8
实施例7-8说明采用本发明提供的方法制备镓酸镁尖晶石负载的金纳米催化剂的在高于金熔点温度下长时间老化后热稳定性情况。将实施例1所得的Au/MgGa2O4-300℃-5h样品置于马弗炉中,以5℃/min升温速率分别升温到1100℃和1200℃,并保持5小时,得到老化后样品Au/MgGa2O4-1100℃-5h和Au/MgGa2O4-1200℃-5h,样品中仍保留有大量小于3nm的金纳米粒子。值得注意的是,金属金的熔点是1065℃,分别经过1100℃和1200℃高温老化的Au/MgGa2O4-1100℃-5h和Au/MgGa2O4-1200℃-5h仍保留小尺寸金纳米粒子,表现出超高的热稳定性。图3(a)和(b)分别为采用本发明所述方法实施例7和8制备的Au/MgGa2O4-1100℃-5h和Au/MgGa2O4-1200℃-5h催化剂的电镜图片。
比较实施例9-10
比较实施例9-10说明用常规载体氧化铝和氧化镁制备金催化剂的情况。分别称取3氧化铝和氧化镁载体,缓慢加入到50mL溶有0.125g氯金酸的水溶液中,室温下搅拌12小时后,过滤,所得固体置于80℃干燥12小时,再在800℃焙烧5小时后,分别得到氧化铝和氧化镁负载的金催化剂,记作Au/Al2O4-800℃-5h和Au/MgO-800℃-5h。XRD谱图上测得这两个样品中金颗粒的尺寸都大于100nm,并且用电镜仔细观察样品中没有发现小颗粒金纳米粒子的存在,表明比较实施例9-10,即Au/Al2O4-800℃-5h和Au/MgO-800℃-5h样品中金纳米粒子已经完全烧结聚集长大。图4(a)和(b)分别为比较实施例9和10制备的Au/Al2O4-800℃-5h和Au/MgO-800℃-5h样品的电镜图片。
实施例11-13
实施例11-13说明采用本发明提供的方法,分别以氧化铈,氧化钾和氧化铁等为助剂制备含有氧化物助剂的镓酸盐尖晶石负载的金纳米催化剂情况。首先将实施例1所得Au/MgGa2O4-300℃-5h样品置于马弗炉中,以5℃/min升温速率升温到800℃,保持5小时,得到Au/MgGa2O4-800℃-5h;然后,分别取2g Au/MgGa2O4-800℃-5h等体积浸渍于含有硝酸铈(1.3g),硝酸钾(0.25g)和硝酸铁(1.8g)的水溶液中,室温放置12小时后,置于80℃烘箱中干燥12小时,然后转入马弗炉中以5℃/min升温速率升温到400℃并保持5小时,分别得到含氧化铈,氧化钾和氧化铁助剂的的镓酸盐尖晶石负载的金纳米催化剂,分别记作CeO2/[Au/MgGa2O4-800℃-5h],K2O/[Au/MgGa2O4-800℃-5h]和Fe2O3/[Au/MgGa2O4-800℃-5h],其中CeO2,K2O和Fe2O3的质量分数分别为20.7wt%,5.4wt%和15.1wt%。
实施例14-17
实施例14-17说明采用本发明提供的方法制备的不含和含有氧化物助剂的镓酸盐尖晶石负载的金纳米催化剂催化CO氧化反应情况。将实施例1(Au/MgGa2O4-300℃-5h),实施例11(CeO2/[Au/MgGa2O4-800℃-5h]),13(Fe2O3/[Au/MgGa2O4-800℃-5h])和由实施例1进一步焙烧获得的Au/MgGa2O4-800℃-5h催化剂进行CO的氧化反应,反应原料组成为1vol%CO+20vol%O2+79vol%N2,空速为36,000mL gcat. -1h-1时,各催化剂在50%CO转化率的温度(T50)分别为110,130,220和230℃,表明选择合适的氧化物助剂可以有效的提高镓酸盐尖晶石负载的金纳米催化剂的催化性能。图5为实施例1(Au/MgGa2O4-300℃-5h),实施例11(CeO2/[Au/MgGa2O4-800℃-5h]),13(Fe2O3/[Au/MgGa2O4-800℃-5h])和由实施例1进一步焙烧获得的Au/MgGa2O4-800℃-5h催化剂催化CO的氧化反应结果图。
实施例18-20
实施例18-20说明采用本发明提供的方法制备的不含和含有氧化物助剂的镓酸盐尖晶石负载的金纳米催化剂催化甲烷燃烧反应情况。将实施例1(Au/MgGa2O4-300℃-5h),实施例11(CeO2/[Au/MgGa2O4-800℃-5h])和由实施例1进一步焙烧获得的Au/MgGa2O4-800℃-5h催化剂进行甲烷燃烧反应,反应原料组成为1vol%CH4+20vol%O2+79vol%N2,空速为36,000mL gcat. -1h-1时,各催化剂在50%甲烷转化率的温度(T50)分别为615,570和650℃,表明选择合适的氧化物助剂可以有效的提高镓酸盐尖晶石负载的金纳米催化剂的催化性能。图6为实施例1(Au/MgGa2O4-300℃-5h),实施例11(CeO2/[Au/MgGa2O4-800℃-5h])和由实施例1进一步焙烧获得的Au/MgGa2O4-800℃-5h催化剂催化甲烷燃烧反应结果图。
比较实施例21
比较实施例21说明商品金催化剂催化甲烷燃烧反应情况。从Haruta Gold Incorporated购买的Au/CeO2-RRCe-2催化剂比表面积20m2/g,金质量分数0.98wt%,金颗粒平均尺寸4.5±2.7nm。利用该催化剂进行甲烷催化燃烧反应,反应原料组成为1vol%CH4+20vol%O2+79vol%N2,空速为36,000mL gcat. -1h-1时,该催化剂在50%甲烷转化率的温度(T50)为600℃,高于实施例19催化剂(CeO2/[Au/MgGa2O4-800℃-5h])。需要指出的是该比较实施例商品催化剂中金颗粒在进行反应前没有经历800℃高温老化5小时,故实施例19催化剂(CeO2/[Au/MgGa2O4-800℃-5h])催化甲烷燃烧反应性能显然优于商品催化剂。图6为比较实施例21催化剂催化甲烷燃烧反应结果图。
实施例22-24
实施例22-24说明采用本发明提供的方法制备的不含和含有氧化物助剂的镓酸盐尖晶石负载的金纳米催化剂催化水汽变换反应情况。将实施例1(Au/MgGa2O4-300℃-5h),实施例11(CeO2/[Au/MgGa2O4-800℃-5h])和由实施例1进一步焙烧获得的Au/MgGa2O4-800℃-5h催化剂进行水汽变换反应,反应原料组成为2vol%CO+10vol%H2O+88vol%N2,空速为36,000mL gcat. -1h-1时,450℃时CO的转化率分别为8.7%,50.0%和1.6%,表明添加氧化铈助剂能显著提高镓酸盐尖晶石负载的金纳米催化剂对水汽变换反应的催化性能。图7为实施例1(Au/MgGa2O4-300℃-5h),实施例11(CeO2/[Au/MgGa2O4-800℃-5h])和由实施例1进一步焙烧获得的Au/MgGa2O4-800℃-5h催化剂催化水汽变换反应结果图。
比较实施例25
比较实施例25说明商品金催化剂催化水汽变换反应情况。利用比较实施例21中从Haruta Gold Incorporated购买的Au/CeO2-RRCe-2催化剂进行水汽变换反应,反应原料组成为2vol%CO+10vol%H2O+88vol%N2,空速为36,000mL gcat. -1h-1时,450℃CO的转化率为23.2%,约为实施例23中催化剂(CeO2/[Au/MgGa2O4-800℃-5h])对该反应的转化速率的一半,表明采用本发明提供的方法制备的含有氧化铈助剂的镓酸盐尖晶石负载的金纳米催化剂催化水汽变换反应具有显著的优越性能。图7为比较实施例25催化剂催化水汽变换反应结果图。
实施例26-28
实施例26-28说明采用本发明提供的方法制备的不含和含有氧化物助剂的镓酸盐尖晶石负载的金纳米催化剂催化水汽变换反应稳定性的情况。将实施例11(CeO2/[Au/MgGa2O4-800℃-5h]),实施例12(K2O/[Au/MgGa2O4-800℃-5h])和由实施例1进一步焙烧获得的Au/MgGa2O4-800℃-5h催化剂进行水汽变换反应,反应原料组成为2vol%CO+10vol%H2O+88vol%N2,空速为36,000mL gcat. -1h-1时,48小时内上述各催化剂的平均转化率分别为34.8%,28.4%和1.4%,表明氧化物助剂可显著提高镓酸盐尖晶石负载的金纳米催化剂催化水汽变换反应的催化性能。图8为实施例11(CeO2/[Au/MgGa2O4-800℃-5h]),实施例12(K2O/[Au/MgGa2O4-800℃-5h])和由实施例1进一步焙烧获得的Au/MgGa2O4-800℃-5h催化剂进行水汽变换反应CO转化率随时间变化图。
比较实施例29
比较实施例29说明商品金催化剂催化水汽变换反应稳定性情况。利用比较实施例21中从Haruta Gold Incorporated购买的Au/CeO2-RRCe-2催化剂进行水汽变换反应,反应原料组成为2vol%CO+10vol%H2O+88vol%N2,空速为36,000mL gcat. -1h-1时,450℃反应48小时,CO平均转化率约为18.6%,分别约为实施例11(CeO2/[Au/MgGa2O4-800℃-5h])和实施例12(K2O/[Au/MgGa2O4-800℃-5h])中催化剂的53%和65%。表明采用本发明提供的方法制备的含有氧化铈或氧化钾助剂的镓酸盐尖晶石负载的金纳米催化剂比商品金催化剂具有更优越的催化水汽变换反应活性和稳定性。图8为比较实施例25金催化剂进行水汽变换反应CO转化率随时间变化图。

Claims (7)

1.镓酸盐尖晶石负载纳米金催化剂的制备方法,其特征在于:包括镓酸盐尖晶石负载纳米金催化剂或含有氧化物助剂的镓酸盐尖晶石负载纳米金催化剂;
(1)以镓酸盐尖晶石为载体,氯金酸为金源,通过浸将镓酸盐尖晶石载体浸渍于金前驱体溶液中1-12小时后,于60-120℃干燥6-12小时,再在300℃焙烧5小时后,得到镓酸盐尖晶石负载纳米金催化剂;
(2)将上述镓酸盐尖晶石负载纳米金催化剂浸渍于助剂前驱体溶液中1-12小时后,于60-120℃干燥6-12小时,再在500℃焙烧5小时后,得到含有氧化物助剂的镓酸盐尖晶石负载纳米金催化剂,助剂为碱金属、碱土金属及过渡金属氧化物中的一种或二种以上。
2.按照权利要求1所述纳米金催化剂的制备方法,其特征在于:镓酸盐尖晶石载体为镓酸镁,镓酸镍,或镓酸锌,及其他镓酸盐尖晶石中的一种或二种以上任意比混合物。
3.按照权利要求1所述纳米金催化剂的制备方法,其特征在于:助剂为碱金属、碱土金属及过渡金属氧化物中的一种或二种以上,其前驱体为相应金属的可溶性盐。
4.按照权利要求1或3所述纳米金催化剂的制备方法,其特征在于:助剂K2O,CeO2,或Fe2O3中的一种或二种以上;其中金纳米颗粒尺寸小于3nm。
5.按照权利要求1所述纳米金催化剂的制备方法,以催化剂总重量计,金的含量在0.001wt%~10wt%,助剂的含量为0-50wt%。
6.一种权利要求1-5任一项所制备的抗高温烧结镓酸盐尖晶石负载纳米金催化剂。
7.一种权利要求6所述抗高温烧结镓酸盐尖晶石负载纳米金催化剂的应用,其可用于CO氧化,水汽变换或甲烷催化燃烧反应,具有良好的活性,稳定性和抗高温烧结性能。
CN201510923021.5A 2015-12-12 2015-12-12 镓酸盐尖晶石负载纳米金催化剂的制备及催化剂和应用 Active CN106881086B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510923021.5A CN106881086B (zh) 2015-12-12 2015-12-12 镓酸盐尖晶石负载纳米金催化剂的制备及催化剂和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510923021.5A CN106881086B (zh) 2015-12-12 2015-12-12 镓酸盐尖晶石负载纳米金催化剂的制备及催化剂和应用

Publications (2)

Publication Number Publication Date
CN106881086A true CN106881086A (zh) 2017-06-23
CN106881086B CN106881086B (zh) 2019-08-02

Family

ID=59173800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510923021.5A Active CN106881086B (zh) 2015-12-12 2015-12-12 镓酸盐尖晶石负载纳米金催化剂的制备及催化剂和应用

Country Status (1)

Country Link
CN (1) CN106881086B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114904528A (zh) * 2022-03-26 2022-08-16 山东海化集团有限公司 一种有序介孔镍基镁镓尖晶石甲烷化催化剂及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104645979A (zh) * 2015-02-03 2015-05-27 福州大学 一种Au/TiO2-碱土金属氧化物微球催化剂及其制备和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104645979A (zh) * 2015-02-03 2015-05-27 福州大学 一种Au/TiO2-碱土金属氧化物微球催化剂及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATSUYA SHIMURA ET AL.: "Photocatalytic Activation of Water and Methane over Modified Gallium Oxide for Hydrogen Production", 《J. PHYS. CHEM. C》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114904528A (zh) * 2022-03-26 2022-08-16 山东海化集团有限公司 一种有序介孔镍基镁镓尖晶石甲烷化催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN106881086B (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
CN109794241B (zh) 一种氧化铈选择性包覆负载型钯催化剂及其制备方法
CN109746022A (zh) 一种用于二氧化碳还原的高分散铜锌催化剂的制备方法及其使用方法
CN107511147A (zh) 一种高稳定性催化氧化催化剂及制备方法
CN103447040B (zh) 使用至少一个快速干燥阶段和至少一个流化床干燥阶段制备催化剂的方法及其用于费托合成的用途
CN108355668A (zh) 一种甲烷化催化剂及其制备方法和应用
CN109794257B (zh) 耐硫变换催化剂及其制备方法
CN111215122B (zh) 一种钯基甲烷催化燃烧催化剂及制备和应用
CN106466602B (zh) 一种炭载钯催化剂及其制备方法和应用
JP5531212B2 (ja) 低温酸化触媒とその製造方法およびその触媒を用いた酸化方法
CN108212175A (zh) 一种多孔Co3O4单分散微球负载Au-Pd合金纳米催化剂及其制备方法
WO2009101984A1 (ja) 複合酸化物
CN114558570B (zh) 不可还原氧化物稳定贵金属催化剂及其制备方法
CN113457722B (zh) 一种甲烷二氧化碳干重整催化剂及其制备方法和应用
CN112007657B (zh) 一种控制负载型Cu-Pd/AC合金催化剂中金属原子比的方法
CN109317175B (zh) 炔醇选择性加氢催化剂及其制备方法和应用
CN108452809B (zh) 一种具有抗高温烧结性能的负载型贵金属催化剂及其制备方法
CN111215061A (zh) 一种抗烧结高分散贵金属催化剂及制备和应用
CN106732499B (zh) 一种整体式甲烷燃烧催化剂的氧化铝膜层载体的制备方法
CN102527382A (zh) 一种金属负载型铈基核壳结构催化剂及其制备方法
CN106881086A (zh) 镓酸盐尖晶石负载纳米金催化剂的制备及催化剂和应用
JP5821254B2 (ja) 排ガス浄化用触媒
CN107029715A (zh) 一种聚乙烯吡咯烷酮pvp改性的铑基催化剂及其制备方法和应用
CN114588894B (zh) 一种铑基催化剂及其制备方法与应用
CN107185525B (zh) 八面体Pt纳米粒子负载γ-Al2O3型催化剂的制备方法
CN110813301A (zh) 一种高分散负载型钙钛矿催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant