CN106873691B - 稳压器 - Google Patents

稳压器 Download PDF

Info

Publication number
CN106873691B
CN106873691B CN201610857489.3A CN201610857489A CN106873691B CN 106873691 B CN106873691 B CN 106873691B CN 201610857489 A CN201610857489 A CN 201610857489A CN 106873691 B CN106873691 B CN 106873691B
Authority
CN
China
Prior art keywords
voltage
terminal
circuit
reference voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610857489.3A
Other languages
English (en)
Other versions
CN106873691A (zh
Inventor
小林裕二
中下贵雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ablic Inc
Original Assignee
Ablic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ablic Inc filed Critical Ablic Inc
Publication of CN106873691A publication Critical patent/CN106873691A/zh
Application granted granted Critical
Publication of CN106873691B publication Critical patent/CN106873691B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/468Regulating voltage or current wherein the variable actually regulated by the final control device is dc characterised by reference voltage circuitry, e.g. soft start, remote shutdown
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • H03K17/163Soft switching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

课题为提供即使利用控制软起动时间的模拟开关晶体管,也不会在误差放大电路的反相输入端子的电压与基准电压电路输出的基准电压之间产生差别的稳压器。解决方案为具备:基准电压电路,将基准电压作为反馈电压进行反馈而输出基准电压;软起动电路,输出当电源启动时使基准电压线性上升地进行控制的控制信号;分压电路,输出分压电压;误差放大电路,对基准电压与分压电压之差进行放大输出;以及输出晶体管,被误差放大电路的输出电压控制,基准电压电路具有栅极被控制信号控制的模拟开关晶体管,模拟开关晶体管的输出电压成为反馈电压。

Description

稳压器
技术领域
本发明关于具备软起动(soft start)电路的稳压器。
背景技术
对现有的具备软起动电路的稳压器进行说明。图3是示出现有的稳压器300的电路图。
稳压器300具备基准电压电路301、软起动电路302、误差放大电路303、分压电路304、输出晶体管305、接地端子306、电源端子307及输出端子308。
基准电压电路301由恒流电路31、NMOS晶体管32及33和电阻34构成,如以下那样动作而输出基准电压VREF。
NMOS晶体管32刚刚启动后为OFF(截止)状态,所以NMOS晶体管33的栅极电压利用恒流电路31上升,NMOS晶体管33成为ON(导通)状态。电流流过NMOS晶体管33,从而在电阻34产生电压,NMOS晶体管32的栅极电压受到控制。从NMOS晶体管33的源极端子向NMOS晶体管32的栅极端子进行反馈,从而以恒流电路31流出的电流和NMOS晶体管32的漏极电流成为相等的方式,调整NMOS晶体管33的漏极电流,利用电阻34产生VREF。
软起动电路302由模拟开关晶体管35、恒流电路36及37和电容38构成,如以下那样动作而输出软起动用的基准电压VREF_SS。
恒流电路36对电容38进行充电,电容38的电压线性上升,开关晶体管35的栅极电压受到控制。恒流电路37继续流出电流,从而开关晶体管35作为源极跟随器电路而进行动作。因而,基准电压电路301输出的基准电压VREF,作为从启动时起缓缓上升的软起动用的基准电压VREF_SS而从开关晶体管35输出。
误差放大电路303比较软起动电路302输出的VREF_SS和分压电路304的分压电压,以VREF_SS和分压电压成为相同电压的方式控制输出晶体管305的栅极电压。
如此动作,能实现稳压器的软起动(例如,参照专利文献1、2)。
【现有技术文献】
【专利文献】
专利文献1:日本特开2011-152023号公报;
专利文献2:日本特开2005-327027号公报。
发明内容
【发明要解决的课题】
然而,在现有的稳压器300中,因恒流电路37而在模拟开关晶体管35中流过电流值Is的电流,从而在开关晶体管35产生ON电阻(将电阻值设为Ron),基准电压VREF_SS会从基准电压VREF下降Is×Ron分量的电压。即,若将控制软起动时间的开关晶体管35用于基准电压电路301的输出与误差放大电路303之间,则存在因为开关晶体管35的ON电阻而会在误差放大电路303的反相输入端子电压VREF_SS与基准电压VREF上产生差别这一课题。
此外,为了减小开关晶体管35导致的电压下降,增大开关晶体管35的W长则ON电阻变小,但漏极-栅极间电容变大,当从外部连接电容38的情况下,容易引起外部噪声导致的误动作。另外,若减小恒流电路37的电流值Is,则误差放大电路303与开关晶体管35间的节点成为Hi-Z,因此产生容易引起外部噪声导致的误动作的课题。
因此,本发明鉴于上述课题,提供一种稳压器,即使利用控制软起动时间的模拟开关晶体管,也不会在误差放大电路的反相输入端子的电压与基准电压电路输出的基准电压之间产生差别。
【用于解决课题的方案】
为了解决现有的课题,本发明的稳压器,其特征在于具备:电源端子,供给外部电源电压;输出端子,输出调节所述外部电源电压而生成的电压;基准电压电路,将基准电压作为反馈电压进行反馈,输出所述基准电压;软起动电路,输出当电源启动时使所述基准电压线性上升地进行控制的控制信号;分压电路,对所述输出端子的电压进行分压而生成分压电压;误差放大电路,对所述基准电压与所述分压电压之差进行放大输出;以及输出晶体管,栅极受所述误差放大电路的输出电压控制,漏极与所述输出端子连接,所述基准电压电路具有栅极被所述控制信号控制的模拟开关晶体管,所述模拟开关晶体管的输出电压为所述反馈电压。
【发明效果】
依据本发明的稳压器,在基准电压电路的输出与误差放大电路的反相输入端子之间不存在模拟开关晶体管,所以在基准电压电路输出的基准电压与误差放大电路的反相输入端子的电压上不会产生差别,能够将两者设为同电位。因而,能防止外部噪声导致的误动作。
附图说明
【图1】是示出本发明的第一实施方式的稳压器的电路图。
【图2】是示出本发明的第二实施方式的稳压器的电路图。
【图3】是示出现有的稳压器的电路图。
具体实施方式
[第一实施方式]
图1是本发明的实施方式的稳压器100的电路图。稳压器100具备:基准电压电路101;软起动电路102;误差放大电路103;分压电路104;输出晶体管105;被供给接地电压的接地端子106;被供给外部电源电压的电源端子107;以及输出端子108。
基准电压电路101包含恒流电路11、NMOS晶体管12及13、模拟开关晶体管15、电阻14而构成。
软起动电路102包含恒流电路16及17、电容18而构成。
基准电压电路101的恒流电路11连接在电源端子107与NMOS晶体管13的栅极端子之间。NMOS晶体管12的源极端子与接地端子106连接,漏极端子与NMOS晶体管13的栅极端子连接,栅极端子与模拟开关晶体管15的源极端子、恒流电路17及误差放大电路103的反相输入端子连接。NMOS晶体管13的漏极端子与电源端子107连接,源极端子经由电阻14而与接地端子106连接。另外,NMOS晶体管13的源极端子还与模拟开关晶体管15的漏极端子连接。
软起动电路102的电容18的一端经由恒流电路16而与电源端子107连接,另一端与接地端子106连接。电容18的一端为软起动电路102的输出,与模拟开关晶体管15的栅极端子连接。
误差放大电路103,其输出与输出晶体管105的栅极端子连接,非反相输入端子接受由分压电路104进行电阻分割的分压电压。输出晶体管15的源极端子与电源端子107连接,漏极端子经由分压电路104而与接地端子106连接。而且,输出晶体管15和分压电路104的连接点与输出端子108连接。
接着,对本实施方式的稳压器100的动作进行说明。
电源刚刚启动后,基准电压电路101的NMOS晶体管12为OFF状态,所以NMOS晶体管13的栅极电压利用恒流电路11的电流上升成为ON状态,但是模拟开关晶体管15为OFF状态,所以对NMOS晶体管12的栅极端子不进行反馈,无法控制NMOS晶体管12的栅极电压。
模拟开关晶体管15通过软起动电路102的输出、即在恒流电路16与电容18的连接点生成的控制电压CONT来控制栅极电压,若栅极电压超过阈值电压则流过漏极电流,作为源极跟随器电路而动作。作为结果,在模拟开关晶体管15的源极端子生成的基准电压VREF作为反馈电压VFB而反馈到NMOS晶体管12的栅极端子。NMOS晶体管12因反馈电压VFB上升而成为ON状态。即,NMOS晶体管12在栅极端子上以加入模拟开关晶体管15的ON电阻的电压进行反馈。而且,以恒流电路11流出的电流和NMOS晶体管12的漏极电流成为相等的方式,在模拟开关晶体管15的源极端子产生基准电压VREF。
如此动作,能够向误差放大电路103的反相输入端子原样输入基准电压电路101的输出即基准电压VREF。另外,模拟开关晶体管15作为源极跟随器电路而进行动作,因此基准电压VREF在由恒流电路16和电容18决定的软起动时间缓缓上升。
进而,模拟开关晶体管15的ON电阻即使大也没有问题,所以还能减小W长的尺寸,因此能削减面积。
如以上说明的那样,本实施方式的稳压器100在基准电压电路101的输出与误差放大电路103的反相输入端子之间不设置开关晶体管,所以基准电压电路103输出的基准电压VREF原样输入到误差放大电路的反相输入端子。即,在基准电压电路101的输出电压与误差放大电路的反相输入端子的电压上不会产生差别,能够将两者设为同电位。
[第二实施方式]
图2是示出本发明的第二实施方式的稳压器200的电路图。
相对于图1所示的稳压器100,稳压器200取代基准电压电路101而具备基准电压电路201,取代软起动电路102而具备软起动电路202。其他点与图1所示的稳压器100同样,另外,基准电压电路201及软起动电路202内的构成要素也有一部分与图1的基准电压电路101及软起动电路102同样,因此对于同一构成要素标注同一标号,适当省略重复的说明。
首先,基准电压电路201取代图1的基准电压电路101中的模拟开关晶体管15,具备在NMOS晶体管13的源极端子与电阻14之间连接的模拟开关晶体管25。
软起动电路202成为从图1的软起动电路102去掉恒流电路17的结构。
接着,对第二实施方式的稳压器200的动作进行说明。
电源刚刚启动后,与图1同样地基准电压电路201的NMOS晶体管13的栅极电压上升成为ON状态,但是模拟开关晶体管25为OFF状态,所以电阻14中不流过电流,对NMOS晶体管12的栅极端子不进行反馈。模拟开关晶体管25利用在恒流电路16与电容18的连接点生成的控制电压CONT控制栅极电压,若栅极电压超过阈值电压则有漏极电流流过,作为源极跟随器电路进行动作。作为结果,在电阻14中有电流流过,在模拟开关晶体管25的源极端子生成的基准电压VREF作为反馈电压VFB而反馈到NMOS晶体管12的栅极端子。因为反馈电压VFB上升,所以NMOS晶体管12成为ON状态。而且,以恒流电路11流出的电流与NMOS晶体管12的漏极电流成为相等的方式,NMOS晶体管13流出加入模拟开关晶体管25的ON电阻的漏极电流。因而,利用电阻14和NMOS晶体管13的漏极电流,在模拟开关晶体管25的源极端子产生基准电压VREF。如此动作,能够向误差放大电路103的反相输入端子原样输入基准电压电路201的输出即基准电压VREF。
如以上说明的那样,本实施方式的稳压器200与上述第一实施方式同样,在基准电压电路201的输出与误差放大电路103的反相输入端子之间不存在开关晶体管,所以能够防止在基准电压电路201的输出电压与误差放大电路的反相输入端子的电压上产生差别。进而,依据本实施方式,NMOS晶体管13的漏极电流常时在模拟开关晶体管25中流动,所以能够省去图1的稳压器100中为了确保源极跟随器动作而设置的软起动电路102中的恒流电路17,与稳压器100相比还能削减面积。
以上,对本发明的实施方式进行了说明,但是本发明不局限于上述实施方式,在不脱离本发明的主旨的范围内能进行各种变更这一点无需赘述。
例如,上述实施方式中的NMOS晶体管13也可为耗尽型NMOS晶体管,电阻14也可设为饱和连接的MOS晶体管、二极管等、其他的阻抗元件。另外,在上述实施方式中,作为模拟开关晶体管15、25,使用NMOS晶体管,但是根据软起动电路的构成也可以使用PMOS晶体管。软起动电路102、202只要能使模拟开关晶体管15、25的栅极端子的电压线性上升,就不限于上述实施方式的构成。
标号说明
100、200、300稳压器;101、201、301基准电压电路;102、202、302软起动电路;103、303误差放大电路;104、304分压电路;105、305输出晶体管;106、306接地端子;107、307电源端子;108、308输出端子。

Claims (4)

1.一种稳压器,其特征在于具备:
电源端子,供给外部电源电压;
输出端子,输出调节所述外部电源电压而生成的电压;
基准电压电路,将基准电压作为反馈电压进行反馈,输出所述基准电压;
软起动电路,输出当电源启动时使所述基准电压线性上升地进行控制的控制信号;
分压电路,对所述输出端子的电压进行分压而生成分压电压;
误差放大电路,对所述基准电压与所述分压电压之差进行放大输出;以及
输出晶体管,栅极被所述误差放大电路的输出电压控制,漏极与所述输出端子连接,
所述基准电压电路具有栅极被所述控制信号控制的模拟开关晶体管,所述模拟开关晶体管的输出电压为所述反馈电压,
所述基准电压电路还具有:
第1 NMOS晶体管,漏极端子经由第1恒流电路与所述电源端子连接,源极端子与接地端子连接;以及
第2 NMOS晶体管,漏极端子与所述电源端子连接,栅极端子与所述第1 NMOS晶体管的漏极端子连接,源极端子经由阻抗元件与接地端子连接,
所述模拟开关晶体管的漏极端子与所述第2 NMOS晶体管的源极端子连接,源极端子与所述第1 NMOS晶体管的栅极端子连接,该源极端子的电压为所述基准电压。
2.如权利要求1所述的稳压器,其特征在于,
所述软起动电路具有:
电容,一端经由第2恒流电路与所述电源端子连接,另一端与所述接地端子连接;以及
第3恒流电路,连接在所述模拟开关晶体管的源极端子与所述接地端子之间,
所述控制信号为在所述电容的所述一端生成的信号。
3.一种稳压器,其特征在于具备:
电源端子,供给外部电源电压;
输出端子,输出调节所述外部电源电压而生成的电压;
基准电压电路,将基准电压作为反馈电压进行反馈,输出所述基准电压;
软起动电路,输出当电源启动时使所述基准电压线性上升地进行控制的控制信号;
分压电路,对所述输出端子的电压进行分压而生成分压电压;
误差放大电路,对所述基准电压与所述分压电压之差进行放大输出;以及
输出晶体管,栅极被所述误差放大电路的输出电压控制,漏极与所述输出端子连接,
所述基准电压电路具有栅极被所述控制信号控制的模拟开关晶体管,所述模拟开关晶体管的输出电压为所述反馈电压,
所述基准电压电路还具有:
第1 NMOS晶体管,漏极端子经由第1恒流电路与所述电源端子连接,源极端子与接地端子连接;
第2 NMOS晶体管,漏极端子与所述电源端子连接,栅极端子与所述第1 NMOS晶体管的漏极端子连接;以及
阻抗元件,连接在所述第1 NMOS晶体管的栅极端子与所述接地端子之间,
所述模拟开关晶体管的漏极端子与第2 NMOS晶体管的源极端子连接,源极端子与所述阻抗元件连接,该源极端子的电压为所述基准电压。
4.如权利要求3所述的稳压器,其特征在于,
所述软起动电路具有:
电容,一端经由第2恒流电路与所述电源端子连接,另一端与所述接地端子连接,
所述控制信号为在所述电容的所述一端生成的信号。
CN201610857489.3A 2015-09-29 2016-09-28 稳压器 Expired - Fee Related CN106873691B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-191875 2015-09-29
JP2015191875A JP6549008B2 (ja) 2015-09-29 2015-09-29 ボルテージレギュレータ

Publications (2)

Publication Number Publication Date
CN106873691A CN106873691A (zh) 2017-06-20
CN106873691B true CN106873691B (zh) 2020-10-16

Family

ID=58409098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610857489.3A Expired - Fee Related CN106873691B (zh) 2015-09-29 2016-09-28 稳压器

Country Status (5)

Country Link
US (1) US10114393B2 (zh)
JP (1) JP6549008B2 (zh)
KR (1) KR20170038158A (zh)
CN (1) CN106873691B (zh)
TW (1) TWI681277B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7206630B2 (ja) * 2018-05-08 2023-01-18 株式会社デンソー 抑制回路
JP2020135372A (ja) * 2019-02-19 2020-08-31 ローム株式会社 電源回路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327027A (ja) * 2004-05-13 2005-11-24 Seiko Instruments Inc ボルテージレギュレータ用オーバーシュート制御回路
JP5684987B2 (ja) 2010-01-25 2015-03-18 セイコーインスツル株式会社 スイッチングレギュレータ
JP5695392B2 (ja) * 2010-03-23 2015-04-01 セイコーインスツル株式会社 基準電圧回路
JP5581921B2 (ja) * 2010-09-09 2014-09-03 ミツミ電機株式会社 レギュレータ及びdc/dcコンバータ
EP3002659B8 (en) * 2013-10-07 2023-06-28 Renesas Design Germany GmbH Circuits and method for controlling transient fault conditions in a low dropout voltage regulator
CN103901934B (zh) * 2014-02-27 2016-01-06 开曼群岛威睿电通股份有限公司 参考电压产生装置
US9190988B1 (en) * 2014-07-31 2015-11-17 Freescale Semiconductor, Inc. Power management system for integrated circuit
TWI535166B (zh) * 2014-10-23 2016-05-21 智原科技股份有限公司 具軟啟動電路的電壓調整器

Also Published As

Publication number Publication date
US10114393B2 (en) 2018-10-30
TWI681277B (zh) 2020-01-01
US20170090496A1 (en) 2017-03-30
JP6549008B2 (ja) 2019-07-24
JP2017068472A (ja) 2017-04-06
TW201721324A (zh) 2017-06-16
CN106873691A (zh) 2017-06-20
KR20170038158A (ko) 2017-04-06

Similar Documents

Publication Publication Date Title
KR102247122B1 (ko) 볼티지 레귤레이터 및 전자 기기
US20140253076A1 (en) Voltage regulator
US20130113454A1 (en) Signal generating circuit
KR102255543B1 (ko) 볼티지 레귤레이터
JP6785736B2 (ja) 電圧調整器の出力のアンダーシュートを低減する電子回路
US10061334B2 (en) Voltage regulator
JP6354720B2 (ja) 保護回路付きのレギュレータ回路
US20170220059A1 (en) Regulator circuit
US10331152B2 (en) Quiescent current control in voltage regulators
US9323262B2 (en) Voltage regulator
TWI672572B (zh) 電壓調節器
CN106873691B (zh) 稳压器
US20140253068A1 (en) Voltage regulator
US10078343B2 (en) Output circuit
CN111585552B (zh) 输出驱动器电路
CN110297515B (zh) 电压调节器
JP2017041968A (ja) 電力供給装置及びその制御方法
EP2806329A2 (en) Circuit for voltage regulation
US9703307B2 (en) Voltage dropping circuit and integrated circuit
CN106716833B (zh) 启动电路
US10355648B2 (en) Regulator amplifier circuit for outputting a fixed output voltage independent of a load current
US11507123B2 (en) Constant voltage circuit
US20230095863A1 (en) Power supply circuit
US20230095062A1 (en) Power supply circuit
US10634712B2 (en) Current sensing circuit for sensing current flowing through load switch

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Chiba County, Japan

Applicant after: ABLIC Inc.

Address before: Chiba County, Japan

Applicant before: DynaFine Semiconductor Co.,Ltd.

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201016