CN106868539A - 一种多维孔道结构Ni‑Cu‑Ti合金电极材料及其制备方法 - Google Patents

一种多维孔道结构Ni‑Cu‑Ti合金电极材料及其制备方法 Download PDF

Info

Publication number
CN106868539A
CN106868539A CN201710137087.0A CN201710137087A CN106868539A CN 106868539 A CN106868539 A CN 106868539A CN 201710137087 A CN201710137087 A CN 201710137087A CN 106868539 A CN106868539 A CN 106868539A
Authority
CN
China
Prior art keywords
preparation
filming
alloy
slurry
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710137087.0A
Other languages
English (en)
Other versions
CN106868539B (zh
Inventor
喻林萍
乔越
南博
王娜娜
喻强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201710137087.0A priority Critical patent/CN106868539B/zh
Publication of CN106868539A publication Critical patent/CN106868539A/zh
Application granted granted Critical
Publication of CN106868539B publication Critical patent/CN106868539B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种多维孔道结构Ni‑Cu‑Ti合金电极材料及其制备方法,其特征包括以下步骤:①以高纯高比表面积羰基镍粉、电解铜粉、氢化钛粉混合聚乙烯醇缩丁醛液;②控制浆料粘度及膜压在以薄层硬脂酸锌隔离的石英平板表面覆膜,在氮气氛下干燥;③在已干燥生膜表面覆薄层聚乙烯醇缩丁醛浆料,继续以混合元素粉浆料在首层生膜表面覆膜;④控制升温速率及保温平台,将多层生膜真空烧结合成多维孔道结构Ni‑Cu‑Ti合金电极。与传统的单一微孔结构材料相比,多级孔道结构能有效地缩短分子扩散路径,提高反应物的扩散及传质效率。本发明制备方法简单,工艺参数容易控制,成本低。其产品结构和性质非常适用于制作电极元件和催化反应核心组件。

Description

一种多维孔道结构Ni-Cu-Ti合金电极材料及其制备方法
技术领域
本发明属于电解水制氢领域核心材料制备技术,涉及一种多级孔道结构、高活性位点分布的多元合金催化析氢阴极及其制备方法,所制备的合金多孔材料不仅适用于电解水制氢阴极,而且可用作直接醇类燃料电池(DMFC或DEFC)催化材料。
背景技术
作为最理想的能源载体,氢气来源丰富、清洁、高效,同时满足资源环境可持续发展等特征。目前,工业制氢主要形式有电解水制氢、煤气化制氢、天然气重整制氢等,其中电解水制氢因产品纯度高,且不直接消耗化石能源而具有极大的优势。Pt系贵金属能有效地降低电解水析氢反应的活化能垒,具有较高的催化效率,但受昂贵的价格限制无法在电解水制氢工业中大规模应用。因此,开发活性高、成本低、稳定性好的非贵金属新型析氢阴极材料,是推进氢能源技术发展的关键之一。
长期以来的研究工作表明,提高电催化析氢阴极活性的重大挑战在于电极材料电子结构和表面结构的同步调控。由于催化效率主要取决于异相化学反应速率与真实表面积的比例,普遍认为电极的真实表面积越大,越有利于反应的进行,从而使催化活性中心有更多的机会与反应物相接触。但是,在多孔结构中,电催化析氢产物氢气扩散受传质孔道形貌的限制易滞后进行,进而覆盖部分催化活性位点,电解析氢中间产物如不能及时接触活性位,作为速率决定步骤的传质过程也将减缓反应的进行,电催化效率便很受影响。因此,改善电催化阴极的活性位可接触性和利用率的重要性更不能被忽视。
过渡族金属Ni-Cu合金体系在异相催化上表现出诸多优点,是拓宽新型电催化析氢电极体系值得重视的一个潜在方向。过渡金属Ti具有较强的氢吸附特性,能够在电催化反应过程中优先吸附活性氢原子于电极的表面,进而有利于电催化活性的提高。因此,本发明将Ni、Cu协同电催化作用机制推广到合金体系中的原子间电荷极化,将Ti引入Ni-Cu体系,用于调控合金催化位点的电子密度,从而获得电子结构可调变的Ni-Cu-Ti三元电催化合金体系。与此同时,为解决小尺寸孔道结构对传质过程限制,采用模板结合粉末冶金法制备具有多维孔道结构的Ni-Cu-Ti多孔合金电极,在不改变纵向纳微尺度孔道宽度的基础上,缩短纵向孔道的长度,使反应粒子顺利进入多级孔道接触到活性位,同时减少多孔结构中的产物H2扩散限制。与传统的单一微孔结构材料相比,多级孔道结构能有效地缩短分子扩散路径,提高反应物的扩散及传质效率,进一步扩展多孔Ni基合金电催化方面的应用潜力。
发明内容
本发明目的在于提供一种用于高效电解水制氢的催化阴极及其制备方法,解决目前电催化析氢阴极制备工艺复杂,工业化生产困难及材料性能不稳定及低效产生的高能耗等缺点。本发明将Ni、Cu协同电催化作用机制推广到合金体系中的原子间电荷极化,将Ti引入Ni-Cu体系,用于调控合金催化位点的电子密度,从而获得电子结构可调变的Ni-Cu-Ti三元电催化合金体系。与此同时,为解决小尺寸孔道结构对传质过程限制,采用模板结合粉末冶金法制备具有多维孔道结构的Ni-Cu-Ti多孔合金电极,在不改变纵向纳微尺度孔道宽度的基础上,缩短纵向孔道的长度,使反应粒子顺利进入多级孔道接触到活性位,同时减少多孔结构中的产物H2扩散限制。能极大提高阴极的电催化析氢效率,适用于工业化生产。
本发明所包含的技术方案包括以下几个步骤:
1.单层Ni-Cu-Ti混合生膜的制备:
以高纯高比表面积羰基镍粉、电解铜粉、氢化钛粉混合聚乙烯醇缩丁醛液;控制浆料粘度及膜压在以薄层硬脂酸锌隔离的石英平板表面覆膜,在氮气氛下干燥;
2.多层Ni-Cu-Ti混合生膜的制备:
在前置已干燥生膜表面覆薄层聚乙烯醇缩丁醛浆料,干燥后继续以混合元素粉浆料在首层生膜表面覆膜;根据渗透系数需要控制膜层数目;
3.真空烧结制备多维孔道结构Ni-Cu-Ti合金多孔膜;
将多层混合元素浆料形成的生膜从石英平板表面脱除,控制升温速率及保温平台,高温升至1150℃,真空烧结合成多维孔道结构Ni-Cu-Ti合金电极。
该方法制得的Ni-Cu-Ti多孔合金电极以膜层形式复合而成,在不改变纵向纳微尺度孔道宽度的基础上,缩短了纵向孔道的长度,产生大量外表面活性位,与传统的单一微孔结构材料相比,多级孔道结构能有效地缩短分子扩散路径,提高析氢反应及产物粒子的扩散及传质效率。此外,本发明还具有以下优势:1.制备工艺简单,成本低;2.整个工艺符合清洁生产标准;3.制备过程可控,利用了粉末冶金法及硬模板法近净成形的优势,值得工业化推广;4.本电催化体系材料应用范围广泛,如在直接醇类燃料电池催化材料、催化重整等化工领域亦有巨大应用前景。
附图说明
图1 为Ni-Cu-Ti多孔合金电极催化反应效果图。Ni-Cu-Ti多孔合金电极以膜层形式复合而成,在不改变纵向纳微尺度孔道宽度的基础上,缩短了纵向孔道的长度,产生大量外表面活性位,通过调节膜间横向孔道的尺寸,以减少多孔结构中的产物H2扩散限制促进,Heyrovsky反应或Tafel反应的顺利进行。与传统的单一微孔结构材料相比,多级孔道结构能有效地缩短分子扩散路径,提高反应物的扩散及传质效率。
图2 Ni-Cu-Ti多维孔道结构图。成型生膜进入真空炉烧结时,由于巨大的扩散系数差异,单膜层内Ni、Cu金属元素颗粒发生偏扩散衍生原始孔洞,同粉末颗粒间隙一起在高温下演变形成单膜层内的连通多孔结构,与此同时金属Ni、Cu及微量Ti完成合金化过程;膜层之间通过PVB薄浆料隔离,形成Z向金属元素粉末密度低于X向和Y向的原始结构,致使烧结形成的多孔坯孔隙三维排列方式呈现差异化。
图3为本发明制备的多维孔道Ni-Cu-Ti合金膜表面SEM图像。
实施例
取高纯羰基镍粉(中位径14.7 µm)、电解铜粉(中位径8.6 µm)、氢化钛粉(中位径6.6 µm)在氮气保护下V型混料器中混合12小时,混合粉质量320 g,其中镍铜原子比为2:1,氢化钛粉质量百分比为3.0 wt.%;在40℃下,将取聚乙烯醇缩丁醛液5 g,以无水乙醇50mL超声溶解得到聚乙烯醇缩丁醛液;取混合粉10 g,聚乙烯醇缩丁醛液15 g,磁力搅拌至形成均匀浆料,静置2小时无气泡。以薄层硬脂酸锌隔离平整无滑痕石英表面,取浆料12 g覆膜面积36 cm2,隔离空气静置干燥;取聚乙烯醇缩丁醛液3.2g在前置已干燥生膜表面覆薄膜,干燥后继续以混合元素粉浆料在首层生膜表面覆膜,控制膜压为0.8 kPa;扩大膜层数目至5层。将多层混合元素浆料形成的生膜从石英平板表面脱除,置入真空烧结炉进行烧结。控制升温速率及保温平台,800、900、1000℃保温时长分别控制在60、90、60min,真空烧结最高温度为1150℃,真空烧结合成多维孔道结构Ni-Cu-Ti合金电极。孔道结构设计如图1、2所示,电极表面微观结构如图3所示。

Claims (10)

1.一种用于高效电解水制氢的Ni-Cu-Ti多孔合金阴极,其特征在于,将Ti引入Ni-Cu体系,用于调控合金催化位点的电子密度,从而获得电子结构可调变的Ni-Cu-Ti三元电催化合金体系。
2.一种用于高效电解水制氢的Ni-Cu-Ti多孔合金阴极,其特征在于,具有多维孔道结构的Ni-Cu-Ti多孔合金电极,在不改变纵向纳微尺度孔道宽度的基础上,缩短纵向孔道的长度,增大了体系活性位面积,构筑横向孔道促进气体产物的排溢。
3.一种用于高效电解水制氢的Ni-Cu-Ti多孔合金阴极,其特征在于,纵向孔道平均孔径500nm~8μm;横向孔道平均孔径1μm~20μm。
4.一种用于高效电解水制氢的Ni-Cu-Ti多孔合金阴极的制备方法,其特征在于,包括以下步骤:
(1)单层Ni-Cu-Ti混合生膜的制备:
(2)多层Ni-Cu-Ti混合生膜的制备:
(3)真空烧结制备多维孔道结构Ni-Cu-Ti合金多孔膜。
5.根据权利要求4所述的一种用于高效电解水制氢的Ni-Cu-Ti多孔合金阴极的制备方法,其特征在于,所述步骤(1)单层生膜的制备方法为:以高纯高比表面积羰基镍粉、电解铜粉、氢化钛粉混合聚乙烯醇缩丁醛液;控制浆料粘度及膜压在以薄层硬脂酸锌隔离的石英平板表面覆膜,在氮气下干燥。
6.根据权利要求5所述步骤(1)单层生膜的制备方法,其特征在于,所述羰基镍粉粒度在10~40μm,电解铜粉粒度在10~40μm;氢化钛粉粒度在5~20μm;混合粉镍铜原子比为2:1,氢化钛粉质量百分比为2.0 wt.%~8.0 wt.% 。
7.根据权利要求5所述步骤(1)单层生膜的制备方法,其特征在于,聚乙烯醇缩丁醛液质量浓度为10wt.%~25.0 wt.%;混合浆料质量浓度为30 wt.%~55.0 wt.% 。
8.根据权利要求5所述步骤(1)单层生膜的制备方法,其特征在于,避免生膜产生气泡,浆料覆膜前隔绝空气静置2小时;石英表面平整无滑痕,以并薄层硬脂酸锌隔离;通过控制覆膜面积及浆料质量调节首层膜厚度。
9.根据权利要求4所述的一种用于高效电解水制氢的Ni-Cu-Ti多孔合金阴极的制备方法,其特征在于,所述步骤(2)多层Ni-Cu-Ti混合生膜的制备方法,其特征在于,在前置已干燥生膜表面覆薄层聚乙烯醇缩丁醛浆料,干燥后继续以混合元素粉浆料在首层生膜表面覆膜;膜压可在0.8 kPa~1.8 kPa内调节;根据渗透系数需要控制膜层数目。
10.根据权利要求4所述的一种用于高效电解水制氢的Ni-Cu-Ti多孔合金阴极的制备方法,其特征在于,所述步骤(3)将多层混合元素浆料形成的生膜从石英平板表面脱除,控制升温速率及保温平台,真空烧结最高温度为1150℃,800~1100℃保温时长控制在60~90min,真空烧结合成多维孔道结构Ni-Cu-Ti合金电极。
CN201710137087.0A 2017-03-09 2017-03-09 一种多维孔道结构Ni-Cu-Ti合金电极材料及其制备方法 Expired - Fee Related CN106868539B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710137087.0A CN106868539B (zh) 2017-03-09 2017-03-09 一种多维孔道结构Ni-Cu-Ti合金电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710137087.0A CN106868539B (zh) 2017-03-09 2017-03-09 一种多维孔道结构Ni-Cu-Ti合金电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106868539A true CN106868539A (zh) 2017-06-20
CN106868539B CN106868539B (zh) 2019-07-09

Family

ID=59170115

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710137087.0A Expired - Fee Related CN106868539B (zh) 2017-03-09 2017-03-09 一种多维孔道结构Ni-Cu-Ti合金电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106868539B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108746622A (zh) * 2018-06-20 2018-11-06 长沙理工大学 一种新型多孔镍/石墨复合自支撑膜材料及其制备方法
CN108786853A (zh) * 2018-06-13 2018-11-13 天津大学 利用晶态合金制备纳米多孔催化剂方法、纳米多孔PdCuNi-S催化剂及用途
CN110592614A (zh) * 2019-09-27 2019-12-20 西南石油大学 一种三维自支撑性水分解制氢电催化剂及其制备方法
CN113174513A (zh) * 2021-04-28 2021-07-27 湘潭大学 一种Ni-Cu-Ti/CNTs多孔复合材料及其制备方法
CN113201763A (zh) * 2021-04-28 2021-08-03 湘潭大学 一种Ni-Cu-Ti/GR多孔复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357227A (en) * 1979-03-29 1982-11-02 Olin Corporation Cathode for chlor-alkali cells
CN103924260A (zh) * 2014-04-14 2014-07-16 太原理工大学 一种三维泡沫镍负载铜和钴的复合析氢电极及其制备方法
US20160010228A1 (en) * 2014-07-11 2016-01-14 University Of Delaware Electrocatalyst for hydrogen evolution and oxidation reactions
JP2016079445A (ja) * 2014-10-15 2016-05-16 国立大学法人名古屋大学 多孔質層の作製方法、金属と樹脂との接合方法、多孔質層、金属と樹脂との接合構造
CN106111997A (zh) * 2016-06-28 2016-11-16 湘潭大学 一种多孔镍合金电解析氢复合阴极材料的制备方法
CN106191916A (zh) * 2016-07-06 2016-12-07 天津市大陆制氢设备有限公司 一种高效的多孔Ni‑Mo析氢电极及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357227A (en) * 1979-03-29 1982-11-02 Olin Corporation Cathode for chlor-alkali cells
CN103924260A (zh) * 2014-04-14 2014-07-16 太原理工大学 一种三维泡沫镍负载铜和钴的复合析氢电极及其制备方法
US20160010228A1 (en) * 2014-07-11 2016-01-14 University Of Delaware Electrocatalyst for hydrogen evolution and oxidation reactions
JP2016079445A (ja) * 2014-10-15 2016-05-16 国立大学法人名古屋大学 多孔質層の作製方法、金属と樹脂との接合方法、多孔質層、金属と樹脂との接合構造
CN106111997A (zh) * 2016-06-28 2016-11-16 湘潭大学 一种多孔镍合金电解析氢复合阴极材料的制备方法
CN106191916A (zh) * 2016-07-06 2016-12-07 天津市大陆制氢设备有限公司 一种高效的多孔Ni‑Mo析氢电极及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDREA KELLENBERGER ET AL.: "Kinetics of hydrogen evolution reaction on skeleton nickel and nickel–titanium electrodes obtained by thermal arc spraying technique", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
CARLOS VALERO-VIDAL ET AL.: "Stability of 3D-porous Ni/Cu cathodes under real alkaline electrolyzer operating conditions and its effect on catalytic activity", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
LINPING YU ET AL.: "Characteristics of a sintered porous NieCu alloy cathode for hydrogen production in a potassium hydroxide solution", 《ENERGY》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108786853A (zh) * 2018-06-13 2018-11-13 天津大学 利用晶态合金制备纳米多孔催化剂方法、纳米多孔PdCuNi-S催化剂及用途
CN108746622A (zh) * 2018-06-20 2018-11-06 长沙理工大学 一种新型多孔镍/石墨复合自支撑膜材料及其制备方法
CN110592614A (zh) * 2019-09-27 2019-12-20 西南石油大学 一种三维自支撑性水分解制氢电催化剂及其制备方法
CN113174513A (zh) * 2021-04-28 2021-07-27 湘潭大学 一种Ni-Cu-Ti/CNTs多孔复合材料及其制备方法
CN113201763A (zh) * 2021-04-28 2021-08-03 湘潭大学 一种Ni-Cu-Ti/GR多孔复合材料及其制备方法
CN113174513B (zh) * 2021-04-28 2022-07-05 湘潭大学 一种Ni-Cu-Ti/CNTs多孔复合材料及其制备方法
CN113201763B (zh) * 2021-04-28 2022-07-08 湘潭大学 一种Ni-Cu-Ti/GR多孔复合材料及其制备方法

Also Published As

Publication number Publication date
CN106868539B (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
CN106868539B (zh) 一种多维孔道结构Ni-Cu-Ti合金电极材料及其制备方法
Yang et al. Recent progress in electrode fabrication for electrocatalytic hydrogen evolution reaction: A mini review
Guo et al. Enabling the full exposure of Fe2P@ NixP heterostructures in tree-branch-like nanoarrays for promoted urea electrolysis at high current densities
EP3939722A1 (en) Preparation method for gas diffusion layer having gradient aperture for spe electrolytic bath
Tang et al. Metal–organic frameworks-derived metal phosphides for electrochemistry application
Du Recent advances in electrode design based on one-dimensional nanostructure arrays for proton exchange membrane fuel cell applications
Song et al. Integrated electrocatalysts derived from metal organic frameworks for gas-involved reactions
CN109055973B (zh) 铝掺杂三维纳米多孔金属硫化物析氢电极制备及使用方法
CN108380227B (zh) 一种析氢电催化材料及其制备方法
CN111790448B (zh) 一种电催化剂ZIF-9(III)/Co LDH纳米片复合材料及其制备方法
Fu et al. Surface-regulated platinum–copper nanoframes in electrochemical reforming of ethanol for efficient hydrogen production
Sun et al. Self-supporting metal–organic framework-based hydrogen and oxygen electrocatalysts
Yan et al. Hierarchically porous CuAg via 3D printing/dealloying for tunable CO2 reduction to syngas
CN110787806A (zh) 一种具备异质结结构的全解水催化剂的制备方法
CN110965076A (zh) 一种双功能三维分层核壳结构电解水电极的制备方法
Eugénio et al. Nanostructured 3D metallic foams for H2O2 electroreduction
CN113215611A (zh) 过渡金属磷化物催化剂纳米颗粒及其制备方法和电极
CN109731580B (zh) 一种w18o49/nf自支撑电催化材料的制备方法
Yan et al. Interfacial electronic regulation on NiCo2O4 nanowires@ NiFe-LDH nanosheets heterostructure for efficient oxygen evolution
CN100557050C (zh) 一种镍铝基合金多孔材料的制备方法
Qin et al. An oxidation-nitridation-denitridation approach to transform metal solids into foams with adjustable pore sizes for energy applications
Ren et al. Structurally-supported PtCuCo nanoframes as efficient bifunctional catalysts for oxygen reduction and methanol oxidation reactions
CN104285325A (zh) 固体电解质层叠体、固体电解质层叠体的制造方法、以及燃料电池
Wang et al. Constructing partially amorphous borate doped iron-nickel nitrate hydroxide nanoarrays by rapid microwave activation for oxygen evolution
CN109962245B (zh) 过渡金属磷化物多孔碳纳米片复合材料及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190709