CN106866168A - 一种α相微孔氧化铝陶瓷的制备方法 - Google Patents
一种α相微孔氧化铝陶瓷的制备方法 Download PDFInfo
- Publication number
- CN106866168A CN106866168A CN201710224817.0A CN201710224817A CN106866168A CN 106866168 A CN106866168 A CN 106866168A CN 201710224817 A CN201710224817 A CN 201710224817A CN 106866168 A CN106866168 A CN 106866168A
- Authority
- CN
- China
- Prior art keywords
- aluminum oxide
- graphite
- crucible
- phases
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0022—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
- B01D39/2068—Other inorganic materials, e.g. ceramics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
- B01J20/08—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/386—Boron nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
一种α相微孔氧化铝陶瓷的制备方法,氧化铝80~100%,氮化硼粉0~20%,混合均匀。将混合粉料装入石墨坩埚内。将装有粉料的石墨坩埚装入中频感应烧结炉中,在坩埚顶部盖上石墨纸盖和石墨毡。炉内抽真空至炉内压力小于103Pa,充入氩气至炉内压力大于4×103Pa。将石墨坩埚加热1900‑2100℃,石墨纸处的温度为1700‑1900℃,抽气至气压在1×103~2×103Pa,保温0.5~4h,使BN掺杂的氧化铝粉料在坩埚顶部石墨纸盖上通过固‑气‑固机理进行形核生长。后再将气压充至0.6×105~1×105Pa,随炉冷却至室温,打开炉盖,会在石墨纸盖上得到α相微孔氧化铝陶瓷材料。本发明的微孔Al2O3陶瓷材料可以作为过滤器应用于尾气处理,污水处理等环保领域。
Description
技术领域
本发明属于微孔陶瓷技术领域,特别涉及一种α相微孔氧化铝陶瓷的制备方法。
背景技术
氧化铝微孔陶瓷在微孔陶瓷中非常具有吸引力,它具有密度低、热膨胀系数小、强度高、耐高温、耐腐蚀、抗氧化和使用寿命长等优点,在冶金、化工、环保和能源等领域有广阔的应用前景。目前,氧化铝微孔陶瓷的制备存在烧结温度相对较高、孔隙度较低、孔隙形状不易控制和比表面积小等问题。开发新的制备工艺以满足高孔隙度、高强度、孔径均匀且可控、性能稳定的氧化铝微孔陶瓷并拓宽其应用领域有十分重要的意义。本工艺制备的氧化铝陶瓷不仅具有较高的开孔孔隙率及较低的体积密度,使其表现出更高的过滤、吸附能力,而且具有较高的机械强度,使其力学性能显著提高。
发明内容
本发明的目的在于提供一种α相微孔氧化铝陶瓷的制备方法,以解决现有技术中氧化铝微孔陶瓷的制备存在烧结温度相对较高、孔隙度较低、孔隙形状不易控制和比表面积小的问题。
为实现上述目的,本发明采用以下技术方案:
一种α相微孔氧化铝陶瓷的制备方法,包括以下步骤:
1)取质量分数大于等于80%且小于100%的氧化铝和质量分数大于0%且小于等于20%的氮化硼粉,用行星式球磨机将氧化铝和氮化硼球磨2小时混合均匀,氧化铝和氮化硼的组份总和为100%;
2)将混合粉料装入石墨坩埚内;
3)将装有混合粉料的石墨坩埚装入中频感应烧结炉,在坩埚顶部依次盖上石墨纸盖和石墨毡;
4)盖上中频感应烧结炉的炉盖,并对炉内抽真空处理,接着充入氩气至炉内;
5)将石墨坩埚加热至1700℃-2000℃,抽气至气压在1×103Pa~2×103Pa,保温0.5h~4h,使BN掺杂的氧化铝粉料在石墨坩埚顶部石墨纸盖上通过固-气-固机理和氧化铝生长螺旋位错机理进行形核生长;
6)将中频感应烧结炉内气压充至0.6×105Pa~1×105Pa,随炉冷却至室温,打开中频感应烧结炉的炉盖,在石墨纸盖上得到α相微孔氧化铝陶瓷。
进一步的,在氧化铝和氮化硼的混合蒸气凝结过程中,氮化硼在晶体中形成排列规律的颗粒,当氧化铝生长台阶接近颗粒时,生长台阶正前方总的吸附原子数量减少,导致正对着颗粒的生长台阶生长速率降低,而远离颗粒的生长台阶由于其正前方吸附有原子的有效面积没有变化而保持平直推进;生长台阶会从颗粒两侧绕过,而形成了以颗粒为中心向内缩小的生长台阶环,形成微孔。
进一步的,混合粉料在石墨坩埚内的添料高度小于坩埚深度的2/3。
进一步的,步骤四中频感应烧结炉抽真空处理至炉内压力小于103Pa,冲入氩气至炉内压力大于4×103Pa。
5、根据权利要求1所述的一种α相微孔氧化铝陶瓷的制备方法,其特征在于,当石墨坩埚加热至1700℃-2000℃时,石墨纸盖处的温度为1700℃-1900℃。
与现有技术相比,本发明有以下技术效果:
本发明得到α相微孔氧化铝陶瓷材料,具有较高的开孔孔隙率及较低的体积密度,使其表现出更高的过滤、吸附能力,而且具有较高的机械强度,使其力学性能显著提高,为进一步开发α相微孔氧化铝陶瓷材料在尾气处理,污水处理等环保领域提供基础。
具体实施方式
实施例1:
一种α相微孔氧化铝陶瓷的制备方法,包括以下步骤:
1)取质量分数为85%的氧化铝粉末和质量分数为15%的氮化硼粉,氧化铝和氮化硼的组份总和为100%,用行星式球磨机球磨2小时混合均匀;
2)将混合粉料装入石墨坩埚内,添料高度小于坩埚深度的2/3;
3)将装有混合粉料的石墨坩埚装入中频感应烧结炉,在坩埚顶部依次盖上石墨纸盖和石墨毡;
4)盖上中频感应烧结炉的炉盖,抽真空至炉内压力小于103Pa,充入氩气至炉内压力大于4×103Pa;
5)将石墨坩埚加热至1800℃,石墨纸盖处的温度为1800℃,抽气至气压在1.5×103Pa,保温2h,使BN掺杂的氧化铝粉料在石墨坩埚顶部石墨纸盖上通过固-气-固机理和氧化铝生长螺旋位错机理进行形核生长;
6)将中频感应烧结炉的气压充至0.8×105Pa,随炉冷却至室温,打开中频感应烧结炉的炉盖,在石墨纸盖上得到α相微孔氧化铝陶瓷。
实施例2:
1)取质量分数为90%的氧化铝粉末和质量分数为10%的氮化硼粉,氧化铝和氮化硼的组份总和为100%,用行星式球磨机球磨2小时混合均匀;
2)将混合粉料装入石墨坩埚内,添料高度小于坩埚深度的2/3;
3)将装有混合粉料的石墨坩埚装入中频感应烧结炉,在坩埚顶部依次盖上石墨纸盖和石墨毡;
4)盖上中频感应烧结炉的炉盖,抽真空至炉内压力小于103Pa,充入氩气至炉内压力大于4×103Pa;
5)将石墨坩埚加热至2000℃,石墨纸盖处的温度为1900℃,抽气至气压在2×103Pa,保温4h,使BN掺杂的氧化铝粉料在石墨坩埚顶部石墨纸盖上通过固-气-固机理和氧化铝生长螺旋位错机理进行形核生长;
6)将中频感应烧结炉的气压充至1×105Pa,随炉冷却至室温,打开中频感应烧结炉的炉盖,在石墨纸盖上得到α相微孔氧化铝陶瓷。
实施例3:
1)取质量分数为95%的氧化铝粉末和质量分数为5%的氮化硼粉,氧化铝和氮化硼的组份总和为100%,用行星式球磨机球磨2小时混合均匀;
2)将混合粉料装入石墨坩埚内,添料高度小于坩埚深度的2/3;
3)将装有混合粉料的石墨坩埚装入中频感应烧结炉,在坩埚顶部依次盖上石墨纸盖和石墨毡;
4)盖上中频感应烧结炉的炉盖,抽真空至炉内压力小于103Pa,充入氩气至炉内压力大于4×103Pa;
5)将石墨坩埚加热至1700℃,石墨纸盖处的温度为1700℃,抽气至气压在1×103Pa,保温0.5h,使BN掺杂的氧化铝粉料在石墨坩埚顶部石墨纸盖上通过固-气-固机理和氧化铝生长螺旋位错机理进行形核生长;
6)将中频感应烧结炉的气压充至0.6×105Pa,随炉冷却至室温,打开中频感应烧结炉的炉盖,在石墨纸盖上得到α相微孔氧化铝陶瓷。
在氧化铝和氮化硼的混合蒸气凝结过程中,氮化硼在晶体中形成排列规律的颗粒,当氧化铝生长台阶接近颗粒时,生长台阶正前方总的吸附原子数量减少,导致正对着颗粒的生长台阶生长速率降低,而远离颗粒的生长台阶由于其正前方吸附有原子的有效面积没有变化而保持平直推进;生长台阶会从颗粒两侧绕过,而形成了以颗粒为中心向内缩小的生长台阶环,形成微孔。
Claims (5)
1.一种α相微孔氧化铝陶瓷的制备方法,其特征在于,包括以下步骤:
1)取质量分数大于等于80%且小于100%的氧化铝和质量分数大于0%且小于等于20%的氮化硼粉,用行星式球磨机将氧化铝和氮化硼球磨2小时混合均匀,氧化铝和氮化硼的组份总和为100%;
2)将混合粉料装入石墨坩埚内;
3)将装有混合粉料的石墨坩埚装入中频感应烧结炉,在坩埚顶部依次盖上石墨纸盖和石墨毡;
4)盖上中频感应烧结炉的炉盖,并对炉内抽真空处理,接着充入氩气至炉内;
5)将石墨坩埚加热至1700℃-2000℃,抽气至气压在1×103Pa~2×103Pa,保温0.5h~4h,使BN掺杂的氧化铝粉料在石墨坩埚顶部石墨纸盖上通过固-气-固机理和氧化铝生长螺旋位错机理进行形核生长;
6)将中频感应烧结炉内气压充至0.6×105Pa~1×105Pa,随炉冷却至室温,打开中频感应烧结炉的炉盖,在石墨纸盖上得到α相微孔氧化铝陶瓷。
2.根据权利要求1所述的一种α相微孔氧化铝陶瓷的制备方法,其特征在于,在氧化铝和氮化硼的混合蒸气凝结过程中,氮化硼在晶体中形成排列规律的颗粒,当氧化铝生长台阶接近颗粒时,生长台阶正前方总的吸附原子数量减少,导致正对着颗粒的生长台阶生长速率降低,而远离颗粒的生长台阶由于其正前方吸附有原子的有效面积没有变化而保持平直推进;生长台阶会从颗粒两侧绕过,而形成了以颗粒为中心向内缩小的生长台阶环,形成微孔。
3.根据权利要求1所述的一种α相微孔氧化铝陶瓷的制备方法,其特征在于,混合粉料在石墨坩埚内的添料高度小于坩埚深度的2/3。
4.根据权利要求1所述的一种α相微孔氧化铝陶瓷的制备方法,其特征在于,步骤四中频感应烧结炉抽真空处理至炉内压力小于103Pa,冲入氩气至炉内压力大于4×103Pa。
5.根据权利要求1所述的一种α相微孔氧化铝陶瓷的制备方法,其特征在于,当石墨坩埚加热至1700℃-2000℃时,石墨纸盖处的温度为1700℃-1900℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710224817.0A CN106866168B (zh) | 2017-04-07 | 2017-04-07 | 一种α相微孔氧化铝陶瓷的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710224817.0A CN106866168B (zh) | 2017-04-07 | 2017-04-07 | 一种α相微孔氧化铝陶瓷的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106866168A true CN106866168A (zh) | 2017-06-20 |
CN106866168B CN106866168B (zh) | 2020-05-26 |
Family
ID=59160391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710224817.0A Active CN106866168B (zh) | 2017-04-07 | 2017-04-07 | 一种α相微孔氧化铝陶瓷的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106866168B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109206125A (zh) * | 2018-10-31 | 2019-01-15 | 广州供电局有限公司 | 陶瓷绝缘件及其制备方法 |
WO2020214755A1 (en) * | 2019-04-17 | 2020-10-22 | Materion Corporation | Crucibles and compositions and processes for making same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103304251A (zh) * | 2013-05-17 | 2013-09-18 | 西安交通大学 | 一种通孔结构的纯α-SiC材料的制备方法 |
CN105367123A (zh) * | 2015-11-19 | 2016-03-02 | 宁波科森净化器制造有限公司 | 一种机动车尾气净化器及其制备方法 |
EP3000797A1 (en) * | 2014-09-24 | 2016-03-30 | Rolls-Royce Corporation | Method for making ceramic matrix composite articles using gelling |
CN105837252A (zh) * | 2015-07-06 | 2016-08-10 | 深圳市商德先进陶瓷有限公司 | 多孔氧化铝陶瓷及其制备方法 |
CN106268656A (zh) * | 2016-09-28 | 2017-01-04 | 中国石油大学(北京) | 多孔氧化铝陶瓷负载Cu‑MOF吸附剂及其制备方法 |
-
2017
- 2017-04-07 CN CN201710224817.0A patent/CN106866168B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103304251A (zh) * | 2013-05-17 | 2013-09-18 | 西安交通大学 | 一种通孔结构的纯α-SiC材料的制备方法 |
EP3000797A1 (en) * | 2014-09-24 | 2016-03-30 | Rolls-Royce Corporation | Method for making ceramic matrix composite articles using gelling |
CN105837252A (zh) * | 2015-07-06 | 2016-08-10 | 深圳市商德先进陶瓷有限公司 | 多孔氧化铝陶瓷及其制备方法 |
CN105367123A (zh) * | 2015-11-19 | 2016-03-02 | 宁波科森净化器制造有限公司 | 一种机动车尾气净化器及其制备方法 |
CN106268656A (zh) * | 2016-09-28 | 2017-01-04 | 中国石油大学(北京) | 多孔氧化铝陶瓷负载Cu‑MOF吸附剂及其制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109206125A (zh) * | 2018-10-31 | 2019-01-15 | 广州供电局有限公司 | 陶瓷绝缘件及其制备方法 |
WO2020214755A1 (en) * | 2019-04-17 | 2020-10-22 | Materion Corporation | Crucibles and compositions and processes for making same |
TWI761809B (zh) * | 2019-04-17 | 2022-04-21 | 美商萬騰榮公司 | 坩堝及用於製備其的組合物和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106866168B (zh) | 2020-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | High entropy (Yb0. 25Y0. 25Lu0. 25Er0. 25) 2SiO5 with strong anisotropy in thermal expansion | |
CN107814591B (zh) | 一种碳材料表面硼化物改性硅基抗氧化涂层的制备方法 | |
CN102730690B (zh) | 一种Al4SiC4材料的合成方法 | |
CN109180187B (zh) | 高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法 | |
WO2015162206A2 (en) | A method of making cermet or cemented carbide powder | |
CN107746281A (zh) | 一种超高温陶瓷硼化物固溶体粉体的制备方法 | |
CN105481477B (zh) | 一种石墨/SiC复合材料的制备方法 | |
CN113526983B (zh) | 一种核反应堆用石墨材料的复合高温抗氧化涂层及其制备方法 | |
CN106747446A (zh) | 一种微波混合加热合成Al4SiC4粉体的新方法 | |
CN106866168A (zh) | 一种α相微孔氧化铝陶瓷的制备方法 | |
CN108147842A (zh) | 一体化抗烧蚀ZrC/SiC-C/C复合材料的制备方法 | |
CN107697916B (zh) | 一种金属-硅-碳化合物纳米粉体的制备方法 | |
CN106747447A (zh) | 一种合成Al4SiC4粉体材料的新方法 | |
CN104073703A (zh) | 一种Al2O3-TiN-Al陶瓷复合材料及其制备方法 | |
CN106636738B (zh) | 钛硅合金材料及其制备方法 | |
CN103030135B (zh) | 一种抗氧化型高导热泡沫碳材料的制备方法 | |
CN106747574A (zh) | 一种微波窑用Si2N2O透波‑隔热一体化内衬材料及其制备方法 | |
CN107190261B (zh) | 一种高温抗氧化铌合金表面复合硅化物涂层及制备方法 | |
CN113716945B (zh) | 一种低导热轻量化硅砖及其制备方法 | |
CN105506330B (zh) | 耐高温TiAl多孔复合材料的微波液相烧结方法 | |
CN114230154B (zh) | 一种高寿命低变形率石英坩埚及其制备方法 | |
TWI523827B (zh) | 坩堝 | |
CN102731109B (zh) | 一种AlON材料的合成方法 | |
CN103936421B (zh) | 一种TiC0.6/TiC0.6-Al2O3复合陶瓷的制备方法 | |
CN114349516A (zh) | 一种低温合成高致密SiC陶瓷的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |