CN106853360A - 一种铜离子交换分子筛的制备方法及应用 - Google Patents

一种铜离子交换分子筛的制备方法及应用 Download PDF

Info

Publication number
CN106853360A
CN106853360A CN201611055849.4A CN201611055849A CN106853360A CN 106853360 A CN106853360 A CN 106853360A CN 201611055849 A CN201611055849 A CN 201611055849A CN 106853360 A CN106853360 A CN 106853360A
Authority
CN
China
Prior art keywords
molecular sieve
ion exchange
copper ion
copper
zsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611055849.4A
Other languages
English (en)
Inventor
付翯云
魏方雪
瞿晓磊
魏晨辉
许昭怡
郑寿荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201611055849.4A priority Critical patent/CN106853360A/zh
Publication of CN106853360A publication Critical patent/CN106853360A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了铜修饰的分子筛颗粒去除水体中硫醇类嗅味物质的应用。本发明还公开了铜修饰的分子筛颗粒去除水体中硫醇类嗅味物质的方法,将铜修饰的分子筛颗粒在pH=4‑8的条件下对水中的硫醇类嗅味物质进行吸附去除,吸附时间为30min~24h,温度为293~303K。本发明采用铜修饰的分子筛颗粒吸附去除水中的硫醇类嗅味物质,表现出较强的吸附性能。此外,本发明材料制备简单,操作方便,成本低廉,处理效果显著,吸附剂可循环利用。因此,本发明用于去除污染水体中的硫醇类嗅味物质,具有良好的经济和环境效益。

Description

一种铜离子交换分子筛的制备方法及应用
技术领域
本发明涉及无机材料和水处理技术技术领域,具体是涉及一种铜离子交换分子筛的制备方法及应用。
背景技术
随着城市人口数量的增多以及工业的迅速发展,许多有害的污染物以及化学药品被肆意排入江河,湖泊等水体中,造成水体严重污染。尤其近年来饮用水水源地突发性嗅味污染事件屡次发生。如2007年5至6月期间,太湖水华引发的无锡市饮用水异嗅味事件,使得将近200万居民面临饮用水困难。异嗅味污染物指能散发难闻气味,引起多数人不愉快感觉的物质,其中硫醇类污染物是一类重要的致嗅味物质。水体中硫醇类嗅味物质主要由藻类死亡腐烂后分解产生。此外,当含有蛋白质的废水,如生活污水、工业废水等排入天然水体后,在厌氧条件下也可以生成硫醇类嗅味物质。这类嗅味物质的存在不仅会使环境恶化、影响水体饮用质量,更会危害人类健康。其对人体的危害主要分为以下几个方面:第一,影响呼吸系统。恶臭的存在会强烈刺激感官,妨碍正常呼吸;第二,阻碍循环系统。在呼吸过程中,部分恶臭物质会进入循环系统,进入血液循环后会阻碍氧的运输,影响人体正常的生理机能;第三,危害消化系统。经常接触恶臭物质会产生恶心、呕吐、厌食等症状,导致消化衰退、内分泌紊乱等。第四,影响神经系统,引发疾病。因此,为保障饮用水质量和使用安全,发展高效的水体硫醇类嗅味污染物去除方法十分必要。
现有的硫醇类嗅味污染物处理技术主要分为物理/化学(化学洗涤器,焚烧炉,吸附系统等)和生物处理(生物过滤器,生物滤池过滤器,生物净化器和活性污泥扩散反应器)。其中,物理/化学技术得到了最广泛的应用。然而,常规的化学水处理方法难以有效地除去这些嗅味物质。而物理吸附法因具有高效、低能耗、操作方便、无二次污染等特点,受到越来越多的关注。
吸附法是利用多孔性的固体物质,使水中的一种或多种物质被吸附在固体表面而被去除的方法。目前水处理中常用的吸附剂包括:活性炭、离子交换树脂、壳聚糖、矿渣、硅藻土、海泡石、膨润土和硅基磷块岩等。其中,活性炭因具有较高的比表面积和强表面疏水性,使用最为广泛。然而,由于硫醇类污染物具有较高的极性和亲水性,导致其往往难以被活性炭高效吸附去除。因此就目前而言,对硫醇类嗅味物质具有较强吸附能力的吸附剂仍鲜有报道。
发明内容
本发明的目的是针对现有吸附方法的缺点,提供一种铜离子交换分子筛的制备方法及其在去除水体中硫醇类嗅味物质中的应用。
为解决上述技术问题,本发明的第一个技术方案是:
一种铜离子交换分子筛的制备方法,包括以下步骤:
1)将ZSM-5分子筛水溶液与硝酸铜水溶液混合,在室温下反应24h,所述ZSM-5分子筛与硝酸铜的质量百分比为1:1~4;
2)将反应后得到的铜离子交换分子筛用去离子水洗涤多次;
3)将洗净的铜离子交换分子筛在烘箱中于110℃下烘干;
4)再置于500~600℃的温度条件下焙烧6~8h,得到铜离子交换分子筛微粒。
本发明中铜修饰的ZSM-5分子筛的合成是利用离子交换法,硝酸铜溶液与分子筛溶液反应,以达到将铜交换到分子筛骨架内的目的。
优选地,所述ZSM-5分子筛与硝酸铜的质量百分比为1:1~3。
进一步地,在上述方案中,所述ZSM-5分子筛的合成方法为:
1)分别利用水玻璃(SiO2质量分数27.1%,Na2O质量分数8.39%)和Al2(SO4)3.18H2O作为硅铝源,四丙基溴化铵(TPABr)作为导向剂,按n(SiO2):n(Al2O3):n(TPABr):n(OH-):n(H2O)=1:x:y:0.1:30比例将所有化学药品准确称量并搅拌摇匀;其中的x、y是用来确定硅铝比的,比例不同,合成不同的材料。
2)室温下陈化搅拌2h,移至烘箱180℃晶化24h,迅速冷却并过滤洗涤干燥;
3)将所得晶体放入马弗炉内,1℃/min升温至500℃,保持8h后以5℃/min降至室温,得到不同硅铝比的ZSM-5分子筛。
本发明的第二个技术方案为:一种铜离子交换分子筛在处理水体中硫醇类嗅味污染物中的应用。发明人在研究分子筛的吸附生物有机分子的机理时,发现铜修饰的分子筛能更好地吸附硫醇和硫化物,究其原理,可能是铜修饰的ZSM-5分子筛与硫醇类物质形成π-配位作用的原因。铜修饰的分子筛颗粒中的铜,与-SH上的S可形成π-配位效应。另一方面,可能是ZSM-5分子筛的疏水性表面可与硫醇类物质发生疏水作用。
进一步地,在上述方案中,将铜离子交换分子筛在pH=4.0~8.0的条件下对水中的硫醇类嗅味污染物进行吸附去除,优选的pH值为6.0,吸附时间为30min~24h,温度为293~303K。以铜修饰的ZSM-5分子筛为吸附剂,对水中的丙硫醇、叔丁基硫醇、苯硫醇等硫醇类物质进行吸附处理,吸附可采用动态连续过程或静态间歇过程。吸附效果随着时间的增长而增加,吸附10h~14h后,基本达到平衡。
进一步地,在上述方案中,水中硫醇类嗅味污染物的初始浓度为1.0mg/L,吸附剂与微污染水质量比为1:2000~1:4000。
进一步地,在上述方案中,所述铜离子交换分子筛的制备方法为:
1)将ZSM-5分子筛水溶液与硝酸铜水溶液混合,在室温下反应24h,所述ZSM-5分子筛与硝酸铜的质量比为1:1~4;
2)将反应后得到的铜离子交换分子筛用去离子水洗涤多次;
3)将洗净的铜离子交换分子筛在烘箱中于110℃下烘干;
4)再置于500~600℃的温度条件下焙烧6~8h,得到铜离子交换分子筛微粒。
本发明的有益效果是:本发明突破现有技术中硫醇类嗅味物质吸附能力差的劣势,采用铜修饰的ZSM-5分子筛吸附去除水中的硫醇类嗅味物质,表现出较强的吸附性能。此外,本发明材料制备简单,操作方便,成本低廉,处理效果显著,可循环使用。因此,本发明用于去除污染水体中的硫醇类嗅味物质,具有良好的经济和环境效益。
具体实施方式
实施例1
铜离子交换分子筛的制备:
1)称取5.0g硝酸铜,加入到250mL的容量瓶中,摇匀,超声分散15min。称5.0g分子筛到250mL烧杯中,将ZSM-5分子筛水溶液与硝酸铜水溶液混合,在室温下反应24h;
2)将反应后得到的铜离子交换分子筛用去离子水洗涤多次;
3)将洗净的铜离子交换分子筛在烘箱中于110℃下烘干;
4)再置于500℃的温度条件下焙烧6h,得到铜离子交换分子筛微粒。
以上述铜修饰的ZSM-5分子筛颗粒为吸附剂,处理含硫醇类嗅味物质的污染水。在封闭容器(体积为40mL)中进行吸附,吸附剂和微污染水质量比为1:2000,pH=6,丙硫醇的初始浓度为1.0mg/L,吸附温度293K,吸附时间为24h,最终丙硫醇的去除率为98.06%。
实施例2
1)称取6.0g硝酸铜,加入到250mL的容量瓶中,摇匀,超声分散15min。称5.0g分子筛到250mL烧杯中,将ZSM-5分子筛水溶液与硝酸铜水溶液混合,在室温下反应24h;
2)将反应后得到的铜离子交换分子筛用去离子水洗涤多次;
3)将洗净的铜离子交换分子筛在烘箱中于110℃下烘干;
4)再置于520℃的温度条件下焙烧6h,得到铜离子交换分子筛微粒。
以上述铜修饰的ZSM-5分子筛颗粒为吸附剂,处理含叔丁基硫醇的污染水。在封闭容器(体积为40mL)中进行吸附,吸附剂和微污染水质量比为1:2500,pH=6,叔丁基硫醇的初始浓度分别为1.0mg/L,吸附温度298K,吸附时间为24h,叔丁基硫醇去除率为99.07%。
实施例3
1)称取8.0g硝酸铜,加入到250mL的容量瓶中,摇匀,超声分散15min。称5.0g分子筛到250mL烧杯中,将ZSM-5分子筛水溶液与硝酸铜水溶液混合,在室温下反应24h;
2)将反应后得到的铜离子交换分子筛用去离子水洗涤多次;
3)将洗净的铜离子交换分子筛在烘箱中于110℃下烘干;
4)再置于540℃的温度条件下焙烧7h,得到铜离子交换分子筛微粒。
以铜修饰的ZSM-5分子筛颗粒为吸附剂,处理含苯硫醇的污染水。在封闭容器(体积为40mL)中进行吸附,吸附剂和微污染水质量比为1:2800,pH=6,附温度为298k,苯硫醇的初始浓度为1.0mg/L,其中去除率为98.36%。
实施例4
1)称取12.08g硝酸铜,加入到250mL的容量瓶中,摇匀,超声分散15min。称5.0g分子筛到250mL烧杯中,将ZSM-5分子筛水溶液与硝酸铜水溶液混合,在室温下反应24h;
2)将反应后得到的铜离子交换分子筛用去离子水洗涤多次;
3)将洗净的铜离子交换分子筛在烘箱中于110℃下烘干;
4)再置于560℃的温度条件下焙烧7h,得到铜离子交换分子筛微粒。
5)以铜修饰的分子筛作为吸附剂,吸附丙硫醇;
6)过滤收集铜修饰的分子筛,并于560℃焙烧、再生。
以再生后的铜修饰的分子筛作为吸附剂,处理含丙硫醇的污染水,在封闭容器(体积为40mL)中进行吸附,吸附剂和微污染水质量比为1:3000,pH=7,吸附温度293K,吸附时间为24h,丙硫醇的去除率为97.56%。
实施例5
1)称取15.0g硝酸铜,加入到250mL的容量瓶中,摇匀,超声分散15min。称5.0g分子筛到250mL烧杯中,将ZSM-5分子筛水溶液与硝酸铜水溶液混合,在室温下反应24h;
2)将反应后得到的铜离子交换分子筛用去离子水洗涤多次;
3)将洗净的铜离子交换分子筛在烘箱中于110℃下烘干;
4)再置于580℃的温度条件下焙烧8h,得到铜离子交换分子筛微粒。
5)以铜修饰的分子筛作为吸附剂,吸附丙硫醇;
6)过滤收集铜修饰的分子筛,并于580℃焙烧、再生。
以再生后的铜修饰的ZSM-5分子筛作为吸附剂,处理含叔丁基硫醇的污染水,在封闭容器(体积为40mL)中进行吸附,吸附剂和微污染水质量比为1:3500,pH=6,吸附温度303K,吸附时间为24h,叔丁基硫醇的去除率为98.5%。
实施例6
1)称取20.0g硝酸铜,加入到250mL的容量瓶中,摇匀,超声分散15min。称5.0g分子筛到250mL烧杯中,将ZSM-5分子筛水溶液与硝酸铜水溶液混合,在室温下反应24h;
2)将反应后得到的铜离子交换分子筛用去离子水洗涤多次;
3)将洗净的铜离子交换分子筛在烘箱中于110℃下烘干;
4)再置于600℃的温度条件下焙烧8h,得到铜离子交换分子筛微粒。
5)以铜修饰的分子筛作为吸附剂,吸附丙硫醇;
6)过滤收集铜修饰的分子筛,并于600℃焙烧、再生。
以再生后的铜修饰的ZSM-5分子筛作为吸附剂,处理含苯硫醇的污染水,在封闭容器(体积为40mL)中进行吸附,吸附剂和微污染水质量比为1:4000,pH=6,吸附温度303K,吸附时间为24h,苯硫醇的去除率为97.13%。
对比例1
采用无铜修饰的ZSM-5分子筛处理含硫醇类嗅味物质的污染水。吸附条件同实施例1,在封闭容器(体积为40mL)中进行吸附,吸附剂和微污染水质量比为1:4000,pH=6.0,丙硫醇的初始浓度为1.0mg/L,吸附温度293K,吸附时间为24h,最终丙硫醇的去除率为85.86%。
对比例2
无铜修饰的ZSM-5分子筛颗粒为吸附剂,处理含叔丁基硫醇的污染水。吸附条件同实施例2,叔丁基硫醇的初始浓度分别为1.0mg/L,吸附温度298K,吸附时间为24h,叔丁基硫醇去除率为90.87%。
对比例3
以无铜修饰的ZSM-5分子筛颗粒为吸附剂,处理含苯硫醇的污染水。吸附条件同实施例3,吸附温度为298K,苯硫醇的初始浓度为1.0mg/L,其中去除率为82.36%。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (7)

1.一种铜离子交换分子筛的制备方法,其特征在于:
1)将ZSM-5分子筛水溶液与硝酸铜水溶液混合,在室温下反应24h,所述ZSM-5分子筛与硝酸铜的质量百分比为1:(1~4);
2)将反应后得到的铜离子交换分子筛用去离子水洗涤多次;
3)将洗净的铜离子交换分子筛在烘箱中于110℃下烘干;
4)再置于500~600℃的温度条件下焙烧6~8h,得到铜离子交换分子筛微粒。
2.如权利要求1所述的一种铜离子交换分子筛的制备方法,其特征在于,所述ZSM-5分子筛与硝酸铜的质量百分比为1:(1~3)。
3.如权利要求1、2所述的一种铜离子交换分子筛的制备方法,其特征在于,所述ZSM-5分子筛的合成方法为:
1)分别利用水玻璃(SiO2质量分数27.1%,Na2O质量分数8.39%)和Al2(SO4)3.18H2O作为硅铝源,四丙基溴化铵(TPABr)作为导向剂,按n(SiO2):n(Al2O3):n(TPABr):n(OH-):n(H2O)=1:x:y:0.1:30比例将所有化学药品准确称量并搅拌摇匀;
2)室温下陈化搅拌2h,移至烘箱180℃晶化24h,迅速冷却并过滤洗涤干燥;
3)将所得晶体放入马弗炉内,1℃/min升温至500℃,保持8h后以5℃/min降至室温,得到不同硅铝比的ZSM-5分子筛。
4.一种铜离子交换分子筛在处理水体中硫醇类嗅味污染物中的应用。
5.如权利要求1所述的应用,其特征在于,将铜离子交换分子筛在pH=4.0~8.0的条件下对水中的硫醇类嗅味污染物进行吸附去除,吸附时间为30min~24h,温度为293~303K。
6.如权利要求5所述的应用,其特征在于,水中硫醇类嗅味污染物的初始浓度为0.1~100.0mg/L,吸附剂与微污染水质量比为1:2000~1:4000。
7.如权利要求4所述的应用,其特征在于,所述铜离子交换分子筛的制备方法为:
1)将ZSM-5分子筛水溶液与硝酸铜水溶液混合,在室温下反应24h,所述ZSM-5分子筛与硝酸铜的质量百分比为1:(1~4);
2)将反应后得到的铜离子交换分子筛用去离子水洗涤多次;
3)将洗净的铜离子交换分子筛在烘箱中于110℃下烘干;
4)再置于500~600℃的温度条件下焙烧6~8h,得到铜离子交换分子筛微粒。
CN201611055849.4A 2016-11-25 2016-11-25 一种铜离子交换分子筛的制备方法及应用 Pending CN106853360A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611055849.4A CN106853360A (zh) 2016-11-25 2016-11-25 一种铜离子交换分子筛的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611055849.4A CN106853360A (zh) 2016-11-25 2016-11-25 一种铜离子交换分子筛的制备方法及应用

Publications (1)

Publication Number Publication Date
CN106853360A true CN106853360A (zh) 2017-06-16

Family

ID=59126183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611055849.4A Pending CN106853360A (zh) 2016-11-25 2016-11-25 一种铜离子交换分子筛的制备方法及应用

Country Status (1)

Country Link
CN (1) CN106853360A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108311127A (zh) * 2018-03-16 2018-07-24 南京大学 一种Ni基MOFs碳化萃取涂层的制备方法及其应用
CN109954480A (zh) * 2019-01-08 2019-07-02 哈尔滨理工大学 一种高效分子筛型脱臭剂制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020025399A (ko) * 2000-09-28 2002-04-04 양오봉 악취 제거용 고성능 탈취촉매의 제조 및 사용
CN103285802A (zh) * 2013-06-13 2013-09-11 河北民海化工有限公司 一种有机硫化物吸附剂
CN103894147A (zh) * 2012-12-25 2014-07-02 北京三聚环保新材料股份有限公司 一种含铜、钾离子的分子筛脱硫剂及其制备方法
CN103936026A (zh) * 2014-04-03 2014-07-23 南京工业大学 一种合成zsm-5分子筛的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020025399A (ko) * 2000-09-28 2002-04-04 양오봉 악취 제거용 고성능 탈취촉매의 제조 및 사용
CN103894147A (zh) * 2012-12-25 2014-07-02 北京三聚环保新材料股份有限公司 一种含铜、钾离子的分子筛脱硫剂及其制备方法
CN103285802A (zh) * 2013-06-13 2013-09-11 河北民海化工有限公司 一种有机硫化物吸附剂
CN103936026A (zh) * 2014-04-03 2014-07-23 南京工业大学 一种合成zsm-5分子筛的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
殷晓伟等: ""载铜ZSM-5分子筛膜脱除硫醇性能"", 《化工进展》 *
汪威等: ""铜离子交换的13X分子筛脱除硫醇的特性研究"", 《石油与天然气化工》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108311127A (zh) * 2018-03-16 2018-07-24 南京大学 一种Ni基MOFs碳化萃取涂层的制备方法及其应用
CN109954480A (zh) * 2019-01-08 2019-07-02 哈尔滨理工大学 一种高效分子筛型脱臭剂制备方法

Similar Documents

Publication Publication Date Title
Foroutan et al. Development of new magnetic adsorbent of walnut shell ash/starch/Fe3O4 for effective copper ions removal: treatment of groundwater samples
Khan et al. Removal of copper ions from wastewater via adsorption on modified hematite (α-Fe2O3) iron oxide coated sand
Titchou et al. Removal of cationic dye from aqueous solution using Moroccan pozzolana as adsorbent: isotherms, kinetic studies, and application on real textile wastewater treatment
Pushpa et al. Investigation on removal of malachite green using EM based compost as adsorbent
Pengthamkeerati et al. Chemical modification of coal fly ash for the removal of phosphate from aqueous solution
Rentz et al. Removal of phosphorus from solution using biogenic iron oxides
Al-Jubouri et al. Antibiotics adsorption from contaminated water by composites of ZSM-5 zeolite nanocrystals coated carbon
Uko et al. Adsorptive properties of MgO/WO3 nanoadsorbent for selected heavy metals removal from indigenous dyeing wastewater
Bhatnagar et al. Adsorptive removal of 2, 4-dichlorophenol from water utilizing Punica granatum peel waste and stabilization with cement
Habeeb et al. Kinetic, isotherm and equilibrium study of adsorption capacity of hydrogen sulfide-wastewater system using modified eggshells
CN101522572A (zh) 流体污染物的吸附方法和吸附剂的再生
CN107055726B (zh) 一种复合絮凝剂及其制备方法和应用
Ketwong et al. Removal of heavy metal from synthetic wastewaterusing calcined golden apple snail shells
CN101386438B (zh) 胺基修饰的Fe3O4@SiO2复合微粒处理水体中重金属离子的方法
JP2005334737A (ja) 磁性吸着剤、光触媒担持吸着剤、磁性光触媒、光触媒担持磁性吸着剤および有害物の分解処理方法
Nayak et al. Environmental remediation and application of carbon-based nanomaterials in the treatment of heavy metal-contaminated water: A review
CN106853360A (zh) 一种铜离子交换分子筛的制备方法及应用
Hilal et al. Removal of acid dye (AR37) by adsorption onto potatoes and egg husk: a comparative study
Rahman et al. Development of poly-o-toluidine zirconium (IV) ethylenediamine as a new adsorbent for nitrate: Equilibrium modelling and thermodynamic studies
Yuan et al. Efficient removal of molybdate from groundwater with visible color changes using wasted aerobic granular sludge
Pająk et al. Evaluation of the metallurgical dust sorbent efficacy in reactive blue 19 dye removal from aqueous solutions and textile wastewater
KR20140015845A (ko) 해양 오염퇴적물 정화를 위한 피복 소재 개발과 그 이용
Huo et al. Effect of trace Ag+ adsorption on degradation of organic dye wastes
Zhang et al. Glyphosate degradation with industrial wastewater effluent by combined adsorption treatment and advanced oxidation processes
Kiurski et al. Fired clay with polymer addition as printing developer purifier

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170616

RJ01 Rejection of invention patent application after publication