CN106848198B - 一种锂电池负极极片的制备方法 - Google Patents

一种锂电池负极极片的制备方法 Download PDF

Info

Publication number
CN106848198B
CN106848198B CN201710097060.3A CN201710097060A CN106848198B CN 106848198 B CN106848198 B CN 106848198B CN 201710097060 A CN201710097060 A CN 201710097060A CN 106848198 B CN106848198 B CN 106848198B
Authority
CN
China
Prior art keywords
tin
acid
lithium battery
pole piece
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710097060.3A
Other languages
English (en)
Other versions
CN106848198A (zh
Inventor
唐超
饶睦敏
邓昌源
容亮斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baolixin Inner Mongolia Battery Co ltd
Baolixin Shenzhen New Energy Technology Development Co ltd
Original Assignee
Shenzhen OptimumNano Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen OptimumNano Energy Co Ltd filed Critical Shenzhen OptimumNano Energy Co Ltd
Priority to CN201710097060.3A priority Critical patent/CN106848198B/zh
Publication of CN106848198A publication Critical patent/CN106848198A/zh
Priority to US15/894,899 priority patent/US20180241030A1/en
Priority to EP18156365.1A priority patent/EP3367477A1/en
Application granted granted Critical
Publication of CN106848198B publication Critical patent/CN106848198B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

一种锂电池负极极片的制备方法,包括如下步骤:①配制锡基合金镀液;②铜箔集流体预处理;③电沉积锡基合金/硅基颗粒复合镀层;④电沉积锡基合金/碳颗粒复合镀层。本发明提供的一种锂电池负极极片的制备方法,不仅能有效解决了锂电池的负极极片在充放电过程中引起的体积膨胀的问题,进而提升了锂电池的充放电性能及容量。另外,本发明提供的一种锂电池负极极片的制备方法,不需要使用粘结剂和导电剂,降低了锂电池的负极极片的制作成本。

Description

一种锂电池负极极片的制备方法
【技术领域】
本发明涉及电池技术领域,尤其涉及一种锂电池负极极片的制备方法。
【背景技术】
锂电池因具有能量高、电池电压高、使用寿命长等优点,已被广泛应用于电动汽车等领域。随着电动汽车产业的迅猛发展,高能量密度锂电池将是未来电动汽车动力能源发展方向的重要问题。而更高能量密度的锂电池,则需要容量更高的正负极材料体系来维持。目前,现有的锂电池负极材料多以碳材料为主,与钴酸锂、锰酸锂、磷酸铁锂、镍钴锰三元等正极材料配合,锂电池的能量密度最高能达到250wh/kg。碳的理论比容量为372mAh/g,无法满足高能量密度锂电池负极材料的要求。硅作为一种新兴的锂电极负极材料,其理论比容量为4200mAh/g,放电平台高于碳类材料。锡与锂可以可逆地形成合金,其理论比容量为990mAh/g,是可替代碳材料的锂电池负极材料。但是硅、锡在循环过程中由于体积膨胀收缩剧烈,均会造成负极材料粉化最终将导致容量的迅速衰减,使得锂电池的循环寿命非常短。
鉴于此,实有必要提供一种新型的锂电池负极极片的制备方法来克服以上缺陷。
【发明内容】
本发明的目的是提供一种锂电池负极极片的制备方法,不仅能有效解决了锂电池的负极极片在充放电过程中引起的体积膨胀的问题,进而提升了锂电池的充放电性能及容量。另外,本发明提供的一种锂电池负极极片的制备方法,不需要使用粘结剂和导电剂,降低了锂电池的负极极片的制作成本。
为了实现上述目的,本发明提供一种锂电池负极极片的制备方法,包括如下步骤:
①配制锡基合金镀液:先将配位剂加入到水中,得到配位剂溶液,再依次向配位剂溶液中加入锡源、还原剂、晶粒细化剂、分散剂及金属盐,搅拌均匀,得到锡基合金镀液;所述锡基合金镀液的中分散剂的浓度为1g/L~10g/L;所述金属盐是银、铜、金、锌、镍、铅的无机盐、有机盐或络合物的一种或几种混合,所述金属盐的浓度为0.1-50g/L;
②铜箔集流体预处理:先将铜箔浸入到化学除油液中,然后依次用自来水和去离子水清洗铜箔,再将清洗后的铜箔整体浸入到活化液中,最后再依次用自来水和去离子水清洗铜箔,得到铜箔集流体;
③电沉积锡基合金/硅基颗粒复合镀层:先将步骤①中得到的锡基合金镀液中加入硅基颗粒搅拌均匀混合后在超声波发生器中超声处理后得到锡硅复合镀液,然后以步骤②预处理后的铜箔集流体为阴极,以纯度为99.9%的锡板、钛板或不锈钢板为阳极,再将预处理后的阴极与阳极浸入锡硅复合镀液中,最后采用直流电源进行电沉积得到带锡硅复合镀层的铜箔集流体;
④电沉积锡基合金/碳颗粒复合镀层;先将步骤①中的锡基合金镀液中加入碳颗粒搅拌均匀混合后在超声波发生器中超声处理得到锡碳复合镀液,然后以步骤③中制得的锡硅复合镀层的铜箔集流体为阴极,以纯度为99.9%的锡板、钛板或不锈钢板为阳极,再将步骤③中制得的锡硅复合镀层的铜箔集流体与阳极浸入锡碳复合镀液中,最后采用直流电源进行电沉积得到带锡硅复合镀层和锡碳复合镀层的双层复合镀层的铜箔集流体。
具体的,步骤①中所述锡基合金镀液中的配位剂为乙二胺四乙酸、硫脲、烯丙基硫脲、乙二胺、四乙烯五胺、含硫氨基酸的一种或几种混合,所述配位剂的浓度为100g/L~300g/L;所述锡基合金镀液中的锡源是硫酸、硼氟酸、硅氟酸、氨基磺酸、盐酸、硫酸、焦磷酸的锡盐和醋酸、草酸、丙二酸、琥珀酸、甘醇酸、酒石酸、柠檬酸的锡盐以及金属锡的一种或几种混合,所述锡盐的浓度为20g/L~80g/L;所述锡基合金镀液中的还原剂为邻苯二酚、间苯二酚、氢醌、邻苯三酚、羟基氢醌、氟代甘氨酸、甲酚磺酸、邻苯二酚磺酸、氢醌磺酸的一种或几种混合,所述还原剂的浓度为3g/L~20g/L;所述锡基合金镀液中的晶粒细化剂的浓度为0.1g/L~5g/L。
具体的,步骤②中的所述的化学除油液由氢氧化钠、碳酸钠、硅酸钠及水组成,所述的化学除油液中氢氧化钠的浓度为5g/L~10g/L,所述的化学除油液中碳酸钠的浓度为15g/L~20g/L,所述的化学除油液中硅酸钠的浓度为15g/L~20g/L;所述化学除油液的温度为:60℃~70℃,所述化学除油液的除油时间为:3min~5min。
具体的,步骤②中所述的活化液为质量百分数为10%~20%的硫酸或者盐酸溶液和1%~2%的双氧水混合组成;所述活化液的温度为室温;所述活化液的活化时间为:1min~3min。
具体的,步骤③中的所述硅基颗粒为纳米氧化硅、纳米硅、硅纳米管、多孔硅的一种或几种混合,所述锡硅复合镀层中硅基颗粒的体积分数占锡硅复合镀层的体积分数的10%~20%,所述硅基颗粒质量分数占所述锡硅复合镀液的质量分数的5%~10%。
具体的,所述步骤③中的加入硅基颗粒搅拌的速度为:1000rpm~1500rpm,所述直流电源的电流密度为:1A/dm2~5A/dm2,所述直流电源的电沉积的时间为:5min~10min。
具体的,步骤④中的所述碳颗粒为碳纳米管、碳纳米纤维、纳米碳球、石墨烯、石墨的一种或者几种混合;所述锡碳复合镀层中碳颗粒的体积分数占锡碳复合镀层的体积分数的20%~40%,所述锡碳复合镀层中的碳颗粒质量分数占所述锡碳复合镀液的质量分数的10%~20%。
具体的,步骤④中的加入碳颗粒搅拌的速度为:500rpm~1000rpm,所述直流电源的电流密度为:2A/dm2~3A/dm2,所述直流电源的电沉积的时间为:5min~10min。
具体的,所述步骤③和④中的超声波发生器的内部温度为:40℃~60℃,所述超声波发生器的超声处理时间为:1h~3h。
与现有技术相比,本发明实施例制备的锂电池的负极极片,使用水溶液电沉积的方法,能够在常温下快速地形成细致均匀、结合紧密的锡硅复合镀层和锡碳复合镀层的双层复合镀层,有效解决了锂电池的负极极片在充放电过程中引起的体积膨胀的问题,进而提升了锂电池的充放电性能及容量。另外,本实施例制备的锂电池不需要使用粘结剂和导电剂,降低了锂电池的负极极片的制作成本。
【附图说明】
图1为本发明实施例制备的锂电池的负极极片所制备的锂电池在1C倍率下和3C倍率下的性能测试结果图。
图2为本发明实施例制备的锂电池的负极极片的结构示意图。
图3为本发明实施例制备的锂电池的负极极片的锡硅复合镀层的SEM图。
图4为本发明实施例制备的锂电池的负极极片的锡碳复合镀层的SEM图。
【具体实施方式】
为了使本发明的目的、技术方案和有益技术效果更加清晰明白,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并不是为了限定本发明。
本发明提供一种锂电池负极极片的制备方法,包括如下步骤:
①配制锡基合金镀液:先将配位剂加入到水中,得到配位剂溶液,再依次向配位剂溶液中加入锡源、还原剂、晶粒细化剂、分散剂及金属盐,搅拌均匀,得到锡基合金镀液;所述金属盐是银、铜、金、锌、镍、铅的无机盐、有机盐或络合物的一种或几种混合,所述金属盐的浓度为0.1-50g/L;
②铜箔集流体预处理:先将铜箔浸入到化学除油液中,然后依次用自来水和去离子水清洗铜箔,再将清洗后的铜箔整体浸入到活化液中,最后再依次用自来水和去离子水清洗铜箔,得到铜箔集流体;
③电沉积锡基合金/硅基颗粒复合镀层:先将步骤①中得到的锡基合金镀液中加入硅基颗粒搅拌均匀混合后在超声波发生器中超声处理后得到锡硅复合镀液,然后以步骤②预处理后的铜箔集流体为阴极,以纯度为99.9%的锡板、钛板或不锈钢板为阳极,再将预处理后的阴极与阳极浸入锡硅复合镀液中,最后采用直流电源进行电沉积得到带锡硅复合镀层的铜箔集流体;
④电沉积锡基合金/碳颗粒复合镀层;先将步骤①中的锡基合金镀液中加入碳颗粒搅拌均匀混合后在超声波发生器中超声处理得到锡碳复合镀液,然后以步骤③中制得的锡硅复合镀层的铜箔集流体为阴极,以纯度为99.9%的锡板、钛板或不锈钢板为阳极,再将步骤③中制得的锡硅复合镀层的铜箔集流体与阳极浸入锡碳复合镀液中,最后采用直流电源进行电沉积得到带锡硅复合镀层和锡碳复合镀层的双层复合镀层的铜箔集流体。
具体的,步骤①中所述锡基合金镀液中的配位剂为乙二胺四乙酸、硫脲、烯丙基硫脲、乙二胺、四乙烯五胺、含硫氨基酸的一种或几种混合,所述配位剂的浓度为100g/L~300g/L;所述锡基合金镀液中的锡源是硫酸、硼氟酸、硅氟酸、氨基磺酸、盐酸、硫酸、焦磷酸的锡盐和醋酸、草酸、丙二酸、琥珀酸、甘醇酸、酒石酸、柠檬酸的锡盐以及金属锡的一种或几种混合,所述锡盐的浓度为20g/L~80g/L;所述锡基合金镀液中的还原剂为邻苯二酚、间苯二酚、氢醌、邻苯三酚、羟基氢醌、氟代甘氨酸、甲酚磺酸、邻苯二酚磺酸、氢醌磺酸的一种或几种混合,所述还原剂的浓度为3g/L~20g/L;所述锡基合金镀液中的晶粒细化剂的浓度为0.1g/L~5g/L;所述锡基合金镀液的中分散剂的浓度为1g/L~10g/L。
具体的,步骤②中的所述的化学除油液由氢氧化钠、碳酸钠、硅酸钠及水组成,所述的化学除油液中氢氧化钠的浓度为5g/L~10g/L,所述的化学除油液中碳酸钠的浓度为15g/L~20g/L,所述的化学除油液中硅酸钠的浓度为15g/L~20g/L;所述化学除油液的温度为:60℃~70℃,所述化学除油液的除油时间为:3min~5min。
具体的,步骤②中所述的活化液为质量百分数为10%~20%的硫酸或者盐酸溶液和1%~2%的双氧水混合组成;所述活化液的温度为室温;所述活化液的活化时间为:1min~3min。
具体的,步骤③中的所述硅基颗粒为纳米氧化硅、纳米硅、硅纳米管、多孔硅的一种或几种混合,所述锡硅复合镀层中硅基颗粒的体积分数占锡硅复合镀层的体积分数的10%~20%,所述硅基颗粒质量分数占所述锡硅复合镀液的质量分数的5%~10%。
具体的,所述步骤③中的加入硅基颗粒搅拌的速度为:1000rpm~1500rpm,所述直流电源的电流密度为:1A/dm2~5A/dm2,所述直流电源的电沉积的时间为:5min~10min。
具体的,步骤④中的所述碳颗粒为碳纳米管、碳纳米纤维、纳米碳球、石墨烯、石墨的一种或者几种混合;所述锡碳复合镀层中碳颗粒的体积分数占锡碳复合镀层的体积分数的20%~40%,所述锡碳复合镀层中的碳颗粒质量分数占所述锡碳复合镀液的质量分数的10%~20%。
具体的,步骤④中的加入碳颗粒搅拌的速度为:500rpm~1000rpm,所述直流电源的电流密度为:2A/dm2~3A/dm2,所述直流电源的电沉积的时间为:5min~10min。
具体的,所述步骤③和④中的超声波发生器的内部温度为:40℃~60℃,所述超声波发生器的超声处理时间为:1h~3h。
实施例:
①先将配位剂加入到水中,得到配位剂溶液,然后将配位剂溶液平均分为两份,一份中加入金属锡和镍盐,依次加入还原剂、晶粒细化剂、分散剂后搅拌均匀,得到锡镍合金镀液,另一份中加入金属锡和铜盐,依次加入还原剂、晶粒细化剂、分散剂后搅拌均匀,得到铜锡合金镀液。
②先将铜箔浸入到温度为70℃的化学除油液中进行除油5min,然后依次用自来水和去离子水清洗,再将清洗后的铜箔整体浸入到温度为室温的活化液中进行活化2min,最后再依次用自来水和去离子水清洗,得到铜箔集流体。
③先将步骤①中的锡镍合金镀液中加入纳米硅颗粒按1000rpm的速度进行搅拌均匀混合后,在内部温度为40℃的超声波发生器中超声处理3h得到锡镍硅复合镀液,然后以步骤②预处理后的铜箔集流体为阴极,以纯度为99.9%的锡板为阳极,再将预处理后的阴极与阳极浸入锡镍硅复合镀液中,最后采用电流密度为3A/dm2的直流电源进行电沉积3min得到带锡硅复合镀层的铜箔集流体。
④先将步骤①中的铜锡合金镀液中加入人造石墨按1000rpm的速度进行搅拌均匀混合后,在内部温度为40℃的超声波发生器中超声处理3h得到铜锡碳复合镀液,然后以步骤③中制得的带锡硅复合镀层的铜箔集流体为阴极,以纯度为99.9%的锡板为阳极,再将带锡硅复合镀层的铜箔集流体与阳极浸入铜锡碳复合镀液中,最后采用电流密度为3A/dm2的直流电源进行电沉积3min得到带锡硅复合镀层和锡碳复合镀层的双层复合镀层的负极极片。
图1为本发明实施例制备的锂电池的负极极片在1C倍率下和3C倍率下的性能测试结果图。图2为本发明实施例制备的锂电池的负极极片的结构示意图。图3为本发明实施例制备的锂电池的负极极片的锡硅复合镀层的SEM图。图4为本发明实施例制备的锂电池的负极极片的锡碳复合镀层的SEM图。
由图1至图4可以看出,锡硅复合镀层及锡碳复合镀层在充放电过程中引起的体积膨胀得到抑制,使得本发明实施例制备的锂电池负极极片在1C倍率下循环300周容量保持率为初始容量的90.49%;在3C倍率下循环300周容量保持率为初始容量的89.61%。
综上所述,本发明实施例制备的锂电池的负极极片,使用水溶液电沉积的方法,能够在常温下快速地形成细致均匀、结合紧密的锡硅复合镀层和锡碳复合镀层的双层复合镀层,有效解决了锂电池的负极极片在充放电过程中引起的体积膨胀的问题,进而提升了锂电池的充放电性能及容量。另外,本实施例制备的锂电池不需要使用粘结剂和导电剂,降低了锂电池的负极极片的制作成本。
本发明并不仅仅限于说明书和实施方式中所描述,因此对于熟悉领域的人员而言可容易地实现另外的优点和修改,故在不背离权利要求及等同范围所限定的一般概念的精神和范围的情况下,本发明并不限于特定的细节、代表性的设备和这里示出与描述的图示示例。

Claims (9)

1.一种锂电池负极极片的制备方法,其特征在于,包括如下步骤:
①配制锡基合金镀液:先将配位剂加入到水中,得到配位剂溶液,再依次向配位剂溶液中加入锡源、还原剂、晶粒细化剂、分散剂及金属盐,搅拌均匀,得到锡基合金镀液;所述金属盐是银、铜、金、锌、镍、铅的无机盐、有机盐或络合物的一种或几种混合,所述金属盐的浓度为0.1-50g/L;
②铜箔集流体预处理:先将铜箔浸入到化学除油液中,然后依次用自来水和去离子水清洗铜箔,再将清洗后的铜箔整体浸入到活化液中,最后再依次用自来水和去离子水清洗铜箔,得到铜箔集流体;
③电沉积锡基合金/硅基颗粒复合镀层:先将步骤①中得到的锡基合金镀液中加入硅基颗粒搅拌均匀混合后在超声波发生器中超声处理后得到锡硅复合镀液,然后以步骤②预处理后的铜箔集流体为阴极,以纯度为99.9%的锡板、钛板或不锈钢板为阳极,再将预处理后的阴极与阳极浸入锡硅复合镀液中,最后采用直流电源进行电沉积得到带锡硅复合镀层的铜箔集流体;
④电沉积锡基合金/碳颗粒复合镀层;先将步骤①中的锡基合金镀液中加入碳颗粒搅拌均匀混合后在超声波发生器中超声处理得到锡碳复合镀液,然后以步骤③中制得的锡硅复合镀层的铜箔集流体为阴极,以纯度为99.9%的锡板、钛板或不锈钢板为阳极,再将步骤③中制得的锡硅复合镀层的铜箔集流体与阳极浸入锡碳复合镀液中,最后采用直流电源进行电沉积得到带锡硅复合镀层和锡碳复合镀层的双层复合镀层的铜箔集流体。
2.根据权利要求1所述的锂电池负极极片的制备方法,其特征在于:步骤①中所述锡基合金镀液中的配位剂为乙二胺四乙酸、硫脲、烯丙基硫脲、乙二胺、四乙烯五胺、含硫氨基酸的一种或几种混合,所述配位剂的浓度为100g/L~300g/L;所述锡基合金镀液中的锡源是硫酸、硼氟酸、硅氟酸、氨基磺酸、盐酸、焦磷酸的锡盐和醋酸、草酸、丙二酸、琥珀酸、甘醇酸、酒石酸、柠檬酸的锡盐以及金属锡的一种或几种混合,所述锡盐的浓度为20g/L~80g/L;所述锡基合金镀液中的还原剂为邻苯二酚、间苯二酚、氢醌、邻苯三酚、羟基氢醌、氟代甘氨酸、甲酚磺酸、邻苯二酚磺酸、氢醌磺酸的一种或几种混合,所述还原剂的浓度为3g/L~20g/L;所述锡基合金镀液中的晶粒细化剂的浓度为0.1g/L~5g/L;所述锡基合金镀液的中分散剂的浓度为1g/L~10g/L。
3.根据权利要求1所述的锂电池负极极片的制备方法,其特征在于:步骤②中的所述的化学除油液由氢氧化钠、碳酸钠、硅酸钠及水组成,所述的化学除油液中氢氧化钠的浓度为5g/L~10g/L,所述的化学除油液中碳酸钠的浓度为15g/L~20g/L,所述的化学除油液中硅酸钠的浓度为15g/L~20g/L;所述化学除油液的温度为:60℃~70℃,所述化学除油液的除油时间为:3min~5min。
4.根据权利要求1所述的锂电池负极极片的制备方法,其特征在于:步骤②中所述的活化液为质量百分数为10%~20%的硫酸或者盐酸溶液和1%~2%的双氧水混合组成;所述活化液的温度为室温;所述活化液的活化时间为:1min~3min。
5.根据权利要求1所述的锂电池负极极片的制备方法,其特征在于:步骤③中的所述硅基颗粒为纳米氧化硅、纳米硅、硅纳米管、多孔硅的一种或几种混合,所述锡硅复合镀层中硅基颗粒的体积分数占锡硅复合镀层的体积分数的10%~20%,所述硅基颗粒质量分数占所述锡硅复合镀液的质量分数的5%~10%。
6.根据权利要求1所述的锂电池负极极片的制备方法,其特征在于:所述步骤③中的加入硅基颗粒搅拌的速度为:1000rpm~1500rpm,所述直流电源的电流密度为:1A/dm2~5A/dm2,所述直流电源的电沉积的时间为:5min~10min。
7.根据权利要求1所述的锂电池负极极片的制备方法,其特征在于:步骤④中的所述碳颗粒为碳纳米管、碳纳米纤维、纳米碳球、石墨烯、石墨的一种或者几种混合;所述锡碳复合镀层中碳颗粒的体积分数占锡碳复合镀层的体积分数的20%~40%,所述锡碳复合镀层中的碳颗粒质量分数占所述锡碳复合镀液的质量分数的10%~20%。
8.根据权利要求1所述的锂电池负极极片的制备方法,其特征在于:步骤④中的加入碳颗粒搅拌的速度为:500rpm~1000rpm,所述直流电源的电流密度为:2A/dm2~3A/dm2,所述直流电源的电沉积的时间为:5min~10min。
9.根据权利要求1所述的锂电池负极极片的制备方法,其特征在于:所述步骤③和④中的超声波发生器的内部温度为:40℃~60℃,所述超声波发生器的超声处理时间为:1h~3h。
CN201710097060.3A 2017-02-22 2017-02-22 一种锂电池负极极片的制备方法 Active CN106848198B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710097060.3A CN106848198B (zh) 2017-02-22 2017-02-22 一种锂电池负极极片的制备方法
US15/894,899 US20180241030A1 (en) 2017-02-22 2018-02-12 Method for preparing negative electrode of lithium ion battery and lithium ion battery
EP18156365.1A EP3367477A1 (en) 2017-02-22 2018-02-12 Method for preparing negative electrode of lithium ion battery and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710097060.3A CN106848198B (zh) 2017-02-22 2017-02-22 一种锂电池负极极片的制备方法

Publications (2)

Publication Number Publication Date
CN106848198A CN106848198A (zh) 2017-06-13
CN106848198B true CN106848198B (zh) 2018-08-17

Family

ID=59134028

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710097060.3A Active CN106848198B (zh) 2017-02-22 2017-02-22 一种锂电池负极极片的制备方法

Country Status (3)

Country Link
US (1) US20180241030A1 (zh)
EP (1) EP3367477A1 (zh)
CN (1) CN106848198B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598361A (zh) * 2018-05-17 2018-09-28 河南电池研究院有限公司 一种锂离子电池负极片及其制备方法、锂离子电池
CN109950464A (zh) * 2019-02-01 2019-06-28 湖北锂诺新能源科技有限公司 一种多孔硅碳负极极片及其制备方法
CN110408043B (zh) * 2019-06-28 2021-04-16 中国地质大学(武汉) 一种锡基配位聚合物锂离子电池负极材料及其制备方法
CN113991059A (zh) * 2021-11-09 2022-01-28 河南电池研究院有限公司 一种锂离子电池负极极片及其制备方法
CN117996057B (zh) * 2024-04-02 2024-07-09 瑞浦兰钧能源股份有限公司 一种负极材料及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355888A (zh) * 2015-11-21 2016-02-24 中国计量学院 一种镍锡-碳-硅电极材料的制备方法
CN105470480A (zh) * 2015-11-21 2016-04-06 中国计量学院 一种锡合金/硅/碳电极材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3729155B2 (ja) * 2002-05-27 2005-12-21 ソニー株式会社 非水電解質電池及びその製造方法
JP5697078B2 (ja) * 2010-10-15 2015-04-08 学校法人早稲田大学 リチウム二次電池用活物質、リチウム二次電池用負極、およびリチウム二次電池
US9812699B2 (en) * 2011-10-05 2017-11-07 Oned Material Llc Silicon nanostructure active materials for lithium ion batteries and processes, compositions, components and devices related thereto
KR101350361B1 (ko) * 2011-11-24 2014-01-14 서울대학교산학협력단 리튬이차전지용 전극활물질의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355888A (zh) * 2015-11-21 2016-02-24 中国计量学院 一种镍锡-碳-硅电极材料的制备方法
CN105470480A (zh) * 2015-11-21 2016-04-06 中国计量学院 一种锡合金/硅/碳电极材料的制备方法

Also Published As

Publication number Publication date
CN106848198A (zh) 2017-06-13
EP3367477A1 (en) 2018-08-29
US20180241030A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
CN106848198B (zh) 一种锂电池负极极片的制备方法
CN111668493A (zh) 一种抑制锂金属负极枝晶的三维集流体及在金属锂电池中的应用
Ji et al. Electrodeposited lead-foam grids on copper-foam substrates as positive current collectors for lead-acid batteries
CN103022418B (zh) 一种碳纳米管增强的锡铜镍合金负极及其制备方法
CN108923024B (zh) 一种磁性锂金属电池铜磁复合电极材料及制备工艺和应用
Liu et al. Porous zinc anode design for zn-air chemistry
CN104009208A (zh) 一种在铜片集流体上两步法合成纳米Ni2O3/Co3O4负极材料的方法
CN111600036A (zh) 一种用于锂金属电池集流体的三维多孔氧化铜改性铜箔及其制备方法和应用
CN105390702A (zh) 一种泡沫镍基碳纳米管掺杂Sn/SnO/SnO2层状三维多孔负极材料及其制备方法
CN108134093A (zh) 一种碳纳米管纸-金属或合金复合集流体及其制备方法
CN110093640A (zh) 一种电解铜箔添加剂及电解铜表面处理工艺
CN105449180B (zh) 一种铝/铜/锡/石墨多层结构锂离子电池负极材料及其制备方法
CN104466177A (zh) 一种镍包覆氟化碳正极材料及其制备方法
CN103825011B (zh) 锂离子电池的锡和导电高分子复合负极材料膜的制备方法
Tang et al. Three-dimensional ordered macroporous Cu/Fe3O4 composite as binder-free anode for lithium-ion batteries
CN101275256A (zh) 一种外延阴极电化学共沉积技术制备金属、合金、金属氧化物和合金氧化物复合粉的方法
CN106848220A (zh) 一种石墨烯‑氧化铁‑石墨烯复合结构电池负极材料的制备方法
CN100353594C (zh) 采用电沉积-浸涂-热处理成型工艺制备掺杂物的金属氧化物电极材料
Kim et al. Li-Dendrite cage electrode with 3-D interconnected pores for Anode-Free Lithium-Metal batteries
JP2019502016A (ja) 機能性電極およびその製造方法
CN208738357U (zh) 一种锂离子电池用微孔集流体
Wu et al. Polymer@ Cu composite foils with through-hole arrays as lightweight and flexible current collectors for lithium-ion batteries
CN105552320B (zh) 一种泡沫镍基Sn/SnO/SnO2层状三维多孔负极材料及其制备方法
CN107293714A (zh) 铜硅复合电极材料的制备方法
CN109755563A (zh) 一种铅酸蓄电池负极铅膏及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20191015

Address after: 518000 Shenyu Science and Technology Park, No. 68 Lanjingbei Road, Laokeng Community, Longtian Street, Pingshan District, Shenzhen City, Guangdong Province, 101

Patentee after: Shenzhen Anding New Energy Technology Development Co.,Ltd.

Address before: 518000 Guangdong Province, Shenzhen City Pingshan Pingshan community Zhu Keng Industrial Zone 9 1-3

Patentee before: Shenzhen Optimum Battery Co.,Ltd.

TR01 Transfer of patent right
CP03 Change of name, title or address

Address after: 518000 3C, building 5, qiaochengfang, 4080 Qiaoxiang Road, Gaofa community, Shahe street, Nanshan District, Shenzhen, Guangdong

Patentee after: Baolixin (Shenzhen) new energy technology development Co.,Ltd.

Address before: 518000 workshop 101, No. 3, Shenyu science and Technology Park, No. 68, Lanjing North Road, Laokeng community, Longtian street, Pingshan District, Shenzhen City, Guangdong Province

Patentee before: Shenzhen Anding New Energy Technology Development Co.,Ltd.

CP03 Change of name, title or address
TR01 Transfer of patent right

Effective date of registration: 20220128

Address after: 010000 plant 1, Chunguang Road, Jinshan Development Zone, tumed Left Banner, Hohhot City, Inner Mongolia Autonomous Region

Patentee after: Baolixin (Inner Mongolia) Battery Co.,Ltd.

Address before: 518000 3C, building 5, qiaochengfang, 4080 Qiaoxiang Road, Gaofa community, Shahe street, Nanshan District, Shenzhen, Guangdong

Patentee before: Baolixin (Shenzhen) new energy technology development Co.,Ltd.

TR01 Transfer of patent right