CN106816905A - 电动汽车以及电池管理系统及其故障检测方法 - Google Patents

电动汽车以及电池管理系统及其故障检测方法 Download PDF

Info

Publication number
CN106816905A
CN106816905A CN201510856910.4A CN201510856910A CN106816905A CN 106816905 A CN106816905 A CN 106816905A CN 201510856910 A CN201510856910 A CN 201510856910A CN 106816905 A CN106816905 A CN 106816905A
Authority
CN
China
Prior art keywords
battery cell
unit
balanced
voltage
sampled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510856910.4A
Other languages
English (en)
Other versions
CN106816905B (zh
Inventor
倪琰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN201510856910.4A priority Critical patent/CN106816905B/zh
Publication of CN106816905A publication Critical patent/CN106816905A/zh
Application granted granted Critical
Publication of CN106816905B publication Critical patent/CN106816905B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种电动汽车以及电池管理系统及其故障检测方法,方法包括以下步骤:控制每个电池单体对应的均衡单元均关闭,并获取第i个电池单体对应的采样单元所采样的第一电压,以及获取第i+1个电池单体对应的采样单元所采样的第二电压;控制第i个电池单体对应的均衡单元开启,并获取第i个电池单体对应的采样单元所采样的第三电压,以及获取第i+1个电池单体对应的采样单元所采样的第四电压;根据第一电压、第二电压、第三电压、第四电压以及第i个电池单体对应的均衡回路的电流计算第i个电池单体与该电池单体对应的均衡单元之间的连接电阻;在连接电阻的变化率大于预设阈值时生成预警信息,从而在线束连接可靠性变差初期提前发出告警信息。

Description

电动汽车以及电池管理系统及其故障检测方法
技术领域
本发明涉及发明技术领域特别涉及一种电池管理系统的故障检测方法、一种电池管理系统以及一种电动汽车。
背景技术
电动汽车的电池管理系统通过采样线束与电池连接以获取电池的相关信息,连接线束的可靠性直接关系到电池监控、管理策略以及电池安全,当线束连接发生故障时可能导致电池的过充,过放。
相关技术通过检测线束是否断线进行可靠性的判断,并在发现断线故障后限制整车使用电池的电量区间和功率。但是,由于只有当线束断开时才能发现故障,所以检测到断线故障后,将会导致相关电池信息丢失,并且通过限制整车性能以避免发生电池安全问题,大大降低了用户体验。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种电池管理系统的故障检测方法,该方法能够在故障发生前期提前进行告警,并在故障发生后避免整车性能突变。
本发明的另一个目的在于提出一种电池管理系统。本发明的又一个目的在于提出一种电动汽车。
为达到上述目的,本发明一方面实施例提出了一种电池管理系统的故障检测方法,所述电池管理系统包括N个电池单体、N个均衡单元和N个采样单元,所述N个电池单体依次串联连接,所述N个均衡单元中的每个均衡单元通过线束与相应的电池单体并联以构成均衡回路,相邻的两个均衡回路之间具有共用的所述线束,所述N个采样单元中的每个采样单元对应地采样每个电池单体的电压信息,其中,N为大于1的整数,所述方法包括以下步骤:在每个检测周期,控制所述每个电池单体对应的均衡单元均处于关闭状态,并获取所述N个电池单体中的第i个电池单体对应的采样单元所采样的第一电压,以及获取第i+1个电池单体对应的采样单元所采样的第二电压,其中,i=1、2、3、……、N-1;控制所述第i个电池单体对应的均衡单元处于开启状态,并获取所述第i个电池单体对应的采样单元所采样的第三电压,以及获取所述第i+1个电池单体对应的采样单元所采样的第四电压;根据所述第一电压、所述第二电压、所述第三电压、所述第四电压以及所述第i个电池单体对应的均衡回路的电流计算所述第i个电池单体与该电池单体对应的均衡单元之间的连接电阻;获取任意两个检测周期的所述第i个电池单体与该电池单体对应的均衡单元之间的连接电阻的变化率,并在所述第i个电池单体与该电池单体对应的均衡单元之间的连接电阻的变化率大于预设阈值时生成预警信息。
根据本发明实施例提出的电池管理系统的故障检测方法,通过检测电池单体与该电池单体对应的均衡单元之间的连接电阻来判断线束连接可靠性,并在连接电阻的变化率大于预设阈值时生成预警信息,从而可在线束连接可靠性变差的初期发现问题,提前发出告警信息。
为达到上述目的,本发明另一方面实施例提出了一种电池管理系统,包括:N个电池单体,所述N个电池单体依次串联连接;N个均衡单元,所述N个均衡单元中的每个均衡单元通过线束与相应的电池单体并联以构成均衡回路,其中,相邻的两个均衡回路之间具有共用的所述线束;N个采样单元,所述N个采样单元中的每个采样单元对应地采样每个电池单体的电压信息,其中,N为大于1的整数;控制单元,所述控制单元用于在每个检测周期,控制所述每个电池单体对应的均衡单元均处于关闭状态,并获取所述N个电池单体中的第i个电池单体对应的采样单元所采样的第一电压,以及获取第i+1个电池单体对应的采样单元所采样的第二电压,并控制所述第i个电池单体对应的均衡单元处于开启状态,并获取所述第i个电池单体对应的采样单元所采样的第三电压,以及获取所述第i+1个电池单体对应的采样单元所采样的第四电压,以及根据所述第一电压、所述第二电压、所述第三电压、所述第四电压以及所述第i个电池单体对应的均衡回路的电流计算所述第i个电池单体与该电池单体对应的均衡单元之间的连接电阻,进一步获取任意两个检测周期的所述第i个电池单体与该电池单体对应的均衡单元之间的连接电阻的变化率,并在所述第i个电池单体与该电池单体对应的均衡单元之间的连接电阻的变化率大于预设阈值时生成预警信息,其中,i=1、2、3、……、N-1。
根据本发明实施例提出的电池管理系统,控制单元通过检测电池单体与该电池单体对应的均衡单元之间的连接电阻来判断线束连接可靠性,并在连接电阻的变化率大于预设阈值时生成预警信息,从而可在线束连接可靠性变差的初期发现问题,提前发出告警信息。
为达到上述目的,本发明的又一方面实施例提出了一种电动汽车,包括所述的电池管理系统。
根据本发明实施例提出的电动汽车,通过上述电池管理系统,可在线束连接可靠性变差的初期发现问题,提前发出告警信息。
附图说明
图1是根据本发明实施例的电池管理系统的故障检测的流程图;
图2是根据本发明一个实施例的电池管理系统的故障检测的流程图;
图3是根据本发明实施例的电池管理系统的方框示意图;
图4是根据本发明实施例的电池管理系统的方框示意图,其中包括控制单元;
图5是根据本发明一个具体实施例的电池管理系统的方框示意图,其中N=2;
图6-7是根据本发明一个具体实施例的电池管理系统的原理示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面结合附图来描述本发明实施例的电池管理系统的故障检测方法、电池管理系统以及电动汽车。
根据图3的示例,电池管理系统100包括N个电池单体10、N个均衡单元20和N个采样单元30,N个电池单体10依次串联连接;N个均衡单元20中的每个均衡单元20通过线束L与相应的电池单体10并联以构成均衡回路,相邻的两个均衡回路之间具有共用的线束L,均衡单元20用于对相应的电池单体10进行均衡处理,以使电池单体电压偏差保持在预设范围内;N个采样单元30中的每个采样单元30对应地采样每个电池单体10的电压信息,其中,N为大于1的整数。如图5-7所示,以N=2为例,N个电池单体10包括第一电池单体10-1和第二电池单体10-2,N个均衡单元20包括第一均衡单元20-1和第二均衡单元20-2,N个采样单元30包括第一采样单元30-1和第二采样单元30-2。
其中,第一电池单体10-1的正极通过第一线束L1与第一均衡单元20-1的一端相连,第一电池单体10-1的负极通过第二线束L2与第一均衡单元20-1的另一端相连,由此,第一电池单体10-1与第一均衡单元20-1构成第一均衡回路;
第二电池单体10-2的正极与第一电池单体10-1的负极相连,第二电池单体10-2的正极还通过第二线束L2与第二均衡单元20-2的一端相连,第二电池单体10-2的负极通过第三线束L3与第二均衡单元20-2的另一端相连,由此,第二电池单体10-2与第二均衡单元20-2构成第二均衡回路,且第二均衡回路与第一均衡回路共用第二线束L2;
第一采样单元30-1的一端通过第一线束L1与第一电池单体10-1的正极相连,第一采样单元30-1的的另一端通过第二线束L2分别与第一电池单体10-1的负极和第二电池单体10-2的正极相连,第二采样单元30-2的另一端通过第三线束L3与第二电池单体10-2的负极相连。
根据本发明的一个示例,每个均衡单元20可包括电阻和开关,还可包括DC-DC转换器。
本发明一方面实施例提出了一种电池管理系统的故障检测方法。
图1是根据本发明实施例的电池管理系统的故障检测的流程图。如图1所示,该方法包括以下步骤:
S1:在每个检测周期,控制每个电池单体对应的均衡单元均处于关闭状态,并获取N个电池单体中的第i个电池单体对应的采样单元所采样的第一电压,以及获取第i+1个电池单体对应的采样单元所采样的第二电压,其中,i=1、2、3、……、N-1。
S2:控制第i个电池单体对应的均衡单元处于开启状态,并获取第i个电池单体对应的采样单元所采样的第三电压,以及获取第i+1个电池单体对应的采样单元所采样的第四电压。
S3:根据第一电压、第二电压、第三电压、第四电压以及第i个电池单体对应的均衡回路的电流计算第i个电池单体与该电池单体对应的均衡单元之间的连接电阻。
其中,可通过第i个电池单体对应的均衡单元计算或采样得到第i个电池单体对应的均衡回路的电流。
应当理解的是,第i个电池单体与该电池单体对应的均衡单元之间的连接电阻可包括第i个电池单体的一端与该电池单体对应的均衡单元的一端之间的连接电阻以及第i个电池单体的另一端与该电池单体对应的均衡单元的另一端之间的连接电阻。
需要说明的是,连接电阻可能包括线束与电池极片连接点之间的电阻、线束的电阻、线束与接插件的电阻和接插件间的电阻等。
具体地,第i个电池单体与该电池单体对应的均衡单元之间的连接电阻满足公式:Ui_1=Ui_3+Ii×Ri_1+Ii×Ri_2,Ui_2=Ui_4-Ii×Ri_2,通过推导可知,可根据以下公式计算第i个电池单体与该电池单体对应的均衡单元之间的连接电阻:
其中,Ri_1为第i个电池单体的一端与该电池单体对应的均衡单元的一端之间的连接电阻,Ri_2为第i个电池单体的另一端与该电池单体对应的均衡单元的另一端之间的连接电阻,Ui_1为第i个电池单体对应的采样单元所采样的第一电压,Ui_2为第i+1个电池单体对应的采样单元所采样的第二电压,Ui_3为第i个电池单体对应的采样单元所采样的第三电压,Ui_4为第i+1个电池单体对应的采样单元所采样的第四电压,Ii为第i个电池单体对应的均衡回路的电流。
S4:获取任意两个检测周期的第i个电池单体与该电池单体对应的均衡单元之间的连接电阻的变化率,并在第i个电池单体与该电池单体对应的均衡单元之间的连接电阻的变化率大于预设阈值时生成预警信息。
进一步地,根据本发明的一个实施例,电池管理系统的故障检测方法还包括:根据预警信息判断第i个电池单体与该电池单体对应的均衡单元之间发生连接故障。
其中,预设阈值Klimit可根据不同的产品工艺合理地进行设定。
具体的,根据本发明的一个实施例,任意两个检测周期分别为第一检测周期和第二检测周期,需要说明的是,第二检测周期t1与第一检测周期t0之间的时间差可为预设时间tcycle,第一检测周期和第二检测周期可优选为相邻的两个检测周期,即言,可以预设时间tcycle为周期对连接电阻的连接故障进行测试。其中,tcycle可根据电池管理系统的处理能力和工艺水平灵活地选取。
可根据以下公式计算连接电阻的变化率:
其中,K为连接电阻的变化率,t0为第一检测周期内检测连接电阻的第一检测时刻,t1为第二检测周期内检测连接电阻的第二检测时刻,R0为第一检测时刻检测到的连接电阻的阻值,R'为第个检测时刻检测到的连接电阻的阻值。
具体而言,假设第一检测时刻为ti0,ti0时刻测量到的第i个电池单体的某一端与对应的均衡单元之间的连接电阻为Ri0,第二检测时刻为ti1,ti1时刻测量到的第i个电池单体的某一端与对应的均衡单元的之间的连接电阻为Ri',那么,第i个电池单体的某一端与该均衡单元之间的连接电阻的变化率即为当K>Klimit时,可发出预警信息,进而可判断发生了导致连接电阻异常的故障,即相应的线束发生连接故障。
由此,本发明实施例的电池管理系统的故障检测方法,通过检测电池单体与该电池单体对应的均衡单元之间的连接电阻即可判断线束连接的可靠性,并在连接电阻的变化率大于预设阈值时生成预警信息,从而可在线束连接可靠性变差的初期发现问题,提前发出告警信息。
另外,根据本发明的一个实施例,本发明实施例的电池管理系统的故障检测方法还包括:在判断发生了导致连接电阻异常的故障之后,可记录相应电池单体例如第i个电池单体的充放电电压信息和温度信息,以为之后可能发生的完全断线故障提供历史信息和预估,从而可避免正常性能发生突变,提升用户的体验
进一步地,根据本发明的一个实施例,如图2所示,电池管理系统的故障检测方法还包括:
S5:控制第N个电池单体对应的均衡单元处于开启状态,并获取第N个电池单体对应的采样单元所采样的第五电压。
S6:根据第五电压、第N-1个电池单体对应的均衡单元处于关闭状态时第N个电池单体对应的采样单元所采样的第二电压、第N-1个电池单体对应的均衡单元处于开启状态时第N个电池单体对应的采样单元所采样的第四电压、第N-1个电池单体对应的均衡回路的电流和第N个电池单体对应的均衡回路的电流计算第N个电池单体与该电池单体对应的均衡单元之间的连接电阻。
其中,如步骤S1所述,当控制第N-1个电池单体均处于关闭状态时,可获取第N个电池单体对应的采样单元所采样的第二电压,如步骤S2所述,当控制第N-1个电池单体均处于开启状态时,获取第N个电池单体对应的采样单元所采样的第四电压,并获取第N-1个电池单体对应的均衡回路的电流。
具体地,第N个电池单体与该电池单体对应的均衡单元之间的连接电阻满足公式:U(N-1)_2=UN_5+IN×RN_1+IN×RN_2,可根据以下公式计算第i个电池单体与该电池单体对应的均衡单元之间的连接电阻:
其中,RN_1为第N个电池单体的一端与该电池单体对应的均衡单元的一端之间的连接电阻,RN_2为第N个电池单体的另一端与该电池单体对应的均衡单元的另一端之间的连接电阻,U(N-1)_2为第N-1个电池单体对应的均衡单元处于关闭状态时第N个电池单体对应的采样单元所采样的第二电压,UN_5为第N个电池单体对应的均衡单元处于开启状态时第N个电池单体对应的采样单元所采样的第五电压,U(N-1)_4为N-1个电池单体对应的均衡单元处于开启状态时第N个电池单体对应的采样单元所采样的第四电压,IN-1为第N-1个电池单体对应的均衡回路的电流,IN为第N个电池单体对应的均衡回路的电流。
S7:获取任意两个检测周期的第N个电池单体与该电池单体对应的均衡单元之间的连接电阻的变化率,并在第N个电池单体与该电池单体对应的均衡单元之间的连接电阻的变化率大于预设阈值时生成预警信息。
进一步地,在本发明的一个实施例中,电池管理系统的故障检测方法还包括:根据预警信息判断第N个电池单体与该电池单体对应的均衡单元之间发生连接故障。
具体而言,假设第一检测时刻为tN0,tN0时刻测量到的第N个电池单体的某一端与对应的均衡单元之间的连接电阻为RN0,第二检测时刻为tN1,tN1时刻测量到的第N个电池单体的某一端与对应的均衡单元的之间的连接电阻为R'N,那么,第N个电池单体的某一端与该均衡单元之间的连接电阻的变化率即为当K>Klimit时,可发出预警信息,进而根据预警信息可判断发生了导致连接电阻异常的故障,即相应的线束发生连接故障。
由此,本发明实施例的电池管理系统的故障检测方法,通过检测电池单体与该电池单体对应的均衡单元之间的连接电阻即可判断线束连接的可靠性,并在连接电阻的变化率大于预设阈值时生成预警信息,从而可在线束连接可靠性变差的初期发现问题,提前发出告警信息。
另外,根据本发明的一个实施例,电池管理系统的故障检测方法还包括:在判断发生了导致连接电阻异常的故障之后,可记录相应电池单体例如第N个电池单体的充放电电压信息和温度信息,以为之后可能发生的完全断线故障提供历史信息和预估,从而可避免正常性能发生突变,提升用户的体验。
下面结合图5-7,以N=2为例来详细描述本发明实施例的故障检测方法。
当检测第一电池单体与第一均衡单元之间的连接可靠性时,该故障检测方法可包括以下步骤:
控制第一均衡单元和第二均衡单元均处于关闭状态,并获取第一电池单体对应的第一采样单元所采样的第一电压U1_1,以及获取第二电池单体对应的第二采样单元所采样的第二电压U1_2;控制第一均衡单元处于开启状态且第二均衡单元处于关闭状态,并获取第一电池单体对应的第一采样单元所采样的第三电压U1_3,以及获取第二电池单体对应的第二采样单元所采样的第四电压U1_4,此时流过第一电池单体和第一均衡单元之间的均衡回路的电流记为I1;根据第一电压U1_1、第二电压U1_2、第三电压U1_3、第四电压U1_4以及第一电池单体对应的均衡回路的电流I1计算第一电池单体的一端与第一均衡单元的一端之间的第一连接电阻以及第一电池单体的另一端与第一均衡单元的另一端之间的第二连接电阻。
具体地,由于存在以下关系式:U1_1=U1_3+I1×R1_1+I1×R1_2以及U1_2=U1_4-I1×R1_2,经过推导,可根据以下公式获取第一连接电阻和第二连接电阻:
其中,R1_1为第一连接电阻,R1_2为第二连接电阻,U1_1为第一电池单体对应的第一采样单元所采样的第一电压,U1_2为第二电池单体对应的第二采样单元所采样的第二电压,U1_3为第一电池单体对应的第一采样单元所采样的第三电压,U1_4为获取第二电池单体对应的第二采样单元所采样的第四电压,I1为第一电池单体对应的均衡回路的电流。
当检测第二电池单体与第二均衡单元之间的连接可靠性时,该故障检测方法可包括以下步骤:
控制第二均衡单元处于开启状态且第一均衡单元处于关闭状态,并获取第二电池单体对应的第二采样单元所采样的第五电压U2_5,此时流过第二电池单体和第二均衡单元之间的均衡回路的电流记为I2;根据第二电压U1_2、第四电压U1_4、第五电压U2_5、第一电池单体对应的均衡回路的电流I1以及第二电池单体对应的均衡回路的电流I2计算第二电池单体的另一端与第二均衡单元的另一端之间的第三连接电阻。其中,第二电池单体的一端与第二均衡单元的一端之间的第四连接电阻即为第一电池单体的另一端与第一均衡单元的另一端之间的第二连接电阻,即R1_2=R2_1,其中,R2_1为第四连接电阻。
具体地,由于存在以下关系式:U1_2=U1_4-I1×R1_2以及U1_2=U2_5+I2×R1_2+I2×R2_2,经过推导,可根据以下公式获取第三连接电阻:
其中,R1_2为第二连接电阻,R2_2为第三连接电阻,U1_2为第二电池单体对应的第二采样单元所采样的第二电压,U1_4为获取第二电池单体对应的第二采样单元所采样的第四电压,I1为第一电池单体对应的均衡回路的电流,U2_5为第二电池单体对应的第二采样单元所采样的第五电压,I2为第二电池单体对应的均衡回路的电流。
同理,当N>2时,也可监测其他电池单体与对应的均衡单元之间的连接电阻以判断连接可靠性。
在获取连接电阻之后,计算连接电阻的变化率K,并且当K>Klimit时,可发出预警信息,进而可根据预警信息判断发生了导致连接电阻异常的故障。另外,可记录相应电池单体的充放电电压信息和温度信息,以为之后可能发生的完全断线故障提供历史信息和预估。
综上所述,根据本发明实施例提出的电池管理系统的故障检测方法,通过检测电池单体与该电池单体对应的均衡单元之间的连接电阻来判断线束连接可靠性,并在连接电阻的变化率大于预设阈值时生成预警信息,从而可在线束连接可靠性变差的初期发现问题,提前发出告警信息。
本发明另一方面实施例提出了一种电池管理系统,该电池管理系统可判断电池单体与该电池单体对应的均衡单元之间是否发生连接故障,即检测电池单体与均衡单元之间的线束的连接可靠性。
根据图3-4所示,电池管理系统100包括N个电池单体10、N个均衡单元20、N个采样单元30和控制单元40。
其中,N个电池单体10依次串联连接;N个均衡单元20中的每个均衡单元20通过线束L与相应的电池单体10并联以构成均衡回路,相邻的两个均衡回路之间具有共用的线束;N个采样单元30中的每个采样单元30对应地采样每个电池单体10的电压信息,其中,N为大于1的整数。
控制单元40用于在每个检测周期,控制每个电池单体10对应的均衡单元20均处于关闭状态,并获取N个电池单体10中的第i个电池单体10对应的采样单元所采样的第一电压,以及获取第i+1个电池单体10对应的采样单元所采样的第二电压,并控制第i个电池单体10对应的均衡单元处于开启状态,并获取第i个电池单体10对应的采样单元所采样的第三电压,以及获取第i+1个电池单体10对应的采样单元所采样的第四电压,以及根据第一电压、第二电压、第三电压、第四电压以及第i个电池单体10对应的均衡回路的电流计算第i个电池单体10与该电池单体10对应的均衡单元之间的连接电阻,进一步获取任意两个检测周期的第i个电池单体10与该电池单体10对应的均衡单元20之间的连接电阻的变化率,并在第i个电池单体10与该电池单体10对应的均衡单元20之间的连接电阻的变化率大于预设阈值时生成预警信息,其中,i=1、2、3、……、N-1。
其中,控制单元40可通过第i个电池单体10对应的均衡单元20计算或采样得到第i个电池单体10对应的均衡回路的电流。
应当理解的是,第i个电池单体10与该电池单体10对应的均衡单元20之间的连接电阻可包括第i个电池单体10的一端与该电池单体10对应的均衡单元20的一端之间的连接电阻以及第i个电池单体10的另一端与该电池单体10对应的均衡单元20的另一端之间的连接电阻。
需要说明的是,连接电阻可能包括线束与电池极片连接点之间的电阻、线束的电阻、线束与接插件的电阻和接插件间的电阻等。
具体地,控制单元40可根据以下公式计算第i个电池单体10与该电池单体10对应的均衡单元20之间的连接电阻:
其中,Ri_1为第i个电池单体10的一端与该电池单体10对应的均衡单元20的一端之间的连接电阻,Ri_2为第i个电池单体10的另一端与该电池单体10对应的均衡单元20的另一端之间的连接电阻,Ui_1为第i个电池单体对应的采样单元所采样的第一电压,Ui_2为第i+1个电池单体对应的采样单元所采样的第二电压,Ui_3为第i个电池单体对应的采样单元所采样的第三电压,Ui_4为第i+1个电池单体对应的采样单元所采样的第四电压,Ii为第i个电池单体10对应的均衡回路的电流。
进一步地,根据本发明的一个实施例,控制单元40可进一步根据预警信息判断第i个电池单体与该电池单体对应的均衡单元之间发生连接故障。
其中,预设阈值Klimit可根据不同的产品工艺合理地进行设定。
具体的,根据本发明的一个实施例,任意两个检测周期分别为第一检测周期和第二检测周期,需要说明的是,第二检测周期t1与第一检测周期t0之间的时间差可为预设时间tcycle,第一检测周期和第二检测周期可优选为相邻的两个检测周期,即言,控制单元40可以预设时间tcycle为周期对连接电阻的连接故障进行测试。其中,tcycle可根据电池管理系统的处理能力和工艺水平灵活地选取。
控制单元40可根据以下公式计算连接电阻的变化率:
其中,K为连接电阻的变化率,t0为第一检测周期内检测连接电阻的第一检测时刻,t1为第二检测周期内检测连接电阻的第二检测时刻,R0为第一检测时刻检测到的连接电阻的阻值,R'为第个检测时刻检测到的连接电阻的阻值。
具体而言,假设第一检测时刻为ti0,ti0时刻测量到的第i个电池单体的某一端与对应的均衡单元之间的连接电阻为Ri0,第二检测时刻为ti1,ti1时刻测量到的第i个电池单体的某一端与对应的均衡单元的之间的连接电阻为Ri',那么,第i个电池单体的某一端与该均衡单元之间的连接电阻的变化率即为当K>Klimit时,控制单元40可判断发生了导致连接电阻异常的故障,即相应的线束发生连接故障,此时可发出预警信息。
由此,本发明实施例的电池管理系统,通过检测电池单体与该电池单体对应的均衡单元之间的连接电阻即可判断线束连接的可靠性,并在连接电阻的变化率大于预设阈值时生成预警信息,从而可在线束连接可靠性变差的初期发现问题,提前发出告警信息。
另外,控制单元40还用于在判断发生了导致连接电阻异常的故障之后,控制电池管理系统记录相应电池单体例如第i个电池单体的充放电电压信息和温度信息,以为之后可能发生的完全断线故障提供历史信息和预估,从而可避免正常性能发生突变,提升用户的体验
根据本发明的一个实施例,控制单元40还用于控制第N个电池单体10对应的均衡单元20处于开启状态,并获取第N个电池单体10对应的采样单元30所采样的第五电压,并根据第五电压、第N-1个电池单体10对应的均衡单元20处于关闭状态时第N个电池单体10对应的采样单元30所采样的第二电压、第N-1个电池单体10对应的均衡单元20处于开启状态时第N个电池单体10对应的采样单元30所采样的第四电压、第N-1个电池单体10对应的均衡回路的电流和第N个电池单体10对应的均衡回路的电流计算第N个电池单体10与该电池单体10对应的均衡单元20之间的连接电阻,以及获取任意两个检测周期的第N个电池单体10与该电池单体10对应的均衡单元20之间的连接电阻的变化率,并在第N个电池单体10与该电池单体10对应的均衡单元20之间的连接电阻的变化率大于预设阈值时生成预警信息。
具体地,控制单元40可根据以下公式计算第i个电池单体10与该电池单体10对应的均衡单元20之间的连接电阻:
其中,RN_1为第N个电池单体10的一端与该电池单体10对应的均衡单元20的一端之间的连接电阻,RN_2为第N个电池单体10的另一端与该电池单体10对应的均衡单元20的另一端之间的连接电阻,U(N-1)_2为第N-1个电池单体10对应的均衡单元20处于关闭状态时第N个电池单体对应的采样单元所采样的第二电压,UN_5为第N个电池单体10对应的均衡单元20处于开启状态时第N个电池单体对应的采样单元所采样的第五电压,U(N-1)_4为第N-1个电池单体10对应的均衡单元20处于开启状态时第N个电池单体对应的采样单元所采样的第四电压,IN-1为第N-1个电池单体10对应的均衡回路的电流,IN为第N个电池单体10对应的均衡回路的电流。
进一步地,在本发明的一个实施例中,控制单元40还用于根据预警信息判断第N个电池单体10与该电池单体对应的均衡单元20之间发生连接故障。
具体而言,假设第一检测时刻为tN0,tN0时刻测量到的第N个电池单体的某一端与对应的均衡单元之间的连接电阻为RN0,第二检测时刻为tN1,tN1时刻测量到的第N个电池单体的某一端与对应的均衡单元的之间的连接电阻为R'N,那么,第N个电池单体的某一端与该均衡单元之间的连接电阻的变化率即为当K>Klimit时,控制单元40可发出预警信息,进而判断发生了导致连接电阻异常的故障,即相应的线束发生连接故障。
由此,本发明实施例的电池管理系统,通过检测电池单体与该电池单体对应的均衡单元之间的连接电阻即可判断线束连接的可靠性,并在连接电阻的变化率大于预设阈值时生成预警信息,从而可在线束连接可靠性变差的初期发现问题,提前发出告警信息。
另外,根据本发明的一个实施例,控制单元40还用于在判断发生了导致连接电阻异常的故障之后,可控制电池管理系统记录相应电池单体例如第N个电池单体的充放电电压信息和温度信息,以为之后可能发生的完全断线故障提供历史信息和预估,从而可避免正常性能发生突变,提升用户的体验。
下面结合图5-7,以N=2为例来详细描述本发明实施例的电池管理系统。
控制单元40可按照以下方式检测第一电池单体10-1与第一均衡单元20-1之间的连接可靠性:
控制单元40控制第一均衡单元20-1和第二均衡单元20-2均处于关闭状态,并获取第一电池单体10-1对应的第一采样单元30-1所采样的第一电压U1_1,以及获取第二电池单体10-2对应的第二采样单元30-2所采样的第二电压U1_2;控制单元40控制第一均衡单元20-1处于开启状态且第二均衡单元20-2处于关闭状态,并获取第一电池单体10-1对应的第一采样单元30-1所采样的第三电压U1_3,以及获取第二电池单体10-2对应的第二采样单元30-2所采样的第四电压U1_4,此时流过第一电池单体10-1和第一均衡单元20-1之间的均衡回路的电流记为I1;控制单元40根据第一电压U1_1、第二电压U1_2、第三电压U1_3、第四电压U1_4以及第一电池单体10-1对应的均衡回路的电流I1计算第一电池单体10-1的一端与第一均衡单元20-1的一端之间的第一连接电阻以及第一电池单体10-1的另一端与第一均衡单元20-1的另一端之间的第二连接电阻。
具体地,由于存在以下关系式:U1_1=U1_3+I1×R1_1+I1×R1_2以及U1_2=U1_4-I1×R1_2,经过推导,控制单元40可根据以下公式获取第一连接电阻和第二连接电阻:
其中,R1_1为第一连接电阻,R1_2为第二连接电阻,U1_1为第一电池单体10-1对应的第一采样单元30-1所采样的第一电压,U1_2为第二电池单体10-2对应的第二采样单元30-2所采样的第二电压,U1_3为第一电池单体10-1对应的第一采样单元30-1所采样的第三电压,U1_4为获取第二电池单体10-2对应的第二采样单元30-2所采样的第四电压,I1为第一电池单体10-1对应的均衡回路的电流。
控制单元40根据以下方式检测第二电池单体10-2与第二均衡单元20-2之间的连接可靠性:
控制单元40控制第二均衡单元20-2处于开启状态且第一均衡单元20-1处于关闭状态,并获取第二电池单体10-2对应的第二采样单元30-2所采样的第五电压U2_5,此时流过第二电池单体10-2和第二均衡单元20-2之间的均衡回路的电流记为I2;控制单元40根据第二电压U1_2、第四电压U1_4、第五电压U2_5、第一电池单体10-1对应的均衡回路的电流I1以及第二电池单体10-2对应的均衡回路的电流I2计算第二电池单体10-2的另一端与第二均衡单元20-2的另一端之间的第三连接电阻。其中,第二电池单体10-2的一端与第二均衡单元20-2的一端之间的第四连接电阻即为第一电池单体10-1的另一端与第一均衡单元20-1的另一端之间的第二连接电阻,即R1_2=R2_1,其中,R2_1为第四连接电阻。
具体地,由于存在以下关系式:U1_2=U1_4-I1×R1_2以及U1_2=U2_5+I2×R1_2+I2×R2_2,经过推导,控制单元40可根据以下公式获取第三连接电阻:
其中,R1_2为第二连接电阻,R2_2为第三连接电阻,U1_2为第二电池单体10-2对应的第二采样单元30-2所采样的第二电压,U1_4为获取第二电池单体10-2对应的第二采样单元30-2所采样的第四电压,I1为第一电池单体10-1对应的均衡回路的电流,U2_5为第二电池单体10-2对应的第二采样单元30-2所采样的第五电压,I2为第二电池单体10-2对应的均衡回路的电流。
同理,当N>2时,控制单元40也可监测其他电池单体与对应的均衡单元之间的连接电阻以判断连接可靠性。
在获取连接电阻之后,控制单元40计算连接电阻的变化率K,并且当K>Klimit时,控制单元40可发出预警信息,进而判断发生了导致连接电阻异常的故障。另外,控制单元40可控制电池管理系统记录相应电池单体的充放电电压信息和温度信息,以为之后可能发生的完全断线故障提供历史信息和预估。
综上所述,根据本发明实施例提出的电池管理系统,控制单元通过检测电池单体与该电池单体对应的均衡单元之间的连接电阻来判断线束连接可靠性,并在连接电阻的变化率大于预设阈值时生成预警信息,从而可在线束连接可靠性变差的初期发现问题,提前发出告警信息。
本发明的又一方面实施例提出了一种电动汽车,该电动汽车包括上述实施例的电池管理系统。
根据本发明实施例提出的电动汽车,通过上述电池管理系统,可在线束连接可靠性变差的初期发现问题,提前发出告警信息。
在本发明的描述中,需要理解的是,
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

1.一种电池管理系统的故障检测方法,其特征在于,所述电池管理系统包括N个电池单体、N个均衡单元和N个采样单元,所述N个电池单体依次串联连接,所述N个均衡单元中的每个均衡单元通过线束与相应的电池单体并联以构成均衡回路,相邻的两个均衡回路之间具有共用的所述线束,所述N个采样单元中的每个采样单元对应地采样每个电池单体的电压信息,其中,N为大于1的整数,所述方法包括以下步骤:
在每个检测周期,控制所述每个电池单体对应的均衡单元均处于关闭状态,并获取所述N个电池单体中的第i个电池单体对应的采样单元所采样的第一电压,以及获取第i+1个电池单体对应的采样单元所采样的第二电压,其中,i=1、2、3、……、N-1;
控制所述第i个电池单体对应的均衡单元处于开启状态,并获取所述第i个电池单体对应的采样单元所采样的第三电压,以及获取所述第i+1个电池单体对应的采样单元所采样的第四电压;
根据所述第一电压、所述第二电压、所述第三电压、所述第四电压以及所述第i个电池单体对应的均衡回路的电流计算所述第i个电池单体与该电池单体对应的均衡单元之间的连接电阻;
获取任意两个检测周期的所述第i个电池单体与该电池单体对应的均衡单元之间的连接电阻的变化率,并在所述第i个电池单体与该电池单体对应的均衡单元之间的连接电阻的变化率大于预设阈值时生成预警信息。
2.根据权利要求1所述的电池管理系统的故障检测方法,其特征在于,还包括:
控制第N个电池单体对应的均衡单元处于开启状态,并获取所述第N个电池单体对应的采样单元所采样的第五电压;
根据所述第五电压、第N-1个电池单体对应的均衡单元处于关闭状态时所述第N个电池单体对应的采样单元所采样的第二电压、所述第N-1个电池单体对应的均衡单元处于开启状态时所述第N个电池单体对应的采样单元所采样的第四电压、所述第N-1个电池单体对应的均衡回路的电流和所述第N个电池单体对应的均衡回路的电流计算所述第N个电池单体与该电池单体对应的均衡单元之间的连接电阻;
获取任意两个检测周期的所述第N个电池单体与该电池单体对应的均衡单元之间的连接电阻的变化率,并在所述第N个电池单体与该电池单体对应的均衡单元之间的连接电阻的变化率大于所述预设阈值时生成预警信息。
3.根据权利要求1所述的电池管理系统的故障检测方法,其特征在于,根据以下公式计算所述第i个电池单体与该电池单体对应的均衡单元之间的连接电阻:
R i _ 1 = U i _ 1 - U i _ 3 - U i _ 4 + U i _ 2 I i , R i _ 2 = U i _ 4 - U i _ 2 I i
其中,所述Ri_1为所述第i个电池单体的一端与该电池单体对应的均衡单元的一端之间的连接电阻,所述Ri_2为所述第i个电池单体的另一端与该电池单体对应的均衡单元的另一端之间的连接电阻,所述Ui_1为所述第i个电池单体对应的采样单元所采样的第一电压,所述Ui_2为所述第i+1个电池单体对应的采样单元所采样的第二电压,所述Ui_3为所述第i个电池单体对应的采样单元所采样的第三电压,所述Ui_4为所述第i+1个电池单体对应的采样单元所采样的第四电压,所述Ii为所述第i个电池单体对应的均衡回路的电流。
4.根据权利要求2所述的电池管理系统的故障检测方法,其特征在于,根据以下公式计算所述第N个电池单体与该电池单体对应的均衡单元之间的连接电阻:
R N _ 1 = U ( N - 1 ) _ 4 - U ( N - 1 ) _ 2 I N - 1 , R N _ 2 = U ( N - 1 ) _ 2 - U N _ 5 - I N × U ( N - 1 ) _ 4 - U ( N - 1 ) _ 2 I N - 1 I N
其中,RN_1为所述第N个电池单体的一端与该电池单体对应的均衡单元的一端之间的连接电阻,RN_2为所述第N个电池单体的另一端与该电池单体对应的均衡单元的另一端之间的连接电阻,U(N-1)_2为所述第N-1个电池单体对应的均衡单元处于关闭状态时所述第N个电池单体对应的采样单元所采样的第二电压,UN_5为所述第N个电池单体对应的均衡单元处于开启状态时所述第N个电池单体对应的采样单元所采样的第五电压,U(N-1)_4为所述第N-1个电池单体对应的均衡单元处于开启状态时所述第N个电池单体对应的采样单元所采样的第四电压,IN-1为所述第N-1个电池单体对应的均衡回路的电流,IN为所述第N个电池单体对应的均衡回路的电流。
5.根据权利要求1或2所述的电池管理系统的故障检测方法,其特征在于,所述任意两个检测周期分别为第一检测周期和第二检测周期,其中,根据以下公式计算所述连接电阻的变化率:
K = R ′ - R 0 t 1 - t 0
其中,K为所述连接电阻的变化率,t0为所述第一检测周期内检测所述连接电阻的第一检测时刻,t1为所述第二检测周期内检测所述连接电阻的第二检测时刻,R0为所述第一检测时刻检测到的所述连接电阻的阻值,R'为所述第个检测时刻检测到的所述连接电阻的阻值。
6.一种电池管理系统,其特征在于,包括:
N个电池单体,所述N个电池单体依次串联连接;
N个均衡单元,所述N个均衡单元中的每个均衡单元通过线束与相应的电池单体并联以构成均衡回路,其中,相邻的两个均衡回路之间具有共用的所述线束;
N个采样单元,所述N个采样单元中的每个采样单元对应地采样每个电池单体的电压信息,其中,N为大于1的整数;
控制单元,所述控制单元用于在每个检测周期,控制所述每个电池单体对应的均衡单元均处于关闭状态,并获取所述N个电池单体中的第i个电池单体对应的采样单元所采样的第一电压,以及获取第i+1个电池单体对应的采样单元所采样的第二电压,并控制所述第i个电池单体对应的均衡单元处于开启状态,并获取所述第i个电池单体对应的采样单元所采样的第三电压,以及获取所述第i+1个电池单体对应的采样单元所采样的第四电压,以及根据所述第一电压、所述第二电压、所述第三电压、所述第四电压以及所述第i个电池单体对应的均衡回路的电流计算所述第i个电池单体与该电池单体对应的均衡单元之间的连接电阻,进一步获取任意两个检测周期的所述第i个电池单体与该电池单体对应的均衡单元之间的连接电阻的变化率,并在所述第i个电池单体与该电池单体对应的均衡单元之间的连接电阻的变化率大于预设阈值时生成预警信息,其中,i=1、2、3、……、N-1。
7.根据权利要求6所述的电池管理系统,其特征在于,所述控制单元还用于,控制第N个电池单体对应的均衡单元处于开启状态,并获取所述第N个电池单体对应的采样单元所采样的第五电压,并根据所述第五电压、第N-1个电池单体对应的均衡单元处于关闭状态时所述第N个电池单体对应的采样单元所采样的第二电压、所述第N-1个电池单体对应的均衡单元处于开启状态时所述第N个电池单体对应的采样单元所采样的第四电压、所述第N-1个电池单体对应的均衡回路的电流和所述第N个电池单体对应的均衡回路的电流计算所述第N个电池单体与该电池单体对应的均衡单元之间的连接电阻,以及获取任意两个检测周期的所述第N个电池单体与该电池单体对应的均衡单元之间的连接电阻的变化率,并在所述第N个电池单体与该电池单体对应的均衡单元之间的连接电阻的变化率大于所述预设阈值时生成预警信息。
8.根据权利要求6所述的电池管理系统,其特征在于,所述控制单元根据以下公式计算所述第i个电池单体与该电池单体对应的均衡单元之间的连接电阻:
R i _ 1 = U i _ 1 - U i _ 3 - U i _ 4 + U i _ 2 I i , R i _ 2 = U i _ 4 - U i _ 2 I i
其中,所述Ri_1为所述第i个电池单体的一端与该电池单体对应的均衡单元的一端之间的连接电阻,所述Ri_2为所述第i个电池单体的另一端与该电池单体对应的均衡单元的另一端之间的连接电阻,所述Ui_1为所述第i个电池单体对应的采样单元所采样的第一电压,所述Ui_2为所述第i+1个电池单体对应的采样单元所采样的第二电压,所述Ui_3为所述第i个电池单体对应的采样单元所采样的第三电压,所述Ui_4为所述第i+1个电池单体对应的采样单元所采样的第四电压,所述Ii为所述第i个电池单体对应的均衡回路的电流。
9.根据权利要求7所述的电池管理系统,其特征在于,所述控制单元根据以下公式计算所述第N个电池单体与该电池单体对应的均衡单元之间的连接电阻:
R N _ 1 = U ( N - 1 ) _ 4 - U ( N - 1 ) _ 2 I N - 1 , R N _ 2 = U ( N - 1 ) _ 2 - U N _ 5 - I N × U ( N - 1 ) _ 4 - U ( N - 1 ) _ 2 I N - 1 I N
其中,RN_1为所述第N个电池单体的一端与该电池单体对应的均衡单元的一端之间的连接电阻,RN_2为所述第N个电池单体的另一端与该电池单体对应的均衡单元的另一端之间的连接电阻,U(N-1)_2为所述第N-1个电池单体对应的均衡单元处于关闭状态时所述第N个电池单体对应的采样单元所采样的第二电压,UN_5为所述第N个电池单体对应的均衡单元处于开启状态时所述第N个电池单体对应的采样单元所采样的第五电压,U(N-1)_4为所述第N-1个电池单体对应的均衡单元处于开启状态时所述第N个电池单体对应的采样单元所采样的第四电压,IN-1为所述第N-1个电池单体对应的均衡回路的电流,IN为所述第N个电池单体对应的均衡回路的电流。
10.根据权利要求6或7所述的电池管理系统,其特征在于,所述任意两个检测周期分别为第一检测周期和第二检测周期,其中,所述控制单元根据以下公式计算所述连接电阻的变化率:
K = R ′ - R 0 t 1 - t 0
其中,K为所述连接电阻的变化率,t0为所述第一检测周期内检测所述连接电阻的第一检测时刻,t1为所述第二检测周期内检测所述连接电阻的第二检测时刻,R0为所述第一检测时刻检测到的所述连接电阻的阻值,R'为所述第个检测时刻检测到的所述连接电阻的阻值。
11.一种电动汽车,其特征在于,包括根据权利要求6-10任一项所述的电池管理系统。
CN201510856910.4A 2015-11-30 2015-11-30 电动汽车以及电池管理系统及其故障检测方法 Active CN106816905B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510856910.4A CN106816905B (zh) 2015-11-30 2015-11-30 电动汽车以及电池管理系统及其故障检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510856910.4A CN106816905B (zh) 2015-11-30 2015-11-30 电动汽车以及电池管理系统及其故障检测方法

Publications (2)

Publication Number Publication Date
CN106816905A true CN106816905A (zh) 2017-06-09
CN106816905B CN106816905B (zh) 2019-09-13

Family

ID=59155446

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510856910.4A Active CN106816905B (zh) 2015-11-30 2015-11-30 电动汽车以及电池管理系统及其故障检测方法

Country Status (1)

Country Link
CN (1) CN106816905B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769303A (zh) * 2017-10-20 2018-03-06 常州普莱德新能源电池科技有限公司 一种电动汽车的电池管理方法
CN110736912A (zh) * 2018-07-20 2020-01-31 宁德时代新能源科技股份有限公司 电路故障的检测方法和采样检测电路
CN110806508A (zh) * 2019-12-16 2020-02-18 安徽优旦科技有限公司 一种基于数据的高压回路接触电阻变化的评估方法
WO2020226308A1 (ko) * 2019-05-03 2020-11-12 주식회사 엘지화학 배터리셀 진단 장치 및 방법
CN112172601A (zh) * 2020-10-06 2021-01-05 青岛灵珑智能装备科技有限责任公司 一种电动汽车电池安全预警方法
CN113632289A (zh) * 2020-07-22 2021-11-09 东莞新能安科技有限公司 电池系统及其采样方法、电子装置及可读存储介质
CN115825794A (zh) * 2022-01-07 2023-03-21 宁德时代新能源科技股份有限公司 电芯采样电路、电路故障预警方法及电池管理系统
EP4343351A1 (en) * 2022-09-23 2024-03-27 Abb Schweiz Ag In-situ measurement of contact resistance in a battery module
GB2623892A (en) * 2022-10-25 2024-05-01 Autocraft Solutions Group Ltd Method and system for determining reusability of a battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460191A (zh) * 2009-04-17 2012-05-16 Ac动力公司 检测线束中的故障
CN102975630A (zh) * 2011-09-05 2013-03-20 三洋电机株式会社 车辆用的电源装置和具备该电源装置的车辆
CN103311991A (zh) * 2013-06-21 2013-09-18 惠州市亿能电子有限公司 一种电池管理系统及其均衡状态在线监控方法
CN103730700A (zh) * 2013-11-08 2014-04-16 天津力神电池股份有限公司 一种动力电池系统对采样线束故障的判定和处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460191A (zh) * 2009-04-17 2012-05-16 Ac动力公司 检测线束中的故障
CN102975630A (zh) * 2011-09-05 2013-03-20 三洋电机株式会社 车辆用的电源装置和具备该电源装置的车辆
CN103311991A (zh) * 2013-06-21 2013-09-18 惠州市亿能电子有限公司 一种电池管理系统及其均衡状态在线监控方法
CN103730700A (zh) * 2013-11-08 2014-04-16 天津力神电池股份有限公司 一种动力电池系统对采样线束故障的判定和处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘红锐 等: "锂离子电池组充放电均衡器及均衡策略", 《电工技术学报》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769303B (zh) * 2017-10-20 2020-07-31 常州普莱德新能源电池科技有限公司 一种电动汽车的电池管理方法
CN107769303A (zh) * 2017-10-20 2018-03-06 常州普莱德新能源电池科技有限公司 一种电动汽车的电池管理方法
CN110736912B (zh) * 2018-07-20 2021-06-08 宁德时代新能源科技股份有限公司 电路故障的检测方法和采样检测电路
CN110736912A (zh) * 2018-07-20 2020-01-31 宁德时代新能源科技股份有限公司 电路故障的检测方法和采样检测电路
WO2020226308A1 (ko) * 2019-05-03 2020-11-12 주식회사 엘지화학 배터리셀 진단 장치 및 방법
US11796605B2 (en) 2019-05-03 2023-10-24 Lg Energy Solution, Ltd. Battery cell diagnostic device and method
CN110806508A (zh) * 2019-12-16 2020-02-18 安徽优旦科技有限公司 一种基于数据的高压回路接触电阻变化的评估方法
CN113632289A (zh) * 2020-07-22 2021-11-09 东莞新能安科技有限公司 电池系统及其采样方法、电子装置及可读存储介质
CN113632289B (zh) * 2020-07-22 2022-07-12 东莞新能安科技有限公司 电池系统及其采样方法、电子装置及可读存储介质
CN112172601A (zh) * 2020-10-06 2021-01-05 青岛灵珑智能装备科技有限责任公司 一种电动汽车电池安全预警方法
CN112172601B (zh) * 2020-10-06 2021-06-22 千黎(苏州)电源科技有限公司 一种电动汽车电池安全预警方法
CN115825794A (zh) * 2022-01-07 2023-03-21 宁德时代新能源科技股份有限公司 电芯采样电路、电路故障预警方法及电池管理系统
CN115825794B (zh) * 2022-01-07 2023-11-17 宁德时代新能源科技股份有限公司 电芯采样电路、电路故障预警方法及电池管理系统
EP4343351A1 (en) * 2022-09-23 2024-03-27 Abb Schweiz Ag In-situ measurement of contact resistance in a battery module
GB2623892A (en) * 2022-10-25 2024-05-01 Autocraft Solutions Group Ltd Method and system for determining reusability of a battery

Also Published As

Publication number Publication date
CN106816905B (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
CN106816905A (zh) 电动汽车以及电池管理系统及其故障检测方法
CN112838631B (zh) 动力电池的充电动态管控装置和动力电池的充电诊断方法
CN104391241B (zh) 一种动力电池高压继电器状态检测电路及其方法
CN106802396B (zh) 一种电池内短路的诊断方法
Farmann et al. A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles
CN106816907A (zh) 电动汽车以及电池管理系统及其故障检测方法
CN105109347B (zh) 电动汽车高压上电电路及其控制方法
CN101362427B (zh) 一种电动汽车电池管理系统
CN105190330B (zh) 电池状态判定装置
CN106707180B (zh) 一种并联电池组故障检测方法
CN107134821A (zh) 电动汽车及其低压蓄电池电量管理系统
US11545839B2 (en) System for charging a series of connected batteries
CN105128688B (zh) 一种电动汽车启动控制方法及控制系统
CN107187328A (zh) 锂离子电池管理系统及电芯单体内阻在线测量诊断方法
CN109116254A (zh) 一种动力电池功率状态估算功能测试方法和装置
EP1166138A1 (en) A method and apparatus for determining the state of charge of a battery
CN107517594B (zh) 故障检测装置
CN103052526A (zh) 一种用于在电气网络中限制接通电流的方法
CN105548908B (zh) 一种动力电池组的内阻一致性检测方法
CN109870650A (zh) 电池监控方法及系统
CN108535662A (zh) 电池健康状态检测方法及电池管理系统
CN112098831B (zh) 电池组继电器的寿命预测方法、装置、电路及汽车
CN105785169B (zh) 一种电池系统预充电管理检测装置及其检测方法
AU2015411280B2 (en) Intelligent charger with diagnostic function and charging method
CN104655973B (zh) 一种ups系统中检测电池模块短路的方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant