CN106814438B - 光学成像系统 - Google Patents

光学成像系统 Download PDF

Info

Publication number
CN106814438B
CN106814438B CN201610990889.1A CN201610990889A CN106814438B CN 106814438 B CN106814438 B CN 106814438B CN 201610990889 A CN201610990889 A CN 201610990889A CN 106814438 B CN106814438 B CN 106814438B
Authority
CN
China
Prior art keywords
lens
optical axis
imaging system
point
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610990889.1A
Other languages
English (en)
Other versions
CN106814438A (zh
Inventor
唐乃元
张永明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ability Opto Electronics Technology Co Ltd
Original Assignee
Ability Opto Electronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ability Opto Electronics Technology Co Ltd filed Critical Ability Opto Electronics Technology Co Ltd
Publication of CN106814438A publication Critical patent/CN106814438A/zh
Application granted granted Critical
Publication of CN106814438B publication Critical patent/CN106814438B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明公开一种光学成像系统,根据一实施例的光学成像系统由物侧至像侧依次包括具有屈折力的第一至第六透镜及成像面。该第一至第六透镜中至少一枚透镜具有正屈折力。该光学成像系统的焦距为f,入射光瞳直径为HEP,最大可视角度的一半为HAF。以第一至第六透镜中任一透镜的任一表面与光轴的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE,其满足下列条件:1.0≦f/HEP≦10.0;0deg<HAF≦150deg以及0.9≦2(ARE/HEP)≦1.5。本发明的光学成像系统可具备更大的收光以及更佳的光路调节能力,以提升成像品质。

Description

光学成像系统
技术领域
本发明涉及一种光学成像系统,且特别涉及一种应用于电子产品上的小型化光学成像系统。
背景技术
近年来,随着具有摄影功能的可携式电子产品的兴起,光学系统的需求日渐提高。一般光学系统的感光元件不外乎是感光耦合元件(Charge Coupled Device;CCD)或互补性金属氧化物半导体传感器(Complementary Metal-Oxide Semiconductor Sensor;CMOSSensor)两种,且随着半导体工艺技术的精进,使得感光元件的像素尺寸缩小,光学系统逐渐往高像素领域发展,因此对成像品质的要求也日益增加。
传统搭载于可携式装置上的光学系统,多采用四片或五片式透镜结构为主,然而由于可携式装置不断朝提升像素并且终端消费者对大光圈的需求例如微光与夜拍功能,现有的光学成像系统已无法满足更高阶的摄影要求。
因此,如何有效增加光学成像系统的进光量,并进一步提高成像的品质,便成为一个相当重要的议题。
发明内容
本发明实施例提供一种光学成像系统,能够利用六个透镜的屈光力、凸面与凹面的组合(本发明所述凸面或凹面原则上是指各透镜的物侧面或像侧面距离光轴不同高度的几何形状变化的描述),进而有效提高光学成像系统的进光量,同时提高成像品质,以应用于小型的电子产品上。
本发明实施例相关的透镜参数的用语与其代号详列如下,作为后续描述的参考:
与长度或高度有关的透镜参数
光学成像系统的最大成像高度以HOI表示;光学成像系统的高度以HOS表示;光学成像系统的第一透镜物侧面至第六透镜像侧面间的距离以InTL表示;光学成像系统的固定光阑(光圈)至成像面间的距离以InS表示;光学成像系统的第一透镜与第二透镜间的距离以IN12表示(例示);光学成像系统的第一透镜于光轴上的厚度以TP1表示(例示)。
与材料有关的透镜参数
光学成像系统的第一透镜的色散系数以NA1表示(例示);第一透镜的折射率以Nd1表示(例示)。
与视角有关的透镜参数
视角以AF表示;视角的一半以HAF表示;主光线角度以MRA表示。
与出入瞳有关的透镜参数
光学成像系统的入射光瞳直径以HEP表示;单个透镜的任一表面的最大有效半径是指系统最大视角入射光通过入射光瞳最边缘的光线于该透镜表面交会点(EffectiveHalf Diameter;EHD),该交会点与光轴之间的垂直高度。例如第一透镜物侧面的最大有效半径以EHD11表示,第一透镜像侧面的最大有效半径以EHD12表示。第二透镜物侧面的最大有效半径以EHD21表示,第二透镜像侧面的最大有效半径以EHD22表示。光学成像系统中其余透镜的任一表面的最大有效半径表示方式以此类推。
与透镜面形弧长及表面轮廓有关的参数
单个透镜的任一表面的最大有效半径的轮廓曲线长度,是指该透镜的表面与所属光学成像系统的光轴的交点为起始点,自该起始点沿着该透镜的表面轮廓直至其最大有效半径的终点为止,前述两点间的曲线弧长为最大有效半径的轮廓曲线长度,并以ARS表示。例如第一透镜物侧面的最大有效半径的轮廓曲线长度以ARS11表示,第一透镜像侧面的最大有效半径的轮廓曲线长度以ARS12表示。第二透镜物侧面的最大有效半径的轮廓曲线长度以ARS21表示,第二透镜像侧面的最大有效半径的轮廓曲线长度以ARS22表示。光学成像系统中其余透镜的任一表面的最大有效半径的轮廓曲线长度表示方式以此类推。
单个透镜的任一表面的1/2入射光瞳直径(HEP)的轮廓曲线长度,是指该透镜的表面与所属光学成像系统的光轴的交点为起始点,自该起始点沿着该透镜的表面轮廓直至该表面上距离光轴1/2入射光瞳直径的垂直高度的坐标点为止,前述两点间的曲线弧长为1/2入射光瞳直径(HEP)的轮廓曲线长度,并以ARE表示。例如第一透镜物侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE11表示,第一透镜像侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE12表示。第二透镜物侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE21表示,第二透镜像侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE22表示。光学成像系统中其余透镜的任一表面的1/2入射光瞳直径(HEP)的轮廓曲线长度表示方式以此类推。
与透镜面形深度有关的参数
第六透镜物侧面于光轴上的交点至第六透镜物侧面的最大有效半径的终点为止,前述两点间水平于光轴的距离以InRS61表示(最大有效半径深度);第六透镜像侧面于光轴上的交点至第六透镜像侧面的最大有效半径的终点为止,前述两点间水平于光轴的距离以InRS62表示(最大有效半径深度)。其他透镜物侧面或像侧面的最大有效半径的深度(沉陷量)表示方式比照前述。
与透镜面型有关的参数
临界点C是指特定透镜表面上,除与光轴的交点外,一与光轴相垂直的切面相切的点。承上,例如第五透镜物侧面的临界点C51与光轴的垂直距离为HVT51(例示),第五透镜像侧面的临界点C52与光轴的垂直距离为HVT52(例示),第六透镜物侧面的临界点C61与光轴的垂直距离为HVT61(例示),第六透镜像侧面的临界点C62与光轴的垂直距离为HVT62(例示)。其他透镜的物侧面或像侧面上的临界点及其与光轴的垂直距离的表示方式比照前述。
第六透镜物侧面上最接近光轴的反曲点为IF611,该点沉陷量SGI611(例示),SGI611也就是第六透镜物侧面于光轴上的交点至第六透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离,IF611该点与光轴间的垂直距离为HIF611(例示)。第六透镜像侧面上最接近光轴的反曲点为IF621,该点沉陷量SGI621(例示),SGI611也就是第六透镜像侧面于光轴上的交点至第六透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离,IF621该点与光轴间的垂直距离为HIF621(例示)。
第六透镜物侧面上第二接近光轴的反曲点为IF612,该点沉陷量SGI612(例示),SGI612也就是第六透镜物侧面于光轴上的交点至第六透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离,IF612该点与光轴间的垂直距离为HIF612(例示)。第六透镜像侧面上第二接近光轴的反曲点为IF622,该点沉陷量SGI622(例示),SGI622也就是第六透镜像侧面于光轴上的交点至第六透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离,IF622该点与光轴间的垂直距离为HIF622(例示)。
第六透镜物侧面上第三接近光轴的反曲点为IF613,该点沉陷量SGI613(例示),SGI613也就是第六透镜物侧面于光轴上的交点至第六透镜物侧面第三接近光轴的反曲点之间与光轴平行的水平位移距离,IF613该点与光轴间的垂直距离为HIF613(例示)。第六透镜像侧面上第三接近光轴的反曲点为IF623,该点沉陷量SGI623(例示),SGI623也就是第六透镜像侧面于光轴上的交点至第六透镜像侧面第三接近光轴的反曲点之间与光轴平行的水平位移距离,IF623该点与光轴间的垂直距离为HIF623(例示)。
第六透镜物侧面上第四接近光轴的反曲点为IF614,该点沉陷量SGI614(例示),SGI614也就是第六透镜物侧面于光轴上的交点至第六透镜物侧面第四接近光轴的反曲点之间与光轴平行的水平位移距离,IF614该点与光轴间的垂直距离为HIF614(例示)。第六透镜像侧面上第四接近光轴的反曲点为IF624,该点沉陷量SGI624(例示),SGI624也就是第六透镜像侧面于光轴上的交点至第六透镜像侧面第四接近光轴的反曲点之间与光轴平行的水平位移距离,IF624该点与光轴间的垂直距离为HIF624(例示)。
其他透镜物侧面或像侧面上的反曲点及其与光轴的垂直距离或其沉陷量的表示方式比照前述。
与像差有关的变数
光学成像系统的光学畸变(Optical Distortion)以ODT表示;其TV畸变(TVDistortion)以TDT表示,并且可以进一步限定描述在成像50%至100%视野间像差偏移的程度;球面像差偏移量以DFS表示;慧星像差偏移量以DFC表示。
光圈边缘横向像差以STA(STOP Transverse Aberration)表示,评价特定光学成像系统的性能,可利用子午面光扇(tangential fan)或弧矢面光扇(sagittal fan)上计算任一视场的光线横向像差,特别是分别计算最长工作波长(例如波长为650NM)以及最短工作波长(例如波长为470NM)通过光圈边缘的横向像差大小作为性能优异的标准。前述子午面光扇的坐标方向,可进一步区分成正向(上光线)与负向(下光线)。最长工作波长通过光圈边缘的横向像差,其定义为最长工作波长通过光圈边缘入射在成像面上特定视场的成像位置,其与参考波长主光线(例如波长为555NM)在成像面上该视场的成像位置两位置间的距离差,最短工作波长通过光圈边缘的横向像差,其定义为最短工作波长通过光圈边缘入射在成像面上特定视场的成像位置,其与参考波长主光线在成像面上该视场的成像位置两位置间的距离差,评价特定光学成像系统的性能为优异,可利用最短以及最长工作波长通过光圈边缘入射在成像面上0.7视场(即0.7成像高度HOI)的横向像差均小于100微米(μm)作为检验方式,甚至可进一步以最短以及最长工作波长通过光圈边缘入射在成像面上0.7视场的横向像差均小于80微米(μm)作为检验方式。
光学成像系统于成像面上垂直于光轴具有一最大成像高度HOI,光学成像系统的正向子午面光扇的可见光最长工作波长通过该入射光瞳边缘并入射在该成像面上0.7HOI处的横向像差以PLTA表示,其正向子午面光扇的可见光最短工作波长通过该入射光瞳边缘并入射在该成像面上0.7HOI处的横向像差以PSTA表示,负向子午面光扇的可见光最长工作波长通过该入射光瞳边缘并入射在该成像面上0.7HOI处的横向像差以NLTA表示,负向子午面光扇的可见光最短工作波长通过该入射光瞳边缘并入射在该成像面上0.7HOI处的横向像差以NSTA表示,弧矢面光扇的可见光最长工作波长通过该入射光瞳边缘并入射在该成像面上0.7HOI处的横向像差以SLTA表示,弧矢面光扇的可见光最短工作波长通过该入射光瞳边缘并入射在该成像面上0.7HOI处的横向像差以SSTA表示。
本发明提供一种光学成像系统,其第六透镜的物侧面或像侧面设置有反曲点,可有效调整各视场入射于第六透镜的角度,并针对光学畸变与TV畸变进行校正。另外,第六透镜的表面可具备更佳的光路调节能力,以提升成像品质。
依据本发明提供一种光学成像系统,由物侧至像侧依次包括一第一透镜,具有屈折力;一第二透镜,具有屈折力;一第三透镜,具有屈折力;一第四透镜,具有屈折力;一第五透镜,具有屈折力;一第六透镜,具有屈折力;以及一成像面,其中所述光学成像系统具有屈折力的透镜为六枚,所述光学成像系统于所述成像面上垂直于光轴具有一最大成像高度HOI,所述第一透镜至所述第六透镜中至少一枚透镜具有正屈折力,所述第一透镜至所述第六透镜的焦距分别为f1、f2、f3、f4、f5、f6,所述光学成像系统的焦距为f,所述光学成像系统的入射光瞳直径为HEP,所述第一透镜物侧面至所述成像面于光轴上具有一距离HOS,所述第一透镜物侧面至所述第六透镜像侧面于光轴上具有一距离InTL,所述光学成像系统的最大可视角度的一半为HAF,以上述透镜中任一透镜的任一表面与光轴的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE,其满足下列条件:1.0≦f/HEP≦10.0;0deg<HAF≦150deg以及0.9≦2(ARE/HEP)≦1.5。
优选地,所述光学成像系统于成像时的TV畸变为TDT,所述光学成像系统于所述成像面上垂直于光轴具有一最大成像高度HOI,所述光学成像系统的正向子午面光扇的可见光最长工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以PLTA表示,其正向子午面光扇的可见光最短工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以PSTA表示,负向子午面光扇的可见光最长工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以NLTA表示,负向子午面光扇的可见光最短工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以NSTA表示,弧矢面光扇的可见光最长工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以SLTA表示,弧矢面光扇的可见光最短工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以SSTA表示,其满足下列条件:PLTA≦100微米;PSTA≦100微米;NLTA≦100微米;NSTA≦100微米;SLTA≦100微米;SSTA≦100微米;以及│TDT│≦250%。
优选地,上述透镜中任一透镜的任一表面的最大有效半径以EHD表示,以上述透镜中任一透镜的任一表面与光轴的交点为起点,沿着该表面的轮廓直到该表面的最大有效半径处为终点,前述两点间的轮廓曲线长度为ARS,其满足下列公式:0.9≦ARS/EHD≦2.0。
优选地,所述光学成像系统满足下列公式:0mm<HOS≦30mm。
优选地,所述光学成像系统的可视角度的一半为HAF,其满足下列公式:0deg<HAF≦100deg。
优选地,以所述第六透镜的物侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE61,以所述第六透镜的像侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE62,第六透镜于光轴上的厚度为TP6,其满足下列条件:0.05≦ARE61/TP6≦15;以及0.05≦ARE62/TP6≦15。
优选地,以所述第五透镜的物侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE51,以所述第五透镜的像侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE52,所述第五透镜于光轴上的厚度为TP5,其满足下列条件:0.05≦ARE51/TP5≦15;以及0.05≦ARE52/TP5≦15。
优选地,所述第一透镜至所述第三透镜中至少一枚透镜具有正屈折力。
优选地,还包括一光圈,并且所述光圈至所述成像面具有一距离InS,其满足下列公式:0.2≦InS/HOS≦1.1。
依据本发明另提供一种光学成像系统,由物侧至像侧依次包括:一第一透镜,具有屈折力;一第二透镜,具有屈折力;一第三透镜,具有屈折力;一第四透镜,具有屈折力;一第五透镜,具有屈折力;一第六透镜,具有屈折力;以及一成像面,其中所述光学成像系统具有屈折力的透镜为六枚,所述光学成像系统于所述成像面上垂直于光轴具有一最大成像高度HOI,且所述第一透镜至所述第六透镜中至少一枚透镜的至少一表面具有至少一反曲点,所述第一透镜至所述第三透镜中至少一枚透镜具有正屈折力,所述第四透镜至所述第六透镜中至少一枚透镜具有正屈折力,所述第一透镜至所述第六透镜的焦距分别为f1、f2、f3、f4、f5、f6,所述光学成像系统的焦距为f,所述光学成像系统的入射光瞳直径为HEP,所述第一透镜物侧面至所述成像面于光轴上具有一距离HOS,所述第一透镜物侧面至所述第六透镜像侧面于光轴上具有一距离InTL,所述光学成像系统的最大可视角度的一半为HAF,以上述透镜中任一透镜的任一表面与光轴的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE,其满足下列条件:1.0≦f/HEP≦10.0;0deg<HAF≦150deg;以及0.9≦2(ARE/HEP)≦1.5。
优选地,上述透镜中任一透镜的任一表面的最大有效半径以EHD表示,以上述透镜中任一透镜的任一表面与光轴的交点为起点,沿着该表面的轮廓直到该表面的最大有效半径处为终点,前述两点间的轮廓曲线长度为ARS,其满足下列公式:0.9≦ARS/EHD≦2.0。
优选地,所述第一透镜至所述第六透镜中至少二枚透镜其各自的至少一表面具有至少一反曲点。
优选地,所述光学成像系统于所述成像面上垂直于光轴具有一最大成像高度HOI,所述光学成像系统的正向子午面光扇的可见光最长工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以PLTA表示,其正向子午面光扇的可见光最短工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以PSTA表示,负向子午面光扇的可见光最长工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以NLTA表示,负向子午面光扇的可见光最短工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以NSTA表示,弧矢面光扇的可见光最长工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以SLTA表示,弧矢面光扇的可见光最短工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以SSTA表示,其满足下列条件:PLTA≦100微米;PSTA≦100微米;NLTA≦100微米;NSTA≦100微米;SLTA≦100微米;SSTA≦100微米以及;HOI>3.0mm。
优选地,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜及所述第六透镜中至少一枚透镜为波长小于500nm的光线滤除元件。
优选地,所述第一透镜与所述第二透镜之间于光轴上的距离为IN12,且满足下列公式:0<IN12/f≦3.0。
优选地,所述第五透镜与所述第六透镜之间于光轴上的距离为IN56,且满足下列公式:0<IN56/f≦0.8。
优选地,所述第五透镜与所述第六透镜之间于光轴上的距离为IN56,所述第五透镜与所述第六透镜于光轴上的厚度分别为TP5以及TP6,其满足下列条件:0.1≦(TP6+IN56)/TP5≦10。
优选地,所述第一透镜与所述第二透镜之间于光轴上的距离为IN12,所述第一透镜与第二透镜于光轴上的厚度分别为TP1以及TP2,其满足下列条件:0.1≦(TP1+IN12)/TP2≦10。
优选地,所述第四透镜、所述第五透镜以及所述第六透镜于光轴上的厚度分别为TP4、TP5以及TP6,其满足下列条件:TP4≧TP5以及TP4≧TP6。
依据本发明再提供一种光学成像系统,由物侧至像侧依次包括:一第一透镜,具有正屈折力;一第二透镜,具有屈折力;一第三透镜,具有屈折力;一第四透镜,具有屈折力;一第五透镜,具有屈折力;一第六透镜,具有屈折力;以及一成像面,其中所述光学成像系统具有屈折力的透镜为六枚,所述光学成像系统于所述成像面上垂直于光轴具有一最大成像高度HOI,所述第二透镜至所述第六透镜中至少一枚透镜具有正屈折力,且所述第一透镜至所述第六透镜中至少二枚透镜其各自的至少一表面具有至少一反曲点,所述第一透镜至所述第六透镜的焦距分别为f1、f2、f3、f4、f5、f6,所述光学成像系统的焦距为f,所述光学成像系统的入射光瞳直径为HEP,所述第一透镜物侧面至所述成像面于光轴上具有一距离HOS,所述第一透镜物侧面至所述第六透镜像侧面于光轴上具有一距离InTL,所述光学成像系统的最大可视角度的一半为HAF,以上述透镜中任一透镜的任一表面与光轴的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE,其满足下列条件:1.0≦f/HEP≦3.5;0deg<HAF≦150deg;以及0.9≦2(ARE/HEP)≦1.5。
优选地,上述透镜中任一透镜的任一表面的最大有效半径以EHD表示,以上述透镜中任一透镜的任一表面与光轴的交点为起点,沿着该表面的轮廓直到该表面的最大有效半径处为终点,前述两点间的轮廓曲线长度为ARS,其满足下列公式:0.9≦ARS/EHD≦2.0。
优选地,所述光学成像系统满足下列公式:0mm<HOS≦30mm。
优选地,以所述第六透镜的物侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE61,以所述第六透镜的像侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE62,第六透镜于光轴上的厚度为TP6,其满足下列条件:0.05≦ARE61/TP6≦15;以及0.05≦ARE62/TP6≦15。
优选地,以所述第五透镜的物侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为为ARE51,以所述第五透镜的像侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE52,所述第五透镜于光轴上的厚度为TP5,其满足下列条件:0.05≦ARE51/TP5≦15;以及0.05≦ARE52/TP5≦15。
优选地,所述光学成像系统还包括一光圈、一图像传感器以及一驱动模块,所述图像传感器设置于所述成像面,并且所述光圈至所述成像面具有一距离InS,所述驱动模块与各所述透镜相耦合并使各所述透镜产生位移,其满足下列公式:0.2≦InS/HOS≦1.1。
单个透镜的任一表面在最大有效半径范围内的轮廓曲线长度影响该表面修正像差以及各视场光线间光程差的能力,轮廓曲线长度越长则修正像差的能力提升,然而同时也会增加生产制造上的困难度,因此必须控制单个透镜的任一表面在最大有效半径范围内的轮廓曲线长度,特别是控制该表面的最大有效半径范围内的轮廓曲线长度(ARS)与该表面所属的该透镜于光轴上的厚度(TP)间的比例关系(ARS/TP)。例如第一透镜物侧面的最大有效半径的轮廓曲线长度以ARS11表示,第一透镜于光轴上的厚度为TP1,两者间的比值为ARS11/TP1,第一透镜像侧面的最大有效半径的轮廓曲线长度以ARS12表示,其与TP1间的比值为ARS12/TP1。第二透镜物侧面的最大有效半径的轮廓曲线长度以ARS21表示,第二透镜于光轴上的厚度为TP2,两者间的比值为ARS21/TP2,第二透镜像侧面的最大有效半径的轮廓曲线长度以ARS22表示,其与TP2间的比值为ARS22/TP2。光学成像系统中其余透镜的任一表面的最大有效半径的轮廓曲线长度与该表面所属的该透镜于光轴上的厚度(TP)间的比例关系,其表示方式以此类推。
单个透镜的任一表面在1/2入射光瞳直径(HEP)高度范围内的轮廓曲线长度特别影响该表面上在各光线视场共用区域的修正像差以及各视场光线间光程差的能力,轮廓曲线长度越长则修正像差的能力提升,然而同时也会增加生产制造上的困难度,因此必须控制单个透镜的任一表面在1/2入射光瞳直径(HEP)高度范围内的轮廓曲线长度,特别是控制该表面的1/2入射光瞳直径(HEP)高度范围内的轮廓曲线长度(ARE)与该表面所属的该透镜于光轴上的厚度(TP)间的比例关系(ARE/TP)。例如第一透镜物侧面的1/2入射光瞳直径(HEP)高度的轮廓曲线长度以ARE11表示,第一透镜于光轴上的厚度为TP1,两者间的比值为ARE11/TP1,第一透镜像侧面的1/2入射光瞳直径(HEP)高度的轮廓曲线长度以ARE12表示,其与TP1间的比值为ARE12/TP1。第二透镜物侧面的1/2入射光瞳直径(HEP)高度的轮廓曲线长度以ARE21表示,第二透镜于光轴上的厚度为TP2,两者间的比值为ARE21/TP2,第二透镜像侧面的1/2入射光瞳直径(HEP)高度的轮廓曲线长度以ARE22表示,其与TP2间的比值为ARE22/TP2。光学成像系统中其余透镜的任一表面的1/2入射光瞳直径(HEP)高度的轮廓曲线长度与该表面所属的该透镜于光轴上的厚度(TP)间的比例关系,其表示方式以此类推。
当│f1│>│f6│时,光学成像系统的系统总高度(HOS;Height of Optic System)可以适当缩短以达到微型化的目的。
当│f2│+│f3│+│f4│+│f5│以及│f1│+│f6│满足上述条件时,通过第二透镜至第五透镜中至少一透镜具有弱的正屈折力或弱的负屈折力。所称弱屈折力,是指特定透镜的焦距的绝对值大于10。当本发明第二透镜至第五透镜中至少一透镜具有弱的正屈折力,其可有效分担第一透镜的正屈折力而避免不必要的像差过早出现,反之若第二透镜至第五透镜中至少一透镜具有弱的负屈折力,则可以微调校正系统的像差。
此外,第六透镜可具有负屈折力,其像侧面可为凹面。藉此,有利于缩短其后焦距以维持小型化。另外,第六透镜的至少一表面可具有至少一反曲点,可有效地压制离轴视场光线入射的角度,进一步可修正离轴视场的像差。
附图说明
本发明上述及其他特征将通过参照附图详细说明。
图1A示出了本发明第一实施例的光学成像系统的示意图;
图1B由左至右依次示出了本发明第一实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图1C示出了本发明第一实施例光学成像系统的光学成像系统的子午面光扇以及弧矢面光扇,最长工作波长以及最短工作波长通过光圈边缘于0.7视场处的横向像差图;
图2A示出了本发明第二实施例的光学成像系统的示意图;
图2B由左至右依次示出了本发明第二实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图2C示出了本发明第二实施例光学成像系统的子午面光扇以及弧矢面光扇,最长工作波长以及最短工作波长通过光圈边缘于0.7视场处的横向像差图;
图3A示出了本发明第三实施例的光学成像系统的示意图;
图3B由左至右依次示出了本发明第三实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图3C示出了本发明第三实施例光学成像系统的子午面光扇以及弧矢面光扇,最长工作波长以及最短工作波长通过光圈边缘于0.7视场处的横向像差图;
图4A示出了本发明第四实施例的光学成像系统的示意图;
图4B由左至右依次示出了本发明第四实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图4C示出了本发明第四实施例光学成像系统的子午面光扇以及弧矢面光扇,最长工作波长以及最短工作波长通过光圈边缘于0.7视场处的横向像差图;
图5A示出了本发明第五实施例的光学成像系统的示意图;
图5B由左至右依次示出了本发明第五实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图5C示出了本发明第五实施例光学成像系统的子午面光扇以及弧矢面光扇,最长工作波长以及最短工作波长通过光圈边缘于0.7视场处的横向像差图;
图6A示出了本发明第六实施例的光学成像系统的示意图;
图6B由左至右依次示出了本发明第六实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图6C示出了本发明第六实施例光学成像系统的子午面光扇以及弧矢面光扇,最长工作波长以及最短工作波长通过光圈边缘于0.7视场处的横向像差图;
图7A示出了本发明第七实施例的光学成像系统的示意图;
图7B由左至右依次示出了本发明第七实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图7C示出了本发明第七实施例光学成像系统的子午面光扇以及弧矢面光扇,最长工作波长以及最短工作波长通过光圈边缘于0.7视场处的横向像差图;
图8A示出了本发明第八实施例的光学成像系统的示意图;
图8B由左至右依次示出了本发明第八实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图8C示出了本发明第八实施例光学成像系统的子午面光扇以及弧矢面光扇,最长工作波长以及最短工作波长通过光圈边缘于0.7视场处的横向像差图。
【附图标记说明】
光学成像系统:10、20、30、40、50、60、70、80
光圈:100、200、300、400、500、600、700、800
第一透镜:110、210、310、410、510、610、710、810
物侧面:112、212、312、412、512、612、712、812
像侧面:114、214、314、414、514、614、714、814
第二透镜:120、220、320、420、520、620、720、820
物侧面:122、222、322、422、522、622、722、822
像侧面:124、224、324、424、524、624、724、824
第三透镜:130、230、330、430、530、630、730、830
物侧面:132、232、332、432、532、632、732、832
像侧面:134、234、334、434、534、634、734、834
第四透镜:140、240、340、440、540、640、740、840
物侧面:142、242、342、442、542、642、742、842
像侧面:144、244、344、444、544、644、744、844
第五透镜:150、250、350、450、550、650、750、850
物侧面:152、252、352、452、552、652、752、852
像侧面:154、254、354、454、554、654、754、854
第六透镜:160、260、360、460、560、660、760、860
物侧面:162、262、362、462、562、662、762、862
像侧面:164、264、364、464、564、664、764、864
红外滤光片:180、280、380、480、580、680、780、880
成像面:190、290、390、490、590、690、790、890
图像传感器:192、292、392、492、592、692、792、892
光学成像系统的焦距:f
第一透镜的焦距:f1;第二透镜的焦距:f2;第三透镜的焦距:f3;
第四透镜的焦距:f4;第五透镜的焦距:f5;第六透镜的焦距:f6;
光学成像系统的光圈值:f/HEP;Fno;F#
光学成像系统的最大视角的一半:HAF
第一透镜的色散系数:NA1
第二透镜至第六透镜的色散系数:NA2、NA3、NA4、NA5、NA6
第一透镜物侧面以及像侧面的曲率半径:R1、R2
第二透镜物侧面以及像侧面的曲率半径:R3、R4
第三透镜物侧面以及像侧面的曲率半径:R5、R6
第四透镜物侧面以及像侧面的曲率半径:R7、R8
第五透镜物侧面以及像侧面的曲率半径:R9、R10
第六透镜物侧面以及像侧面的曲率半径:R11、R12
第一透镜于光轴上的厚度:TP1
第二至第六透镜于光轴上的厚度:TP2、TP3、TP4、TP5、TP6
所有具屈折力的透镜的厚度总和:ΣTP
第一透镜与第二透镜于光轴上的间隔距离:IN12
第二透镜与第三透镜于光轴上的间隔距离:IN23
第三透镜与第四透镜于光轴上的间隔距离:IN34
第四透镜与第五透镜于光轴上的间隔距离:IN45
第五透镜与第六透镜于光轴上的间隔距离:IN56
第六透镜物侧面于光轴上的交点至第六透镜物侧面的最大有效半径位置于光轴的水平位移距离:InRS61
第六透镜物侧面上最接近光轴的反曲点:IF611;该点沉陷量:SGI611
第六透镜物侧面上最接近光轴的反曲点与光轴间的垂直距离:HIF611
第六透镜像侧面上最接近光轴的反曲点:IF621;该点沉陷量:SGI621
第六透镜像侧面上最接近光轴的反曲点与光轴间的垂直距离:HIF621
第六透镜物侧面上第二接近光轴的反曲点:IF612;该点沉陷量:SGI612
第六透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离:HIF612
第六透镜像侧面上第二接近光轴的反曲点:IF622;该点沉陷量:SGI622
第六透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离:HIF622
第六透镜物侧面的临界点:C61
第六透镜像侧面的临界点:C62
第六透镜物侧面的临界点与光轴的水平位移距离:SGC61
第六透镜像侧面的临界点与光轴的水平位移距离:SGC62
第六透镜物侧面的临界点与光轴的垂直距离:HVT61
第六透镜像侧面的临界点与光轴的垂直距离:HVT62
系统总高度(第一透镜物侧面至成像面于光轴上的距离):HOS
图像传感器的对角线长度:Dg
光圈至成像面的距离:InS
第一透镜物侧面至该第六透镜像侧面的距离:InTL
第六透镜像侧面至该成像面的距离:InB
图像传感器有效感测区域对角线长的一半(最大像高):HOI
光学成像系统于成像时的TV畸变(TV Distortion):TDT
光学成像系统于成像时的光学畸变(Optical Distortion):ODT
具体实施方式
一种光学成像系统,由物侧至像侧依次包括具屈折力的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜以及一成像面。光学成像系统还可包括一图像传感器,其设置于成像面。
光学成像系统可使用三个工作波长进行设计,分别为486.1nm、587.5nm、656.2nm,其中587.5nm为主参考波长为主要提取技术特征的参考波长。光学成像系统也可使用五个工作波长进行设计,分别为470nm、510nm、555nm、610nm、650nm,其中555nm为主参考波长为主要提取技术特征的参考波长。
光学成像系统的焦距f与每一片具有正屈折力的透镜的焦距fp的比值为PPR,光学成像系统的焦距f与每一片具有负屈折力的透镜的焦距fn的比值为NPR,所有具正屈折力的透镜的PPR总和为ΣPPR,所有具负屈折力的透镜的NPR总和为ΣNPR,当满足下列条件时有助于控制光学成像系统的总屈折力以及总长度:0.5≦ΣPPR/│ΣNPR│≦15,较佳地,可满足下列条件:1≦ΣPPR/│ΣNPR│≦3.0。
光学成像系统可进一步包括一图像传感器,其设置于成像面。图像传感器有效感测区域对角线长的一半(即为光学成像系统的成像高度或称最大像高)为HOI,第一透镜物侧面至成像面于光轴上的距离为HOS,其满足下列条件:HOS/HOI≦10;以及0.5≦HOS/f≦10。较佳地,可满足下列条件:1≦HOS/HOI≦5;以及1≦HOS/f≦7。藉此,可维持光学成像系统的小型化,以搭载于轻薄可携式的电子产品上。
另外,本发明的光学成像系统中,依需求可设置至少一光圈,以减少杂散光,有助于提升图像品质。
本发明的光学成像系统中,光圈配置可为前置光圈或中置光圈,其中前置光圈意即光圈设置于被摄物与第一透镜间,中置光圈则表示光圈设置于第一透镜与成像面间。若光圈为前置光圈,可使光学成像系统的出瞳与成像面产生较长的距离而容置更多光学元件,并可增加图像传感器接收图像的效率;若为中置光圈,则有助于扩大系统的视场角,使光学成像系统具有广角镜头的优势。前述光圈至成像面间的距离为InS,其满足下列条件:0.2≦InS/HOS≦1.1。藉此,可同时兼顾维持光学成像系统的小型化以及具备广角的特性。
本发明的光学成像系统中,第一透镜物侧面至第六透镜像侧面间的距离为InTL,于光轴上所有具屈折力的透镜的厚度总和为ΣTP,其满足下列条件:0.1≦ΣTP/InTL≦0.9。藉此,当可同时兼顾系统成像的对比度以及透镜制造的良率并提供适当的后焦距以容置其他元件。
第一透镜物侧面的曲率半径为R1,第一透镜像侧面的曲率半径为R2,其满足下列条件:0.001≦│R1/R2│≦20。藉此,第一透镜具备适当正屈折力强度,避免球差增加过速。较佳地,可满足下列条件:0.01≦│R1/R2│<10。
第六透镜物侧面的曲率半径为R11,第六透镜像侧面的曲率半径为R12,其满足下列条件:-7<(R11-R12)/(R11+R12)<50。藉此,有利于修正光学成像系统所产生的像散。
第一透镜与第二透镜于光轴上的间隔距离为IN12,其满足下列条件:0<IN12/f≦3.0。藉此,有助于改善透镜的色差以提升其性能。
第五透镜与第六透镜于光轴上的间隔距离为IN56,其满足下列条件:0<IN56/f≦0.8。藉此,有助于改善透镜的色差以提升其性能。
第一透镜与第二透镜于光轴上的厚度分别为TP1以及TP2,其满足下列条件:0.1≦(TP1+IN12)/TP2≦10。藉此,有助于控制光学成像系统制造的敏感度并提升其性能。
第五透镜与第六透镜于光轴上的厚度分别为TP5以及TP6,前述两透镜于光轴上的间隔距离为IN56,其满足下列条件:0.1≦(TP6+IN56)/TP5≦10。藉此,有助于控制光学成像系统制造的敏感度并降低系统总高度。
第二透镜、第三透镜与第四透镜于光轴上的厚度分别为TP2、TP3以及TP4,第二透镜与第三透镜于光轴上的间隔距离为IN23,第三透镜与第四透镜于光轴上的间隔距离为IN45,第一透镜物侧面至第六透镜像侧面间的距离为InTL,其满足下列条件:0.1≦TP4/(IN34+TP4+IN45)<1。藉此,有助层层微幅修正入射光行进过程所产生的像差并降低系统总高度。
本发明的光学成像系统中,第六透镜物侧面的临界点C61与光轴的垂直距离为HVT61,第六透镜像侧面的临界点C62与光轴的垂直距离为HVT62,第六透镜物侧面于光轴上的交点至临界点C61位置于光轴的水平位移距离为SGC61,第六透镜像侧面于光轴上的交点至临界点C62位置于光轴的水平位移距离为SGC62,可满足下列条件:0mm≦HVT61≦3mm;0mm<HVT62≦6mm;0≦HVT61/HVT62;0mm≦│SGC61│≦0.5mm;0mm<│SGC62│≦2mm;以及0<│SGC62│/(│SGC62│+TP6)≦0.9。藉此,可有效修正离轴视场的像差。
本发明的光学成像系统其满足下列条件:0.2≦HVT62/HOI≦0.9。较佳地,可满足下列条件:0.3≦HVT62/HOI≦0.8。藉此,有助于光学成像系统的边缘视场的像差修正。
本发明的光学成像系统其满足下列条件:0≦HVT62/HOS≦0.5。较佳地,可满足下列条件:0.2≦HVT62/HOS≦0.45。藉此,有助于光学成像系统的边缘视场的像差修正。
本发明的光学成像系统中,第六透镜物侧面于光轴上的交点至第六透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI611表示,第六透镜像侧面于光轴上的交点至第六透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI621表示,其满足下列条件:0<SGI611/(SGI611+TP6)≦0.9;0<SGI621/(SGI621+TP6)≦0.9。较佳地,可满足下列条件:0.1≦SGI611/(SGI611+TP6)≦0.6;0.1≦SGI621/(SGI621+TP6)≦0.6。
第六透镜物侧面于光轴上的交点至第六透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI612表示,第六透镜像侧面于光轴上的交点至第六透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI622表示,其满足下列条件:0<SGI612/(SGI612+TP6)≦0.9;0<SGI622/(SGI622+TP6)≦0.9。较佳地,可满足下列条件:0.1≦SGI612/(SGI612+TP6)≦0.6;0.1≦SGI622/(SGI622+TP6)≦0.6。
第六透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF611表示,第六透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF621表示,其满足下列条件:0.001mm≦│HIF611│≦5mm;0.001mm≦│HIF621│≦5mm。较佳地,可满足下列条件:0.1mm≦│HIF611│≦3.5mm;1.5mm≦│HIF621│≦3.5mm。
第六透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF612表示,第六透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF622表示,其满足下列条件:0.001mm≦│HIF612│≦5mm;0.001mm≦│HIF622│≦5mm。较佳地,可满足下列条件:0.1mm≦│HIF622│≦3.5mm;0.1mm≦│HIF612│≦3.5mm。
第六透镜物侧面第三接近光轴的反曲点与光轴间的垂直距离以HIF613表示,第六透镜像侧面第三接近光轴的反曲点与光轴间的垂直距离以HIF623表示,其满足下列条件:0.001mm≦│HIF613│≦5mm;0.001mm≦│HIF623│≦5mm。较佳地,可满足下列条件:0.1mm≦│HIF623│≦3.5mm;0.1mm≦│HIF613│≦3.5mm。
第六透镜物侧面第四接近光轴的反曲点与光轴间的垂直距离以HIF614表示,第六透镜像侧面第四接近光轴的反曲点与光轴间的垂直距离以HIF624表示,其满足下列条件:0.001mm≦│HIF614│≦5mm;0.001mm≦│HIF624│≦5mm。较佳地,可满足下列条件:0.1mm≦│HIF624│≦3.5mm;0.1mm≦│HIF614│≦3.5mm。
本发明的光学成像系统的一种实施方式,可通过具有高色散系数与低色散系数的透镜交错排列,而有助于光学成像系统色差的修正。
上述非球面的方程式为:
z=ch2/[1+[1-(k+1)c2h2]0.5]+A4h4+A6h6+A8h8+A10h10+A12h12+A14h14+A16h16+A18h18+A20h20+…(1)
其中,z为沿光轴方向在高度为h的位置以表面顶点作参考的位置值,k为锥面系数,c为曲率半径的倒数,且A4、A6、A8、A10、A12、A14、A16、A18以及A20为高阶非球面系数。
本发明提供的光学成像系统中,透镜的材质可为塑料或玻璃。当透镜材质为塑料,可以有效降低生产成本与重量。另当透镜的材质为玻璃,则可以控制热效应并且增加光学成像系统屈折力配置的设计空间。此外,光学成像系统中第一透镜至第六透镜的物侧面及像侧面可为非球面,其可获得较多的控制变数,除用以消减像差外,相较于传统玻璃透镜的使用甚至可缩减透镜使用的数目,因此能有效降低本发明光学成像系统的总高度。
再者,本发明提供的光学成像系统中,若透镜表面为凸面,原则上表示透镜表面于近光轴处为凸面;若透镜表面为凹面,原则上表示透镜表面于近光轴处为凹面。
本发明的光学成像系统还可视需求应用于移动对焦的光学系统中,并兼具优良像差修正与良好成像品质的特色,从而扩大应用层面。
本发明的光学成像系统还可视需求包括一驱动模块,该驱动模块可与这些透镜相耦合并使这些透镜产生位移。前述驱动模块可以是音圈马达(VCM)用于带动镜头进行对焦,或者为光学防抖元件(OIS)用于降低拍摄过程因镜头振动所导致失焦的发生频率。
本发明的光学成像系统还可视需求令第一透镜、第二透镜、第三透镜、第四透镜、第五透镜及第六透镜中至少一透镜为波长小于500nm的光线滤除元件,其可通过该特定具滤除功能的透镜的至少一表面上镀膜或该透镜本身即由具可滤除短波长的材质所制作而达成。
根据上述实施方式,以下提出具体实施例并配合图式予以详细说明。
第一实施例
请参照图1A及图1B,其中图1A示出了依照本发明第一实施例的一种光学成像系统的示意图,图1B由左至右依次为第一实施例的光学成像系统的球差、像散及光学畸变曲线图。图1C为第一实施例的光学成像系统的子午面光扇以及弧矢面光扇,最长工作波长以及最短工作波长通过光圈边缘于0.7视场处的横向像差图。由图1A可知,光学成像系统10由物侧至像侧依次包括第一透镜110、光圈100、第二透镜120、第三透镜130、第四透镜140、第五透镜150、第六透镜160、红外滤光片180、成像面190以及图像传感器192。
第一透镜110具有负屈折力,且为塑料材质,其物侧面112为凹面,其像侧面114为凹面,并皆为非球面,且其物侧面112具有二反曲点。第一透镜物侧面的最大有效半径的轮廓曲线长度以ARS11表示,第一透镜像侧面的最大有效半径的轮廓曲线长度以ARS12表示。第一透镜物侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE11表示,第一透镜像侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE12表示。第一透镜于光轴上的厚度为TP1。
第一透镜物侧面于光轴上的交点至第一透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI111表示,第一透镜像侧面于光轴上的交点至第一透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI121表示,其满足下列条件:SGI111=-0.0031mm;│SGI111│/(│SGI111│+TP1)=0.0016。
第一透镜物侧面于光轴上的交点至第一透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI112表示,第一透镜像侧面于光轴上的交点至第一透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI122表示,其满足下列条件:SGI112=1.3178mm;│SGI112│/(│SGI112│+TP1)=0.4052。
第一透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF111表示,第一透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF121表示,其满足下列条件:HIF111=0.5557mm;HIF111/HOI=0.1111。
第一透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF112表示,第一透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF122表示,其满足下列条件:HIF112=5.3732mm;HIF112/HOI=1.0746。
第二透镜120具有正屈折力,且为塑料材质,其物侧面122为凸面,其像侧面124为凸面,并皆为非球面,且其物侧面122具有一反曲点。第二透镜物侧面的最大有效半径的轮廓曲线长度以ARS21表示,第二透镜像侧面的最大有效半径的轮廓曲线长度以ARS22表示。第二透镜物侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE21表示,第二透镜像侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE22表示。第二透镜于光轴上的厚度为TP2。
第二透镜物侧面于光轴上的交点至第二透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI211表示,第二透镜像侧面于光轴上的交点至第二透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI221表示,其满足下列条件:SGI211=0.1069mm;│SGI211│/(│SGI211│+TP2)=0.0412;SGI221=0mm;│SGI221│/(│SGI221│+TP2)=0。
第二透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF211表示,第二透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF221表示,其满足下列条件:HIF211=1.1264mm;HIF211/HOI=0.2253;HIF221=0mm;HIF221/HOI=0。
第三透镜130具有负屈折力,且为塑料材质,其物侧面132为凹面,其像侧面134为凸面,并皆为非球面,且其物侧面132以及像侧面134均具有一反曲点。第三透镜物侧面的最大有效半径的轮廓曲线长度以ARS31表示,第三透镜像侧面的最大有效半径的轮廓曲线长度以ARS32表示。第三透镜物侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE31表示,第三透镜像侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE32表示。第三透镜于光轴上的厚度为TP3。
第三透镜物侧面于光轴上的交点至第三透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI311表示,第三透镜像侧面于光轴上的交点至第三透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI321表示,其满足下列条件:SGI311=-0.3041mm;│SGI311│/(│SGI311│+TP3)=0.4445;SGI321=-0.1172mm;│SGI321│/(│SGI321│+TP3)=0.2357。
第三透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF311表示,第三透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF321表示,其满足下列条件:HIF311=1.5907mm;HIF311/HOI=0.3181;HIF321=1.3380mm;HIF321/HOI=0.2676。
第四透镜140具有正屈折力,且为塑料材质,其物侧面142为凸面,其像侧面144为凹面,并皆为非球面,且其物侧面142具有二反曲点以及像侧面144具有一反曲点。第四透镜物侧面的最大有效半径的轮廓曲线长度以ARS41表示,第四透镜像侧面的最大有效半径的轮廓曲线长度以ARS42表示。第四透镜物侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE41表示,第四透镜像侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE42表示。第四透镜于光轴上的厚度为TP4。
第四透镜物侧面于光轴上的交点至第四透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI411表示,第四透镜像侧面于光轴上的交点至第四透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI421表示,其满足下列条件:SGI411=0.0070mm;│SGI411│/(│SGI411│+TP4)=0.0056;SGI421=0.0006mm;│SGI421│/(│SGI421│+TP4)=0.0005。
第四透镜物侧面于光轴上的交点至第四透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI412表示,第四透镜像侧面于光轴上的交点至第四透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI422表示,其满足下列条件:SGI412=-0.2078mm;│SGI412│/(│SGI412│+TP4)=0.1439。
第四透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF411表示,第四透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF421表示,其满足下列条件:HIF411=0.4706mm;HIF411/HOI=0.0941;HIF421=0.1721mm;HIF421/HOI=0.0344。
第四透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF412表示,第四透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF422表示,其满足下列条件:HIF412=2.0421mm;HIF412/HOI=0.4084。
第五透镜150具有正屈折力,且为塑料材质,其物侧面152为凸面,其像侧面154为凸面,并皆为非球面,且其物侧面152具有二反曲点以及像侧面154具有一反曲点。第五透镜物侧面的最大有效半径的轮廓曲线长度以ARS51表示,第五透镜像侧面的最大有效半径的轮廓曲线长度以ARS52表示。第五透镜物侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE51表示,第五透镜像侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE52表示。第五透镜于光轴上的厚度为TP5。
第五透镜物侧面于光轴上的交点至第五透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI511表示,第五透镜像侧面于光轴上的交点至第五透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI521表示,其满足下列条件:SGI511=0.00364mm;│SGI511│/(│SGI511│+TP5)=0.00338;SGI521=-0.63365mm;│SGI521│/(│SGI521│+TP5)=0.37154。
第五透镜物侧面于光轴上的交点至第五透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI512表示,第五透镜像侧面于光轴上的交点至第五透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI522表示,其满足下列条件:SGI512=-0.32032mm;│SGI512│/(│SGI512│+TP5)=0.23009。
第五透镜物侧面于光轴上的交点至第五透镜物侧面第三接近光轴的反曲点之间与光轴平行的水平位移距离以SGI513表示,第五透镜像侧面于光轴上的交点至第五透镜像侧面第三接近光轴的反曲点之间与光轴平行的水平位移距离以SGI523表示,其满足下列条件:SGI513=0mm;│SGI513│/(│SGI513│+TP5)=0;SGI523=0mm;│SGI523│/(│SGI523│+TP5)=0。
第五透镜物侧面于光轴上的交点至第五透镜物侧面第四接近光轴的反曲点之间与光轴平行的水平位移距离以SGI514表示,第五透镜像侧面于光轴上的交点至第五透镜像侧面第四接近光轴的反曲点之间与光轴平行的水平位移距离以SGI524表示,其满足下列条件:SGI514=0mm;│SGI514│/(│SGI514│+TP5)=0;SGI524=0mm;│SGI524│/(│SGI524│+TP5)=0。
第五透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF511表示,第五透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF521表示,其满足下列条件:HIF511=0.28212mm;HIF511/HOI=0.05642;HIF521=2.13850mm;HIF521/HOI=0.42770。
第五透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF512表示,第五透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF522表示,其满足下列条件:HIF512=2.51384mm;HIF512/HOI=0.50277。
第五透镜物侧面第三接近光轴的反曲点与光轴间的垂直距离以HIF513表示,第五透镜像侧面第三接近光轴的反曲点与光轴间的垂直距离以HIF523表示,其满足下列条件:HIF513=0mm;HIF513/HOI=0;HIF523=0mm;HIF523/HOI=0。
第五透镜物侧面第四接近光轴的反曲点与光轴间的垂直距离以HIF514表示,第五透镜像侧面第四接近光轴的反曲点与光轴间的垂直距离以HIF524表示,其满足下列条件:HIF514=0mm;HIF514/HOI=0;HIF524=0mm;HIF524/HOI=0。
第六透镜160具有负屈折力,且为塑料材质,其物侧面162为凹面,其像侧面164为凹面,且其物侧面162具有二反曲点以及像侧面164具有一反曲点。藉此,可有效调整各视场入射于第六透镜的角度而改善像差。第六透镜物侧面的最大有效半径的轮廓曲线长度以ARS61表示,第六透镜像侧面的最大有效半径的轮廓曲线长度以ARS62表示。第六透镜物侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE61表示,第六透镜像侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE62表示。第六透镜于光轴上的厚度为TP6。
第六透镜物侧面于光轴上的交点至第六透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI611表示,第六透镜像侧面于光轴上的交点至第六透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI621表示,其满足下列条件:SGI611=-0.38558mm;│SGI611│/(│SGI611│+TP6)=0.27212;SGI621=0.12386mm;│SGI621│/(│SGI621│+TP6)=0.10722。
第六透镜物侧面于光轴上的交点至第六透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI612表示,第六透镜像侧面于光轴上的交点至第六透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI621表示,其满足下列条件:SGI612=-0.47400mm;│SGI612│/(│SGI612│+TP6)=0.31488;SGI622=0mm;│SGI622│/(│SGI622│+TP6)=0。
第六透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF611表示,第六透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF621表示,其满足下列条件:HIF611=2.24283mm;HIF611/HOI=0.44857;HIF621=1.07376mm;HIF621/HOI=0.21475。
第六透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF612表示,第六透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF622表示,其满足下列条件:HIF612=2.48895mm;HIF612/HOI=0.49779。
第六透镜物侧面第三接近光轴的反曲点与光轴间的垂直距离以HIF613表示,第六透镜像侧面第三接近光轴的反曲点与光轴间的垂直距离以HIF623表示,其满足下列条件:HIF613=0mm;HIF613/HOI=0;HIF623=0mm;HIF623/HOI=0。
第六透镜物侧面第四接近光轴的反曲点与光轴间的垂直距离以HIF614表示,第六透镜像侧面第四接近光轴的反曲点与光轴间的垂直距离以HIF624表示,其满足下列条件:HIF614=0mm;HIF614/HOI=0;HIF624=0mm;HIF624/HOI=0。
红外滤光片180为玻璃材质,其设置于第六透镜160及成像面190间且不影响光学成像系统的焦距。
本实施例的光学成像系统中,光学成像系统的焦距为f,光学成像系统的入射光瞳直径为HEP,光学成像系统中最大视角的一半为HAF,其数值如下:f=4.075mm;f/HEP=1.4;以及HAF=50.001度与tan(HAF)=1.1918。
本实施例的光学成像系统中,第一透镜110的焦距为f1,第六透镜160的焦距为f6,其满足下列条件:f1=-7.828mm;│f/f1│=0.52060;f6=-4.886;以及│f1│>│f6│。
本实施例的光学成像系统中,第二透镜120至第五透镜150的焦距分别为f2、f3、f4、f5,其满足下列条件:│f2│+│f3│+│f4│+│f5│=95.50815mm;│f1│+│f6│=12.71352mm以及│f2│+│f3│+│f4│+│f5│>│f1│+│f6│。
光学成像系统的焦距f与每一片具有正屈折力的透镜的焦距fp的比值为PPR,光学成像系统的焦距f与每一片具有负屈折力的透镜的焦距fn的比值为NPR,本实施例的光学成像系统中,所有具正屈折力的透镜的PPR总和为ΣPPR=f/f2+f/f4+f/f5=1.63290,所有具负屈折力的透镜的NPR总和为ΣNPR=│f/f1│+│f/f3│+│f/f6│=1.51305,ΣPPR/│ΣNPR│=1.07921。同时也满足下列条件:│f/f2│=0.69101;│f/f3│=0.15834;│f/f4│=0.06883;│f/f5│=0.87305;│f/f6│=0.83412。
本实施例的光学成像系统中,第一透镜物侧面112至第六透镜像侧面164间的距离为InTL,第一透镜物侧面112至成像面190间的距离为HOS,光圈100至成像面190间的距离为InS,图像传感器192有效感测区域对角线长的一半为HOI,第六透镜像侧面164至成像面190间的距离为BFL,其满足下列条件:InTL+BFL=HOS;HOS=19.54120mm;HOI=5.0mm;HOS/HOI=3.90824;HOS/f=4.7952;InS=11.685mm;以及InS/HOS=0.59794。
本实施例的光学成像系统中,于光轴上所有具屈折力的透镜的厚度总和为ΣTP,其满足下列条件:ΣTP=8.13899mm;以及ΣTP/InTL=0.52477。藉此,当可同时兼顾系统成像的对比度以及透镜制造的良率并提供适当的后焦距以容置其他元件。
本实施例的光学成像系统中,第一透镜物侧面112的曲率半径为R1,第一透镜像侧面114的曲率半径为R2,其满足下列条件:│R1/R2│=8.99987。藉此,避免球差增加过速。
本实施例的光学成像系统中,第六透镜物侧面162的曲率半径为R11,第六透镜像侧面164的曲率半径为R12,其满足下列条件:(R11-R12)/(R11+R12)=1.27780。藉此,有利于修正光学成像系统所产生的像散。
本实施例的光学成像系统中,所有具正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=f2+f4+f5=69.770mm;以及f5/(f2+f4+f5)=0.067。藉此,有助于适当分配单个透镜的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。
本实施例的光学成像系统中,所有具负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=f1+f3+f6=-38.451mm;以及f6/(f1+f3+f6)=0.127。藉此,有助于适当分配第六透镜的负屈折力至其他负透镜,以抑制入射光线行进过程显著像差的产生。
本实施例的光学成像系统中,第一透镜110与第二透镜120于光轴上的间隔距离为IN12,其满足下列条件:IN12=6.418mm;IN12/f=1.57491。藉此,有助于改善透镜的色差以提升其性能。
本实施例的光学成像系统中,第五透镜150与第六透镜160于光轴上的间隔距离为IN56,其满足下列条件:IN56=0.025mm;IN56/f=0.00613。藉此,有助于改善透镜的色差以提升其性能。
本实施例的光学成像系统中,第一透镜110与第二透镜120于光轴上的厚度分别为TP1以及TP2,其满足下列条件:TP1=1.934mm;TP2=2.486mm;以及(TP1+IN12)/TP2=3.36005。藉此,有助于控制光学成像系统制造的敏感度并提升其性能。
本实施例的光学成像系统中,第四透镜140,第五透镜150与第六透镜160于光轴上的厚度分别为TP4,TP5以及TP6,前述两透镜于光轴上的间隔距离为IN56,其满足下列条件:TP4=1.236mm;TP5=1.072mm;TP6=1.031mm;以及(TP6+IN56)/TP5=0.98555。藉此,有助于控制光学成像系统制造的敏感度并降低系统总高度。
本实施例的光学成像系统中,第三透镜130与第四透镜140于光轴上的间隔距离为IN34,第四透镜140与第五透镜150于光轴上的间隔距离为IN45,其满足下列条件:IN34=0.401mm;IN45=0.025mm;以及TP4/(IN34+TP4+IN45)=0.74376。藉此,有助于层层微幅修正入射光线行进过程所产生的像差并降低系统总高度。
本实施例的光学成像系统中,第五透镜物侧面152于光轴上的交点至第五透镜物侧面152的最大有效半径位置于光轴的水平位移距离为InRS51,第五透镜像侧面154于光轴上的交点至第五透镜像侧面154的最大有效半径位置于光轴的水平位移距离为InRS52,第五透镜150于光轴上的厚度为TP5,其满足下列条件:InRS51=-0.34789mm;InRS52=-0.88185mm;│InRS51│/TP5=0.32458以及│InRS52│/TP5=0.82276。藉此,有利于镜片的制作与成型,并有效维持其小型化。
本实施例的光学成像系统中,第五透镜物侧面152的临界点与光轴的垂直距离为HVT51,第五透镜像侧面154的临界点与光轴的垂直距离为HVT52,其满足下列条件:HVT51=0.515349mm;HVT52=0mm。
本实施例的光学成像系统中,第六透镜物侧面162于光轴上的交点至第六透镜物侧面162的最大有效半径位置于光轴的水平位移距离为InRS61,第六透镜像侧面164于光轴上的交点至第六透镜像侧面164的最大有效半径位置于光轴的水平位移距离为InRS62,第六透镜160于光轴上的厚度为TP6,其满足下列条件:InRS61=-0.58390mm;InRS62=0.41976mm;│InRS61│/TP6=0.56616以及│InRS62│/TP6=0.40700。藉此,有利于镜片的制作与成型,并有效维持其小型化。
本实施例的光学成像系统中,第六透镜物侧面162的临界点与光轴的垂直距离为HVT61,第六透镜像侧面164的临界点与光轴的垂直距离为HVT62,其满足下列条件:HVT61=0mm;HVT62=0mm。
本实施例的光学成像系统中,其满足下列条件:HVT51/HOI=0.1031。藉此,有助于光学成像系统的边缘视场的像差修正。
本实施例的光学成像系统中,其满足下列条件:HVT51/HOS=0.02634。藉此,有助于光学成像系统的边缘视场的像差修正。
本实施例的光学成像系统中,第一透镜、第三透镜以及第六透镜具有负屈折力,第一透镜的色散系数为NA1,第三透镜的色散系数为NA3,第六透镜的色散系数为NA6,其满足下列条件:NA6/NA1≦1。藉此,有助于光学成像系统色差的修正。
本实施例的光学成像系统中,光学成像系统于成像时的TV畸变为TDT,成像时的光学畸变为ODT,其满足下列条件:TDT=2.124%;ODT=5.076%。
本实施例的光学成像系统中,正向子午面光扇图的可见光最长工作波长通过光圈边缘入射在成像面上0.7视场的横向像差以PLTA表示,其为0.006mm,正向子午面光扇图的可见光最短工作波长通过光圈边缘入射在成像面上0.7视场的横向像差以PSTA表示,其为0.005mm,负向子午面光扇图的可见光最长工作波长通过光圈边缘入射在成像面上0.7视场的横向像差以NLTA表示,其为0.004mm,负向子午面光扇图的可见光最短工作波长通过光圈边缘入射在成像面上0.7视场的横向像差以NSTA表示,其为-0.007mm。弧矢面光扇图的可见光最长工作波长通过光圈边缘入射在成像面上0.7视场的横向像差以SLTA表示,其为-0.003mm,弧矢面光扇图的可见光最短工作波长通过光圈边缘入射在成像面上0.7视场的横向像差以SSTA表示,其为0.008mm。
再配合参照下列表一以及表二。
表二、第一实施例的非球面系数
依据表一及表二可得到下列轮廓曲线长度相关的数值:
表一为第一实施例详细的结构数据,其中曲率半径、厚度、距离及焦距的单位为mm,且表面0-16依次表示由物侧至像侧的表面。表二为第一实施例中的非球面数据,其中,k表非球面曲线方程式中的锥面系数,A1-A20则表示各表面第1-20阶非球面系数。此外,以下各实施例表格乃对应各实施例的示意图与像差曲线图,表格中数据的定义皆与第一实施例的表一及表二的定义相同,在此不加赘述。
第二实施例
请参照图2A及图2B,其中图2A示出了依照本发明第二实施例的一种光学成像系统的示意图,图2B由左至右依次为第二实施例的光学成像系统的球差、像散及光学畸变曲线图。图2C为第二实施例的光学成像系统于0.7视场处的横向像差图。由图2A可知,光学成像系统20由物侧至像侧依次包括光圈200、第一透镜210、第二透镜220、第三透镜230、第四透镜240、第五透镜250、第六透镜260、红外滤光片280、成像面290以及图像传感器292。
第一透镜210具有正屈折力,且为塑料材质,其物侧面212为凸面,其像侧面214为凹面,并皆为非球面,其物侧面212以及像侧面214均具有一反曲点。
第二透镜220具有负屈折力,且为塑料材质,其物侧面222为凸面,其像侧面224为凹面,并皆为非球面,其物侧面222以及像侧面224均具有一反曲点。
第三透镜230具有正屈折力,且为塑料材质,其物侧面232为凸面,其像侧面234为凸面,并皆为非球面,其物侧面232以及像侧面234均具有一反曲点。
第四透镜240具有正屈折力,且为塑料材质,其物侧面242为凹面,其像侧面244为凸面,并皆为非球面,其物侧面242以及像侧面244均具有一反曲点。
第五透镜250具有正屈折力,且为塑料材质,其物侧面252为凸面,其像侧面254为凸面,并皆为非球面,其物侧面252具有一反曲点以及像侧面254具有二反曲点。
第六透镜260具有负屈折力,且为塑料材质,其物侧面262为凹面,其像侧面264为凹面。藉此,有利于缩短其后焦距以维持小型化。另外,第六透镜其物侧面262以及像侧面264均具有一反曲点,可有效地压制离轴视场光线入射的角度,进一步可修正离轴视场的像差。
红外滤光片280为玻璃材质,其设置于第六透镜260及成像面290间且不影响光学成像系统的焦距。
本实施例的光学成像系统中,所有具正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=29.423mm;以及f1/ΣPP=0.309。藉此,有助于适当分配单个透镜的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。
本实施例的光学成像系统中,所有具负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=-12.565mm;以及f2/ΣNP=0.783。藉此,有助于适当分配单个透镜的负屈折力至其他负透镜。
请配合参照下列表三以及表四。
表四、第二实施例的非球面系数
第二实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表三及表四可得到下列条件式数值:
依据表三及表四可得到轮廓曲线长度相关的数值:
依据表三及表四可得到下列数值:
第三实施例
请参照图3A及图3B,其中图3A示出了依照本发明第三实施例的一种光学成像系统的示意图,图3B由左至右依次为第三实施例的光学成像系统的球差、像散及光学畸变曲线图。图3C为第三实施例的光学成像系统于0.7视场处的横向像差图。由图3A可知,光学成像系统30由物侧至像侧依次包括光圈300、第一透镜310、第二透镜320、第三透镜330、第四透镜340、第五透镜350、第六透镜360、红外滤光片380、成像面390以及图像传感器392。
第一透镜310具有正屈折力,且为塑料材质,其物侧面312为凸面,其像侧面314为凹面,并皆为非球面,其物侧面312以及像侧面314均具有一反曲点。
第二透镜320具有负屈折力,且为塑料材质,其物侧面322为凸面,其像侧面324为凹面,并皆为非球面,其物侧面322具有一反曲点以及像侧面324具有二反曲点。
第三透镜330具有正屈折力,且为塑料材质,其物侧面332为凸面,其像侧面334为凸面,并皆为非球面,其物侧面332具有二反曲点以及像侧面334具有一反曲点。
第四透镜340具有正屈折力,且为塑料材质,其物侧面342为凹面,其像侧面344为凸面,并皆为非球面,且其物侧面342以及像侧面344均具有一反曲点。
第五透镜350具有正屈折力,且为塑料材质,其物侧面352为凸面,其像侧面354为凸面,并皆为非球面,且其物侧面352具有三反曲点以及像侧面354具有二反曲点。
第六透镜360具有负屈折力,且为塑料材质,其物侧面362为凹面,其像侧面364为凹面。藉此,有利于缩短其后焦距以维持小型化。另外,其物侧面362具有三反曲点以及像侧面364具有一反曲点,可有效地压制离轴视场光线入射的角度,进一步可修正离轴视场的像差。
红外滤光片380为玻璃材质,其设置于第六透镜360及成像面390间且不影响光学成像系统的焦距。
本实施例的光学成像系统中,所有具正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=20.647mm;以及f1/ΣPP=0.378。藉此,有助于适当分配单个透镜的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。
本实施例的光学成像系统中,所有具负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=-11.437mm;以及f2/ΣNP=0.851。藉此,有助于适当分配单个透镜的负屈折力至其他负透镜。
请配合参照下列表五以及表六。
表六、第三实施例的非球面系数
第三实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表五及表六可得到下列条件式数值:
依据表五及表六可得到下列轮廓曲线长度相关的数值:
依据表五及表六可得到下列条件式数值:
第四实施例
请参照图4A及图4B,其中图4A示出了依照本发明第四实施例的一种光学成像系统的示意图,图4B由左至右依次为第四实施例的光学成像系统的球差、像散及光学畸变曲线图。图4C为第四实施例的光学成像系统于0.7视场处的横向像差图。由图4A可知,光学成像系统40由物侧至像侧依次包括光圈400、第一透镜410、第二透镜420、第三透镜430、第四透镜440、第五透镜450、第六透镜460、红外滤光片480、成像面490以及图像传感器492。
第一透镜410具有正屈折力,且为塑料材质,其物侧面412为凸面,其像侧面414为凹面,并皆为非球面,且其物侧面412以及像侧面414均具有一反曲点。
第二透镜420具有负屈折力,且为塑料材质,其物侧面422为凸面,其像侧面424为凹面,并皆为非球面,且其物侧面422以及像侧面424均具有一反曲点。
第三透镜430具有正屈折力,且为塑料材质,其物侧面432为凸面,其像侧面434为凸面,并皆为非球面,且其物侧面432具有二反曲点以及像侧面434具有一反曲点。
第四透镜440具有正屈折力,且为塑料材质,其物侧面442为凹面,其像侧面444为凸面,并皆为非球面,且其物侧面442以及像侧面444均具有一反曲点。
第五透镜450具有正屈折力,且为塑料材质,其物侧面452为凸面,其像侧面454为凸面,并皆为非球面,且其物侧面452具有三反曲点以及像侧面454具有二反曲点。
第六透镜460具有负屈折力,且为塑料材质,其物侧面462为凸面,其像侧面464为凹面。藉此,有利于缩短其后焦距以维持小型化。另外,其物侧面462具有二反曲点以及像侧面464具有一反曲点,可有效地压制离轴视场光线入射的角度,进一步可修正离轴视场的像差。
红外滤光片480为玻璃材质,其设置于第六透镜460及成像面490间且不影响光学成像系统的焦距。
本实施例的光学成像系统中,所有具正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=20.463mm;以及f1/ΣPP=0.368。藉此,有助于适当分配单个透镜的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。
本实施例的光学成像系统中,所有具负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=-11.127mm;以及f2/ΣNP=0.849。藉此,有助于适当分配单个透镜的负屈折力至其他负透镜。
请配合参照下列表七以及表八。
表八、第四实施例的非球面系数
第四实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表七及表八可得到下列条件式数值:
依据表七及表八可得到下列轮廓曲线长度相关的数值:
依据表七及表八可得到下列条件式数值:
第五实施例
请参照图5A及图5B,其中图5A示出了依照本发明第五实施例的一种光学成像系统的示意图,图5B由左至右依次为第五实施例的光学成像系统的球差、像散及光学畸变曲线图。图5C为第五实施例的光学成像系统于0.7视场处的横向像差图。由图5A可知,光学成像系统50由物侧至像侧依次包括光圈500、第一透镜510、第二透镜520、第三透镜530、第四透镜540、第五透镜550、第六透镜560、红外滤光片580、成像面590以及图像传感器592。
第一透镜510具有正屈折力,且为塑料材质,其物侧面512为凸面,其像侧面514为凸面,并皆为非球面,其物侧面522具有一反曲点。
第二透镜520具有负屈折力,且为塑料材质,其物侧面522为凸面,其像侧面524为凹面,并皆为非球面,其像侧面524具有一反曲点。
第三透镜530具有正屈折力,且为塑料材质,其物侧面532为凸面,其像侧面534为凹面,并皆为非球面,且其物侧面532以及像侧面534均具有二反曲点。
第四透镜540具有正屈折力,且为塑料材质,其物侧面542为凹面,其像侧面544为凸面,并皆为非球面,且其物侧面542以及像侧面544均具有一反曲点。
第五透镜550具有正屈折力,且为塑料材质,其物侧面552为凸面,其像侧面554为凹面,并皆为非球面,且其物侧面552以及像侧面554均具有二反曲点。
第六透镜560具有负屈折力,且为塑料材质,其物侧面562为凸面,其像侧面564为凹面。藉此,有利于缩短其后焦距以维持小型化。另外,且其物侧面562具有三反曲点以及像侧面564具有一反曲点,可有效地压制离轴视场光线入射的角度,并修正离轴视场的像差。
红外滤光片580为玻璃材质,其设置于第六透镜560及成像面590间且不影响光学成像系统的焦距。
本实施例的光学成像系统中,所有具正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=33.024mm;以及f1/ΣPP=0.269。藉此,有助于适当分配单个透镜的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。
本实施例的光学成像系统中,所有具负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=-12.331mm;以及f2/ΣNP=0.735。藉此,有助于适当分配单个透镜的负屈折力至其他负透镜。
请配合参照下列表九以及表十。
表十、第五实施例的非球面系数
第五实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表九及表十可得到下列条件式数值:
依据表九及表十可得到下列轮廓曲线长度相关的数值:
依据表九及表十可得到下列条件式数值:
第六实施例
请参照图6A及图6B,其中图6A示出了依照本发明第六实施例的一种光学成像系统的示意图,图6B由左至右依次为第六实施例的光学成像系统的球差、像散及光学畸变曲线图。图6C为第六实施例的光学成像系统于0.7视场处的横向像差图。由图6A可知,光学成像系统60由物侧至像侧依次包括光圈600、第一透镜610、第二透镜620、第三透镜630、第四透镜640、第五透镜650、第六透镜660、红外滤光片680、成像面690以及图像传感器692。
第一透镜610具有正屈折力,且为塑料材质,其物侧面612为凸面,其像侧面614为凸面,并皆为非球面,且其物侧面612具有一反曲点。
第二透镜620具有负屈折力,且为塑料材质,其物侧面622为凸面,其像侧面624为凹面,并皆为非球面,且其物侧面622以及像侧面624均具有一反曲点。
第三透镜630具有正屈折力,且为塑料材质,其物侧面632为凸面,其像侧面634为凹面,并皆为非球面,且其物侧面632以及像侧面634均具有二反曲点。
第四透镜640具有正屈折力,且为塑料材质,其物侧面642为凹面,其像侧面644为凸面,并皆为非球面,其物侧面642以及像侧面644均具有一反曲点。
第五透镜650具有正屈折力,且为塑料材质,其物侧面652为凸面,其像侧面654为凹面,并皆为非球面,其物侧面652具有二反曲点以及像侧面654具有四反曲点。
第六透镜660具有负屈折力,且为塑料材质,其物侧面662为凸面,其像侧面664为凹面,且其物侧面662具有三反曲点以及像侧面664具有一反曲点。藉此,有利于缩短其后焦距以维持小型化,也可有效地压制离轴视场光线入射的角度,进一步可修正离轴视场的像差。
红外滤光片680为玻璃材质,其设置于第六透镜660及成像面690间且不影响光学成像系统的焦距。
本实施例的光学成像系统中,所有具正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=30.900mm;以及f1/ΣPP=0.308。藉此,有助于适当分配单个透镜的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。
本实施例的光学成像系统中,所有具负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=-12.135mm;以及f2/ΣNP=0.755。藉此,有助于适当分配单个透镜的负屈折力至其他负透镜。
请配合参照下列表十一以及表十二。
表十二、第六实施例的非球面系数
第六实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表十一及表十二可得到下列条件式数值:
依据表十一及表十二可得到轮廓曲线长度相关的数值:
依据表十一及表十二可得到下列条件式数值:
第七实施例
请参照图7A及图7B,其中图7A示出了依照本发明第七实施例的一种光学成像系统的示意图,图7B由左至右依次为第七实施例的光学成像系统的球差、像散及光学畸变曲线图。图7C为第七实施例的光学成像系统于0.7视场处的横向像差图。由图7A可知,光学成像系统70由物侧至像侧依次包括光圈700、第一透镜710、第二透镜720、第三透镜730、第四透镜740、第五透镜750、第六透镜760、红外滤光片780、成像面790以及图像传感器792。
第一透镜710具有正屈折力,且为塑料材质,其物侧面712为凸面,其像侧面714为凹面,并皆为非球面,且其物侧面712以及像侧面714均具有一反曲点。
第二透镜720具有负屈折力,且为塑料材质,其物侧面722为凸面,其像侧面724为凹面,并皆为非球面,且其物侧面722具有一反曲点以及像侧面724具有二反曲点。
第三透镜730具有正屈折力,且为塑料材质,其物侧面732为凸面,其像侧面734为凸面,并皆为非球面,且其物侧面732具有二反曲点以及像侧面734具有一反曲点。
第四透镜740具有正屈折力,且为塑料材质,其物侧面742为凹面,其像侧面744为凸面,并皆为非球面,其物侧面742以及像侧面744均具有一反曲点。
第五透镜750具有正屈折力,且为塑料材质,其物侧面752为凸面,其像侧面754为凸面,并皆为非球面,且其物侧面752具有二反曲点以及像侧面754具有三反曲点。
第六透镜760具有负屈折力,且为塑料材质,其物侧面762为凸面,其像侧面764为凹面,且其物侧面762具有三反曲点以及像侧面764具有一反曲点。藉此,有利于缩短其后焦距以维持小型化。另外,也可有效地压制离轴视场光线入射的角度,进一步可修正离轴视场的像差。
红外滤光片780为玻璃材质,其设置于第六透镜760及成像面790间且不影响光学成像系统的焦距。
本实施例的光学成像系统中,所有具正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=28.122mm;以及f1/ΣPP=0.365。藉此,有助于适当分配单个透镜的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。
本实施例的光学成像系统中,所有具负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=-13.355mm;以及f2/ΣNP=0.807。藉此,有助于适当分配单个透镜的负屈折力至其他负透镜。
请配合参照下列表十三以及表十四。
表十四、第七实施例的非球面系数
第七实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表十三及表十四可得到下列条件式数值:
依据表十三及表十四可得到轮廓曲线长度相关的数值:
依据表十三及表十四可得到下列条件式数值:
第八实施例
请参照图8A及图8B,其中图8A示出了依照本发明第八实施例的一种光学成像系统的示意图,图8B由左至右依次为第八实施例的光学成像系统的球差、像散及光学畸变曲线图。图8C为第八实施例的光学成像系统于0.7视场处的横向像差图。由图8A可知,光学成像系统80由物侧至像侧依次包括光圈800、第一透镜810、第二透镜820、第三透镜830、第四透镜840、第五透镜850、第六透镜860、红外滤光片880、成像面890以及图像传感器892。
第一透镜810具有正屈折力,且为塑料材质,其物侧面812为凸面,其像侧面814为凸面,并皆为非球面,且其物侧面812具有一反曲点。
第二透镜820具有负屈折力,且为塑料材质,其物侧面822为凸面,其像侧面824为凹面,并皆为非球面,且其物侧面822以及像侧面824均具有一反曲点。
第三透镜830具有正屈折力,且为塑料材质,其物侧面832为凸面,其像侧面834为凹面,并皆为非球面,且其物侧面832以及像侧面834均具有二反曲点。
第四透镜840具有正屈折力,且为塑料材质,其物侧面842为凹面,其像侧面844为凸面,并皆为非球面,其物侧面842以及像侧面844均具有二反曲点。
第五透镜850具有正屈折力,且为塑料材质,其物侧面852为凸面,其像侧面854为凸面,并皆为非球面,其物侧面852具有一反曲点以及像侧面854具有三反曲点。
第六透镜860具有负屈折力,且为塑料材质,其物侧面862为凸面,其像侧面864为凹面,且其物侧面862具有三反曲点以及像侧面864具有一反曲点。藉此,有利于缩短其后焦距以维持小型化,也可有效地压制离轴视场光线入射的角度,进一步可修正离轴视场的像差。
红外滤光片880为玻璃材质,其设置于第六透镜860及成像面890间且不影响光学成像系统的焦距。
本实施例的光学成像系统中,所有具正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=41.462mm;以及f1/ΣPP=0.258。藉此,有助于适当分配单个透镜的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。
本实施例的光学成像系统中,所有具负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=-11.880mm;以及f2/ΣNP=0.718。藉此,有助于适当分配单个透镜的负屈折力至其他负透镜。
请配合参照下列表十五以及表十六。
表十六、第八实施例的非球面系数
第八实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表十五及表十六可得到下列条件式数值:
依据表十五及表十六可得到轮廓曲线长度相关的数值:
依据表十五及表十六可得到下列条件式数值:
虽然本发明已以实施方式揭露如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视后附的权利要求所界定者为准。
虽然本发明已参照其例示性实施例而特别地显示及描述,将为所属技术领域普通技术人员所理解的是,于不脱离以下权利要求及其等效物所定义的本发明的精神与范畴下可对其进行形式与细节上的各种变更。

Claims (25)

1.一种光学成像系统,其特征在于,由物侧至像侧依次包括:
一第一透镜,具有屈折力;
一第二透镜,具有屈折力;
一第三透镜,具有正屈折力;
一第四透镜,具有屈折力;
一第五透镜,具有屈折力;
一第六透镜,具有屈折力;以及
一成像面;
其中所述光学成像系统具有屈折力的透镜为六枚,所述光学成像系统于所述成像面上垂直于光轴具有一最大成像高度HOI,所述第一透镜至所述第二透镜及所述第四透镜至所述第六透镜中至少一枚透镜具有正屈折力,所述第一透镜至所述第六透镜的焦距分别为f1、f2、f3、f4、f5、f6,所述光学成像系统的焦距为f,所述光学成像系统的入射光瞳直径为HEP,所述第一透镜物侧面至所述成像面于光轴上具有一距离HOS,所述第一透镜物侧面至所述第六透镜像侧面于光轴上具有一距离InTL,所述光学成像系统的最大可视角度的一半为HAF,以所述第一透镜至所述第六透镜中任一透镜的任一表面与光轴的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE,其满足下列条件:2.0≦f/HEP≦10.0;0deg<HAF≦150deg以及0.9≦2(ARE/HEP)≦1.5。
2.如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统于成像时的TV畸变为TDT,所述光学成像系统于所述成像面上垂直于光轴具有一最大成像高度HOI,所述光学成像系统的正向子午面光扇的可见光最长工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以PLTA表示,其正向子午面光扇的可见光最短工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以PSTA表示,负向子午面光扇的可见光最长工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以NLTA表示,负向子午面光扇的可见光最短工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以NSTA表示,弧矢面光扇的可见光最长工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以SLTA表示,弧矢面光扇的可见光最短工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以SSTA表示,其满足下列条件:PLTA≦100微米;PSTA≦100微米;NLTA≦100微米;NSTA≦100微米;SLTA≦100微米;SSTA≦100微米;以及│TDT│≦250%。
3.如权利要求1所述的光学成像系统,其特征在于,所述第一透镜至所述第六透镜中任一透镜的任一表面的最大有效半径以EHD表示,以所述第一透镜至所述第六透镜中任一透镜的任一表面与光轴的交点为起点,沿着该表面的轮廓直到该表面的最大有效半径处为终点,前述两点间的轮廓曲线长度为ARS,其满足下列公式:0.9≦ARS/EHD≦2.0。
4.如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足下列公式:0mm<HOS≦30mm。
5.如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的可视角度的一半为HAF,其满足下列公式:0deg<HAF≦100deg。
6.如权利要求1所述的光学成像系统,其特征在于,以所述第六透镜的物侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE61,以所述第六透镜的像侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE62,第六透镜于光轴上的厚度为TP6,其满足下列条件:0.05≦ARE61/TP6≦15;以及0.05≦ARE62/TP6≦15。
7.如权利要求1所述的光学成像系统,其特征在于,以所述第五透镜的物侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE51,以所述第五透镜的像侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE52,所述第五透镜于光轴上的厚度为TP5,其满足下列条件:0.05≦ARE51/TP5≦15;以及0.05≦ARE52/TP5≦15。
8.如权利要求1所述的光学成像系统,其特征在于,所述第一透镜至所述第二透镜中至少一枚透镜具有正屈折力。
9.如权利要求1所述的光学成像系统,其特征在于,还包括一光圈,并且所述光圈至所述成像面具有一距离InS,其满足下列公式:0.2≦InS/HOS≦1.1。
10.一种光学成像系统,其特征在于,由物侧至像侧依次包括:
一第一透镜,具有屈折力;
一第二透镜,具有屈折力;
一第三透镜,具有正屈折力;
一第四透镜,具有屈折力;
一第五透镜,具有屈折力;
一第六透镜,具有屈折力;以及
一成像面;
其中所述光学成像系统具有屈折力的透镜为六枚,所述光学成像系统于所述成像面上垂直于光轴具有一最大成像高度HOI,且所述第一透镜至所述第六透镜中至少一枚透镜的至少一表面具有至少一反曲点,所述第一透镜至所述第二透镜中至少一枚透镜具有正屈折力,所述第四透镜至所述第六透镜中至少一枚透镜具有正屈折力,所述第一透镜至所述第六透镜的焦距分别为f1、f2、f3、f4、f5、f6,所述光学成像系统的焦距为f,所述光学成像系统的入射光瞳直径为HEP,所述第一透镜物侧面至所述成像面于光轴上具有一距离HOS,所述第一透镜物侧面至所述第六透镜像侧面于光轴上具有一距离InTL,所述光学成像系统的最大可视角度的一半为HAF,以所述第一透镜至所述第六透镜中任一透镜的任一表面与光轴的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE,其满足下列条件:2.0≦f/HEP≦10.0;0deg<HAF≦150deg;以及0.9≦2(ARE/HEP)≦1.5。
11.如权利要求10所述的光学成像系统,其特征在于,所述第一透镜至所述第六透镜中任一透镜的任一表面的最大有效半径以EHD表示,以所述第一透镜至所述第六透镜中任一透镜的任一表面与光轴的交点为起点,沿着该表面的轮廓直到该表面的最大有效半径处为终点,前述两点间的轮廓曲线长度为ARS,其满足下列公式:0.9≦ARS/EHD≦2.0。
12.如权利要求10所述的光学成像系统,其特征在于,所述第一透镜至所述第六透镜中至少二枚透镜的每个透镜的至少一表面具有至少一反曲点。
13.如权利要求10所述的光学成像系统,其特征在于,所述光学成像系统于所述成像面上垂直于光轴具有一最大成像高度HOI,所述光学成像系统的正向子午面光扇的可见光最长工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以PLTA表示,其正向子午面光扇的可见光最短工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以PSTA表示,负向子午面光扇的可见光最长工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以NLTA表示,负向子午面光扇的可见光最短工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以NSTA表示,弧矢面光扇的可见光最长工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以SLTA表示,弧矢面光扇的可见光最短工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以SSTA表示,其满足下列条件:PLTA≦100微米;PSTA≦100微米;NLTA≦100微米;NSTA≦100微米;SLTA≦100微米;SSTA≦100微米以及;HOI>3.0mm。
14.如权利要求10所述的光学成像系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜及所述第六透镜中至少一枚透镜为波长小于500nm的光线滤除元件。
15.如权利要求10所述的光学成像系统,其特征在于,所述第一透镜与所述第二透镜之间于光轴上的距离为IN12,且满足下列公式:0<IN12/f≦3.0。
16.如权利要求10所述的光学成像系统,其特征在于,所述第五透镜与所述第六透镜之间于光轴上的距离为IN56,且满足下列公式:0<IN56/f≦0.8。
17.如权利要求10所述的光学成像系统,其特征在于,所述第五透镜与所述第六透镜之间于光轴上的距离为IN56,所述第五透镜与所述第六透镜于光轴上的厚度分别为TP5以及TP6,其满足下列条件:0.1≦(TP6+IN56)/TP5≦10。
18.如权利要求10所述的光学成像系统,其特征在于,所述第一透镜与所述第二透镜之间于光轴上的距离为IN12,所述第一透镜与第二透镜于光轴上的厚度分别为TP1以及TP2,其满足下列条件:0.1≦(TP1+IN12)/TP2≦10。
19.如权利要求10所述的光学成像系统,其特征在于,所述第四透镜、所述第五透镜以及所述第六透镜于光轴上的厚度分别为TP4、TP5以及TP6,其满足下列条件:TP4≧TP5以及TP4≧TP6。
20.一种光学成像系统,其特征在于,由物侧至像侧依次包括:
一第一透镜,具有正屈折力;
一第二透镜,具有屈折力;
一第三透镜,具有正屈折力;
一第四透镜,具有屈折力;
一第五透镜,具有屈折力;
一第六透镜,具有屈折力;以及
一成像面;
其中所述光学成像系统具有屈折力的透镜为六枚,所述光学成像系统于所述成像面上垂直于光轴具有一最大成像高度HOI,所述第二透镜、所述第四透镜至所述第六透镜中至少一枚透镜具有正屈折力,且所述第一透镜至所述第六透镜中至少二枚透镜的每一透镜的至少一表面具有至少一反曲点,所述第一透镜至所述第六透镜的焦距分别为f1、f2、f3、f4、f5、f6,所述光学成像系统的焦距为f,所述光学成像系统的入射光瞳直径为HEP,所述第一透镜物侧面至所述成像面于光轴上具有一距离HOS,所述第一透镜物侧面至所述第六透镜像侧面于光轴上具有一距离InTL,所述光学成像系统的最大可视角度的一半为HAF,以所述第一透镜至所述第六透镜中任一透镜的任一表面与光轴的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE,其满足下列条件:2.0≦f/HEP≦3.5;0deg<HAF≦150deg;以及0.9≦2(ARE/HEP)≦1.5。
21.如权利要求20所述的光学成像系统,其特征在于,所述第一透镜至所述第六透镜中任一透镜的任一表面的最大有效半径以EHD表示,以所述第一透镜至所述第六透镜中任一透镜的任一表面与光轴的交点为起点,沿着该表面的轮廓直到该表面的最大有效半径处为终点,前述两点间的轮廓曲线长度为ARS,其满足下列公式:0.9≦ARS/EHD≦2.0。
22.如权利要求20所述的光学成像系统,其特征在于,所述光学成像系统满足下列公式:0mm<HOS≦30mm。
23.如权利要求20所述的光学成像系统,其特征在于,以所述第六透镜的物侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE61,以所述第六透镜的像侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE62,第六透镜于光轴上的厚度为TP6,其满足下列条件:0.05≦ARE61/TP6≦15;以及0.05≦ARE62/TP6≦15。
24.如权利要求20所述的光学成像系统,其特征在于,以所述第五透镜的物侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为为ARE51,以所述第五透镜的像侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE52,所述第五透镜于光轴上的厚度为TP5,其满足下列条件:0.05≦ARE51/TP5≦15;以及0.05≦ARE52/TP5≦15。
25.如权利要求20所述的光学成像系统,其特征在于,所述光学成像系统还包括一光圈、一图像传感器以及一驱动模块,所述图像传感器设置于所述成像面,并且所述光圈至所述成像面具有一距离InS,所述驱动模块与各所述透镜相耦合并使各所述透镜产生位移,其满足下列公式:0.2≦InS/HOS≦1.1。
CN201610990889.1A 2015-12-01 2016-11-10 光学成像系统 Active CN106814438B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW104140210A TWI622794B (zh) 2015-12-01 2015-12-01 光學成像系統
TW104140210 2015-12-01

Publications (2)

Publication Number Publication Date
CN106814438A CN106814438A (zh) 2017-06-09
CN106814438B true CN106814438B (zh) 2019-05-31

Family

ID=58777952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610990889.1A Active CN106814438B (zh) 2015-12-01 2016-11-10 光学成像系统

Country Status (3)

Country Link
US (1) US9983386B2 (zh)
CN (1) CN106814438B (zh)
TW (1) TWI622794B (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109040553B (zh) 2013-06-13 2021-04-13 核心光电有限公司 双孔径变焦数字摄影机
CN108535839B (zh) 2013-07-04 2022-02-08 核心光电有限公司 小型长焦透镜套件
US9857568B2 (en) 2013-07-04 2018-01-02 Corephotonics Ltd. Miniature telephoto lens assembly
US9392188B2 (en) 2014-08-10 2016-07-12 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
TWI616673B (zh) 2015-12-03 2018-03-01 先進光電科技股份有限公司 光學成像系統
TWI625543B (zh) * 2015-12-03 2018-06-01 先進光電科技股份有限公司 光學成像系統
TWI588526B (zh) 2016-01-22 2017-06-21 大立光電股份有限公司 成像用光學鏡頭組、取像裝置及電子裝置
TWI601995B (zh) * 2017-01-18 2017-10-11 Largan Precision Co Ltd 影像擷取光學鏡組、取像裝置及電子裝置
WO2018154421A1 (en) 2017-02-23 2018-08-30 Corephotonics Ltd. Folded camera lens designs
TWI703368B (zh) * 2018-02-08 2020-09-01 先進光電科技股份有限公司 光學成像系統
CN110720068B (zh) 2018-05-14 2022-04-26 核心光电有限公司 折叠相机透镜设计
TWI676061B (zh) 2018-08-10 2019-11-01 大立光電股份有限公司 取像光學鏡組、取像裝置及電子裝置
KR20200084180A (ko) * 2019-01-02 2020-07-10 삼성전기주식회사 촬상 광학계
CN114615399A (zh) 2019-01-03 2022-06-10 核心光电有限公司 双重相机
CN110221413B (zh) * 2019-06-30 2022-03-01 瑞声光学解决方案私人有限公司 摄像光学镜头
CN114578520A (zh) 2019-08-21 2022-06-03 核心光电有限公司 镜头组件
US11656538B2 (en) 2019-11-25 2023-05-23 Corephotonics Ltd. Folded zoom camera module with adaptive aperture
EP4052093A4 (en) 2020-01-08 2022-12-28 Corephotonics Ltd. DIGITAL MULTI-APERTURE ZOOM CAMERAS AND METHODS OF USE THEREOF
CN117572549A (zh) 2020-05-30 2024-02-20 核心光电有限公司 用于获得超微距图像的系统和方法
EP4425256A2 (en) 2020-07-31 2024-09-04 Corephotonics Ltd. Folded macro-tele camera lens designs
EP4127788A4 (en) 2020-09-18 2024-06-19 Corephotonics Ltd. FOLD-OUT ZOOM CAMERA
KR20220079874A (ko) 2020-12-01 2022-06-14 코어포토닉스 리미티드 연속적으로 적응하는 줌 팩터를 갖는 폴디드 카메라
TWI825444B (zh) * 2021-07-02 2023-12-11 先進光電科技股份有限公司 光學成像系統
CN116745686A (zh) 2021-09-23 2023-09-12 核心光电有限公司 大光圈连续变焦折叠长焦摄像头
EP4244670A4 (en) 2021-11-02 2024-03-06 Corephotonics Ltd. COMPACT DOUBLE-FOLDED TV CAMERAS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202049277U (zh) * 2011-03-11 2011-11-23 大立光电股份有限公司 影像撷取镜片组
JP2014013293A (ja) * 2012-07-04 2014-01-23 Ricoh Co Ltd 画像読取レンズ、画像読取装置及び画像形成装置
CN104076488A (zh) * 2011-06-20 2014-10-01 大立光电股份有限公司 影像拾取光学系统
CN106468822A (zh) * 2015-08-18 2017-03-01 先进光电科技股份有限公司 光学成像系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8760774B2 (en) * 2012-02-17 2014-06-24 Newmax Technology Co., Ltd. Six-piece optical lens system
JP5718527B2 (ja) * 2012-07-23 2015-05-13 富士フイルム株式会社 撮像レンズおよび撮像装置
TWI463169B (zh) * 2013-07-25 2014-12-01 Largan Precision Co Ltd 影像系統鏡片組及取像裝置
JP2015222369A (ja) * 2014-05-23 2015-12-10 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
TWI489133B (zh) * 2014-06-20 2015-06-21 Largan Precision Co Ltd 取像光學系統、取像裝置以及可攜式裝置
TWI500959B (zh) * 2014-07-01 2015-09-21 Largan Precision Co Ltd 攝像用光學鏡頭、取像裝置以及電子裝置
CN105629446B (zh) * 2014-10-29 2018-01-09 玉晶光电(厦门)有限公司 光学成像镜头及应用该光学成像镜头的电子装置
CN104820275B (zh) * 2015-01-23 2017-07-11 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
TWM503575U (zh) * 2015-03-20 2015-06-21 Largan Precision Co Ltd 攝影光學鏡片組、取像裝置及電子裝置
TWM510465U (zh) * 2015-06-04 2015-10-11 Kinko Optical Co Ltd 光學攝像鏡頭

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202049277U (zh) * 2011-03-11 2011-11-23 大立光电股份有限公司 影像撷取镜片组
CN104076488A (zh) * 2011-06-20 2014-10-01 大立光电股份有限公司 影像拾取光学系统
JP2014013293A (ja) * 2012-07-04 2014-01-23 Ricoh Co Ltd 画像読取レンズ、画像読取装置及び画像形成装置
CN106468822A (zh) * 2015-08-18 2017-03-01 先进光电科技股份有限公司 光学成像系统

Also Published As

Publication number Publication date
TW201721215A (zh) 2017-06-16
TWI622794B (zh) 2018-05-01
CN106814438A (zh) 2017-06-09
US9983386B2 (en) 2018-05-29
US20170153422A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
CN106814438B (zh) 光学成像系统
CN106501919B (zh) 光学成像系统
CN106468822B (zh) 光学成像系统
CN106483631B (zh) 光学成像系统
CN106405790B (zh) 光学成像系统
CN106168699B (zh) 光学成像系统
CN106168698B (zh) 光学成像系统
CN106483627B (zh) 光学成像系统
CN107085281B (zh) 光学成像系统
CN106842497B (zh) 光学成像系统
CN106168700B (zh) 光学成像系统
CN106249380B (zh) 光学成像系统
CN106405791B (zh) 光学成像系统
CN107045181B (zh) 光学成像系统
CN106443964B (zh) 光学成像系统
CN107045178B (zh) 光学成像系统
CN106249377B (zh) 光学成像系统
CN106483630B (zh) 光学成像系统
CN106468820B (zh) 光学成像系统
CN107203029B (zh) 光学成像系统
CN107132640B (zh) 光学成像系统
CN106154497B (zh) 光学成像系统
CN106353878B (zh) 光学成像系统
CN108279471A (zh) 光学成像系统
CN106680968B (zh) 光学成像系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant