CN106811416A - 水解酶CwlC在芽胞杆菌母细胞裂解中的应用 - Google Patents

水解酶CwlC在芽胞杆菌母细胞裂解中的应用 Download PDF

Info

Publication number
CN106811416A
CN106811416A CN201710102214.3A CN201710102214A CN106811416A CN 106811416 A CN106811416 A CN 106811416A CN 201710102214 A CN201710102214 A CN 201710102214A CN 106811416 A CN106811416 A CN 106811416A
Authority
CN
China
Prior art keywords
cwlc
thuringiensis
bacillus
cell
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710102214.3A
Other languages
English (en)
Other versions
CN106811416B (zh
Inventor
宋福平
彭琦
高坦坦
陈晓敏
耿丽丽
张�杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Plant Protection of Chinese Academy of Agricultural Sciences
Original Assignee
Institute of Plant Protection of Chinese Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Plant Protection of Chinese Academy of Agricultural Sciences filed Critical Institute of Plant Protection of Chinese Academy of Agricultural Sciences
Priority to CN201710102214.3A priority Critical patent/CN106811416B/zh
Publication of CN106811416A publication Critical patent/CN106811416A/zh
Application granted granted Critical
Publication of CN106811416B publication Critical patent/CN106811416B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/06Lysis of microorganisms
    • C12N1/063Lysis of microorganisms of yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明涉及“水解酶CwlC在芽胞杆菌母细胞裂解中的应用”。本发明鉴定了一个新的参与母细胞裂解的苏云金芽胞杆菌(B.thuringiensis)中cwlC基因,cwlC基因缺失可完全阻断母细胞裂解,并且不影响芽胞形成和Cry1Ac蛋白的产量。同时发现GFP标记的CwlC蛋白可与细胞壁紧密结合。更重要的是,CwlC可水解对数生长期有活性的苏云金芽胞杆菌和枯草芽胞杆菌(Bacillus cereus)细胞的细胞壁。本发明表明CwlC不仅是芽胞期苏云金芽胞杆菌母细胞裂解的关键,对于构建高效用于农业生产的苏云金芽胞杆菌工程菌有很大意义,而且CwlC在生物医药和食品生产方面也有很大的应用前景。

Description

水解酶CwlC在芽胞杆菌母细胞裂解中的应用
技术领域
本发明涉及生物技术领域,特别是水解酶CwlC在芽胞杆菌母细胞裂解中的应用。
背景技术
芽胞杆菌(Bacillus spp.)是一种产芽胞革兰氏阳性菌,当受到外部环境的胁迫时会在母细胞中产生休眠的芽胞。在芽胞期晚期,母细胞自溶并伴随着成熟芽胞的释放是细菌细胞程序性死亡的标志(programmed cell death,简称PCD)(LewisK.2000.Programmed death in bacteria.Microbiol Mol Biol Rev64:503–514.)。因此,理解母细胞中信号转导通路控制的PCD是十分重要的,而细胞壁水解酶在这过程中起着关键的作用(Lewis K.2000.Programmed death in bacteria.Microbiol Mol Biol Rev64:503–514.)。细菌肽聚糖水解酶包括一个大的和高度多样化的酶族群,它们可剪切高分子肽聚糖或可溶性片段的化学键(Shockman GD,Daneo-Moore L,Kariyama R,MassiddaO.1996.Bacterial walls,peptidoglycan hydrolases,autolysins andautolysis.Microb Drug Resist2:95–98.)。因此,参与母细胞裂解的水解酶研究为细菌程序性死亡的探究提供了分子基础。
枯草芽胞杆菌(Bacillus subtilis,简称B.subtilis)具有研究母细胞裂解行之有效的模式系统,先前研究表明,在枯草芽胞杆菌中已经有10种以上的肽聚糖水解酶被发现(Foster SJ.1992.Analysis of the autolysins of Bacillus subtilis 168duringvegetative growth and differentiation by using renaturing polyacrylamide gelelectrophoresis.J Bacteriol174:464–470.;Foster SJ.1994.The role andregulation of cell wall structural dynamics during differentiation ofendospore-forming bacteria.J Appl Bacteriol76:25S–39S.;Nugroho FA,Yamamoto H,Kobayashi Y,Sekiguchi J.1999.Characterization of a new sigma-K-dependentpeptidoglycan hydrolase gene that plays a role in Bacillus subtilis mothercell lysis.J Bacteriol181:6230–6237.;Vollmer W,Joris B,Charlier P,FosterS.2008.Bacterial peptidoglycan(murein)hydrolases.FEMS Microbiol Rev32:259–286.)。这些肽聚糖水解酶主要参与细胞壁的翻转(Mauck J,Chan L,GlaserL.1970.Turnover of the cell wall of gram-positive bacteria.The J BiolChem246:1820–1827.)和能源匮乏时的细胞裂解(Brown WC,Fraser DK,YoungFE.1970.Problems in purification of a Bacilllus subtilis autolytic enzymecaused by association with teichoic acid.Biochim Biophys Acta 198:308–315.,Fan DP,Bechman MM.1972.New centrifugation technique for isolating enzymesfrom large cell structures:Isolation and characterization of two Bacillussubtilis autolysins.J Bacteriol109:1258–1268.)。目前,大多数已鉴定的水解酶是MurNAc-LAAs(Foster SJ.1992.Analysis of the autolysins of Bacillus subtilis168during vegetative growth and differentiation by using renaturingpolyacrylamide gel electrophoresis.J Bacteriol174:464–470.,Nugroho FA,Yamamoto H,Kobayashi Y,Sekiguchi J.1999.Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilismother cell lysis.J Bacteriol181:6230–6237.,Herbold DR,Glaser L.1975.BacillussubtilisN-acetylmuramic acid L-alanine amidase.The J Biol Chem250:1676–1682.;Kuroda A,Asami Y,Sekiguchi J.1993.Molecular cloning of a sporulation specificcell wall hydrolase gene of Bacillus subtilis.J Bacteriol175:6260–6268.;Kuroda A,Sekiguchi J.1990.Cloning,sequencing and genetic mapping of aBacillus subtilis cell wall hydrolase gene.J Gen Microbiol136:2209–2216.),它可以水解位于N-乙酰胞壁酸和L-丙氨酸之间的酰胺键,从而将糖链和肽链分开(VollmerW,Joris B,Charlier P,Foster S.2008.Bacterial peptidoglycan(murein)hydrolases.FEMS Microbiol Rev32:259–286.)。具有90kDa的内-β-N-乙酰葡糖胺糖苷酶能水解位于N-乙酰-β-D-葡糖胺残基和相邻的单糖之间的糖苷键,这些糖苷键可来自不同寡聚糖中,包括N-多糖,肽聚糖,和几丁质(Karamanos Y.1997.Endo-N-acetyl-beta-D-glucosaminidases and their potential substrates:structure/functionrelationships.Res Microbiol 148:661–671.)。主要的细胞壁水解酶是CwlB(也称为LytC),CwlC,和CwlH。CwlB是在对数生长末期产生的营养期主要水解酶,它也出现在芽胞期(Foster SJ.1992.Analysis of the autolysins of Bacillus subtilis 168duringvegetative growth and differentiation by using renaturing polyacrylamide gelelectrophoresis.J Bacteriol174:464–470.,Herbold DR,Glaser L.1975.BacillussubtilisN-acetylmuramic acid L-alanine amidase.The J Biol Chem250:1676–1682.)。由σk控制的CwlC(Kuroda A,Asami Y,Sekiguchi J.1993.Molecular cloning ofa sporulation specific cell wall hydrolase gene of Bacillus subtilis.JBacteriol175:6260–6268.)和CwlH(Nugroho FA,Yamamoto H,Kobayashi Y,SekiguchiJ.1999.Characterization of a new sigma-K-dependent peptidoglycan hydrolasegene that plays a role in Bacillus subtilis mother cell lysis.J Bacteriol181:6230–6237.)是芽胞期特有的水解酶。在cwlB,cwlC和cwlH三个基因中,两两基因缺失使细胞不能正常裂解,三个基因同时缺失会阻断母细胞的裂解,单个基因缺失并没有影响母细胞裂解(Nugroho FA,Yamamoto H,Kobayashi Y,Sekiguchi J.1999.Characterization ofa new sigma-K-dependent peptidoglycan hydrolase gene that plays a role inBacillus subtilis mother cell lysis.J Bacteriol181:6230–6237.,Smith TJ,FosterSJ.1995.Characterization of the involvement of two compensatory autolysins inmother cell lysis during sporulation of Bacillus subtilis 168.J Bacteriol177:3855–3862.)。
广义的蜡状芽胞杆菌族由蜡样芽胞杆菌(Bacillus cereus,简称B.cereus)、苏云金芽胞杆菌(Bacillus thuringiensis,简称B.thuringiensis)、炭疽芽胞杆菌(Bacillusanthracis,简称B.anthracis),和其他4种芽胞杆菌组成。B.cereus是一种众所周知的条件致病菌,尤其与食品加工和乳制品产业中的污染密切相关(Stenfors Arnesen LP,Fagerlund A,Granum PE.2008.From soli to gut:Bacillus cereus and its foodpoisoning toxins.FEMS Microbiol Rev32:579–606.)。可形成高毒力芽胞的B.anthracis是一种急性致命的炭疽病病原,因此,可用于生物武器(Helgason E,Okstad OA,CaugantDA,Johansen HA,Fouet A,Mock M,Hegna I,Kolsto AB.2000.Bacillus anthracis,Bacillus cereus,and Bacillus thuringiensis–one species on the basis ofgenetic evidence.Appl Environ Microbiol66:2627–2630.,Vilas-Boas GT,PerucaAPS,Arantes OMN.2007.Biology and taxonomy of Bacillus cereus,Bacillusanthracis,and Bacillus thuringiensis.Can J Microbiol53:673–687.)。
和B.subtilis相比,我们对B.cereus中的水解酶知之甚少。目前,B.cereus中已知的水解酶包括sleB编码的芽胞萌发期皮质溶解酶SCLE(germination-specific sporecortex-lytic enzyme,一种MurNAc-LAA)(Moriyama R,Kudoh S,Miyata S,Nonobe S,Hattori A,Makino S.1996.A germination-specific spore cortex-lytic enzyme fromBacillus cereus spores:cloning and sequencing of the gene and molecularcharacterization of the enzyme.J Bacteriol178:5330–5332.),和sleL编码的裂解芽胞皮质片段的溶解酶CFLE(spore-lytic cortical-fragment-lytic enzyme,一种N-乙酰葡糖胺糖苷酶)(Chen YH,Fukuoka S,Makino S.2000.A novel spore peptidoglycanhydrolase of Bacillus cereus:biochemical characterization and nucleotidesequence of the corresponding gene,sleL.J Bacteriol182:1499–1506.),和由entFM编码的细胞壁肽酶CwpFM(the potential cell wall peptidase)(Tran S-L,GuillemetE,Gohar M,Lereclus D,Ramarao N.2010.CwpFM(EntFM)is a Bacillus cereuspotentialcell wall peptidase implicated in adhesion,biofilm formation,and virulence.JBacteriol192:2638–2642.)。SCLE偏向水解完整的芽胞肽聚糖,然而CFLE水解不完整的芽胞肽聚糖(Moriyama R,Kudoh S,Miyata S,Nonobe S,Hattori A,Makino S.1996.Agermination-specific spore cortex-lytic enzyme from Bacillus cereus spores:cloning and sequencing of the gene and molecular characterization of theenzyme.J Bacteriol178:5330–5332.,Chen YH,Fukuoka S,Makino S.2000.A novelspore peptidoglycan hydrolase of Bacillus cereus:biochemical characterizationand nucleotide sequence of the corresponding gene,sleL.J Bacteriol182:1499–1506.)。CwpFM具有多种功能,如涉及细菌的形状、上皮细胞粘附、运动、生物膜形成、毒力和巨噬细胞空泡化(Tran S-L,Guillemet E,Gohar M,Lereclus D,Ramarao N.2010.CwpFM(EntFM)is a Bacillus cereuspotential cell wall peptidase implicated inadhesion,biofilm formation,and virulence.J Bacteriol192:2638–2642.)。然而,上述所有的酶都不参与B.cereus母细胞的裂解。另外,在炭疽芽胞杆菌中,噬菌体裂解酶和细菌中有关裂解酶的活性已被广泛研究(Paskaleva EE,Mundra RV,Mehta KK,Pangule RC,WuX,Glatfelter WS,Chen Z,Dordick JS,Kane RS.2015.Binding domains of Bacillusanthracis phage endolysins recognize cell culture age-related features on thebacterial surface.Biotechnol Prog31:1487–1493.,Watanabe T,Morimoto A,ShiomiT.1975.The fine structure and the protein composition ofλphage of Bacillusanthracis.Can J Microbiol21:1889–1892.,Loessner MJ.2005.Bacteriophageendolysins-current state of research and applications.Curr Opin Microbiol8:480–487.,Fischetti VA.2008.Bacteriophage lysins as effectiveantibacterials.Curr Opin Microbiol11:393–400.),并发现溶解酶PlyG和PlyPH可以非常有效的抵抗B.anthracis(Paskaleva EE,Mundra RV,Mehta KK,Pangule RC,Wu X,Glatfelter WS,Chen Z,Dordick JS,Kane RS.2015.Binding domains of Bacillusanthracis phage endolysins recognize cell culture age-related features on thebacterial surface.Biotechnol Prog31:1487–1493.,Watanabe T,Morimoto A,ShiomiT.1975.The fine structure and the protein composition ofλphage of Bacillusanthracis.Can J Microbiol21:1889–1892.,Fischetti VA.2005.Bacteriophage lyticenzymes:novel anti-infectives.Trends Microbiol13:491–496.)。
B.thuringiensis是目前世界上应用最广泛的生物杀虫剂(Sanahuja G,BanakarR,Twyman RM,Capell T,Christou P.2011.Bacillus thuringiensis:a century ofresearch,development and commercial applications.Plant Biotechnol J9:283–300.),B.thuringiensis区别于B.anthracis和B.cereus的主要特征即是在芽胞期会产生1个或多个具有广泛杀虫活性的伴胞晶体(Vilas-Boas GT,Peruca APS,ArantesOMN.2007.Biology and taxonomy of Bacillus cereus,Bacillus anthracis,andBacillus thuringiensis.Can J Microbiol53:673–687.)。然而,当释放的晶体在田间应用过程中受到田间紫外的照射会发生失活(Myasnik M,Manasherob R,Ben-Dov E,Zaritsky A,Margalith Y,Barak Z.2001.Comparative sensitivity to VU-B radiationof two Bacillus thuringiensis subspecies and other Bacillus sp.CurrMicrobiol43:140–143.)。避免晶体蛋白失活的其中一种方法是敲除σk基因,从而将晶体蛋白包括在母细胞中来增加它杀虫活性的持效性(Sanchis V,Gohar M,Chaufaux J,ArantesO,Meier A,Agaisse H,Cayley J,Lereclus D.1999.Development,and fieldperformance of a broad-spectrum nonviable asporogenic recombinant strain ofBacillus thuringiensis with greater potency and UV resistance.Appl EnvironMicrobiol65:4032–4039.);另一种方法是构建细胞壁水解酶基因缺失的工程菌。先前有研究鉴定了参与母细胞裂解的水解酶B.thuringiensis CwlB,并对其生化特性进行研究(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,SongF.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensismother cell lysis.J Bacteriol195:2887–2897.)。NCBI blast结果显示,B.thuringiensis CwlB与B.subtilis中的水解酶氨基酸相似性很低。CwlB是B.cereus族中首次发现的参与母细胞裂解的水解酶(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation and characteristics of a novelN-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensismother cell lysis.J Bacteriol195:2887–2897.)。然而,B.cereus族中参与母细胞裂解的关键水解酶仍未知。
发明内容
本发明验证了一个新的芽胞期特有的cwlC基因,它编码一个27.1kDa大小蛋白CwlC(MurNAc-LAA),CwlC是参与母细胞裂解的关键水解酶。另外,通过激光共聚焦显微镜(confocal laser scanning microscopy,简称CLSM)观察到CwlC-GFP融合蛋白定位在细胞壁上。另外,CwlC可水解有活性的B.thuringiensis和B.cereus细胞的细胞壁。因此,本研究发现为细胞程序性死亡的研究和B.thuringiensis工程菌的构建提供了良好的分子基础。我们的研究结果也发掘了一种新的有效的生物酶,它将有助于病原菌B.cereus感染治疗的发展。
水解酶CwlC在芽胞杆菌母细胞裂解中的应用。
所述应用为使芽胞杆菌菌株中缺失cwlC基因。
所述的应用,为使用CwlC蛋白水解芽胞杆菌活细胞的细胞壁。
所述芽胞杆菌为苏云金芽胞杆菌(B.thuringiensis)或蜡样芽胞杆菌(Bacilluscereus)。
所述水解酶CwlC的氨基酸序列如SEQ ID NO:2所示。
所述水解酶CwlC的基因序列如SEQ ID NO:1所示。
所述的应用构建得到的缺失cwlC基因的芽胞杆菌突变株。
所述芽胞杆菌为苏云金芽胞杆菌(B.thuringiensis),所述cwlC基因的序列如SEQID NO:1所示或与SEQ ID NO:1同源性在95%以上的同源基因。
所述的突变株,命名为HD(ΔcwlC),其原始菌株为B.thuringiensis HD73。
本发明鉴定了一个新的基因cwlC,基因序列如SEQ ID NO:1所示;它编码一种MurNAc-LAA蛋白,氨基酸序列如SEQ ID NO:2所示;并且发现在芽胞期(T8时期后)cwlC受σK的控制和GerE的正调控。表型观察结果表明CwlC对B.thuringiensis母细胞裂解起着关键性的作用。另外,本研究确定了CwlC蛋白的生化特性,发现CwlC定位在细胞壁表面。最后,本发明发现CwlC对B.thuringiensis和B.cereus活细胞细胞壁也有明显的水解活性。
已鉴定的B.subtilis中主要的三个细胞壁水解酶包括CwlB(Herbold DR,GlaserL.1975.Bacillus subtilisN-acetylmuramic acid L-alanine amidase.The J BiolChem250:1676–1682.),CwlC(Kuroda A,Asami Y,Sekiguchi J.1993.Molecular cloningof a sporulation specific cell wall hydrolase gene of Bacillus subtilis.JBacteriol175:6260–6268.),和CwlH(Nugroho FA,Yamamoto H,Kobayashi Y,SekiguchiJ.1999.Characterization of a new sigma-K-dependent peptidoglycan hydrolasegene that plays a role in Bacillus subtilis mother cell lysis.J Bacteriol181:6230–6237.),他们均为MurNAc-LAAs。B.thuringiensis CwlB也是一种MurNAc-LAA(YangJ,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptionalregulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidasegene involved in Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.)。这些蛋白都包含一个MurNAc-LAA家族结构域(Yang J,Peng Q,Chen Z,DengC,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation andcharacteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involvedin Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.)。本研究发现一种潜在的新的B.thuringiensis自溶酶CwlC,预测它含有N-末端MurNAc-LAA家族结构域和一个C-末端肽聚糖结合结构域(图1中B),NCBI BlastP结果显示它与B.thuringiensis CwlB蛋白的相似性仅为20%。在B.subtilis中,已发现的自溶酶基因单独缺失并不能影响母细胞的裂解(Nugroho FA,Yamamoto H,Kobayashi Y,SekiguchiJ.1999.Characterization of a new sigma-K-dependent peptidoglycan hydrolasegene that plays a role in Bacillus subtilis mother cell lysis.J Bacteriol181:6230–6237.,Smith TJ,Foster SJ.1995.Characterization of the involvement of twocompensatory autolysins in mother cell lysis during sporulation of Bacillussubtilis 168.J Bacteriol177:3855–3862.);而在B.thuringiensis中,cwlB基因缺失可明显延缓母细胞的裂解(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,SongF.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensismother cell lysis.J Bacteriol195:2887–2897.),并且本发明发现的cwlC基因缺失可完全阻断母细胞的裂解(图3)。这些数据表明芽胞杆菌母细胞的裂解机制并不保守;因此,推测芽胞杆菌母细胞的裂解存在复杂的调控网络。CwlC是首次在B.thuringiensis中发现的参与母细胞裂解的关键水解酶。基于此发现,可构建耐紫外线照射的B.thuringiensis工程菌(Manasherob R,Ben-Dov E,Xiaoqiang W,Boussiba S,Zaritsky A.2002.Protectionfrom UV-B damage of mosquito larvicidal toxins from Bacillus thuringiensissubsp.israelensis expressed in Anabaena PCC 7120.Curr Microbiol45:217–220.,Myasnik M,Manasherob R,Ben-Dov E,Zaritsky A,Margalith Y,BarakZ.2001.Comparative sensitivity to UV-B radiation of two Bacillusthuringiensis subspecies and other Bacillus sp.Curr Microbiol43:140–143.,Sanchis V,Gohar M,Chaufaux J,Arantes O,Meier A,Agaisse H,Cayley J,LereclusD.1999.Development and field performance of a broad-spectrum nonviableasporogenic recombinant strain of Bacillus thuringiensis with greater potencyand UV resistance.Appl Environ Microbiol65:4032–4039.)应用在农业生产中。
NCBI blastP结果显示,与CwlC蛋白相似性在90%以上的蛋白多达100多种,他们广泛地分布在B.thuringiensis、B.cereus及其它蜡样芽胞杆菌族菌株中,但并没有出现在B.anthracis或B.pseudomycoides菌株中(图8)。该结果表明CwlC蛋白可能参与多种蜡样芽胞杆菌族菌株细胞壁的水解。众所周知,许多蜡状芽胞杆菌菌株是可引起感染和医疗、食品加工中污染的致病性细菌(Stenfors Arnesen LP,Fagerlund A,Granum PE.2008.Fromsoli to gut:Bacillus cereus and its food poisoning toxins.FEMS MicrobiolRev32:579–606.,Vilas-Boas GT,Peruca APS,Arantes OMN.2007.Biology and taxonomyof Bacillus cereus,Bacillus anthracis,and Bacillus thuringiensis.Can JMicrobiol53:673–687.)。本研究表明CwlC能水解有活性的蜡样芽胞杆菌细胞壁。这些发现可能提供一个新的替代抗生素治疗由蜡样芽胞杆菌族病原菌引起感染的策略(FischettiVA.2005.Bacteriophage lytic enzymes:novel anti-infectives.Trends Microbiol13:491–496.,Tenover FC.2006.Mechanisms of antimicrobial resistance inbacteria.Am J Med119:S3–S10;discussion S62–S70.,FischettiVA.2008.Bacteriophage lysins as effective antibacterials.Curr OpinMicrobiol11:393–400.)。此外,CwlC可以发展成为一种在食品、生物技术和医学领域应用的工具酶(Loessner MJ.2005.Bacteriophage endolysins--current state of researchand applications.Curr Opin Microbiol8:480–487.)。
关于由细胞壁水解酶引起母细胞裂解的生物学意义,一个简单例子如PCD在各种发育过程中通过消除不必要的和有缺陷的细胞,如芽胞期母细胞裂解,粘细菌的子实体形成时营养细胞的裂解,和链球菌经自溶作用释放DNA而进行转化,起着重要的作用(LewisK.2000.Programmed death in bacteria.Microbiol Mol Biol Rev64:503–514.)。在B.subtilis芽胞期,母细胞裂解先于芽胞的释放。母细胞自溶是消除干扰萌发芽胞的生长障碍,并且母细胞释放的营养给亲缘细胞可能会提供给他们芽胞形成中需要的能量(LewisK.2000.Programmed death in bacteria.Microbiol Mol Biol Rev64:503–514.)。事实上,不像体内的浮游细胞,大多数细菌都生活在复杂的生物膜中,他们是以细胞群体状态生活(Costerton JM,Stewart PS,Greenberg EP.1999.Bacterial biofilms:a commoncause of persistent infections.Science 284:1318–1322.)。在PCD过程中,细胞裂解释放到胞外的DNA和蛋白质这可能成为生物膜基质的一部分(Thomas VC,Sadykov MR,Chaudhari SS,Jones J,Endres JL,Widhelm TJ,Ahn JS,Jawa RS,Zimmerman MC,BaylesKW.2014.A central role for carbon-overflow pathways in the modulation ofbacterial cell death.PLoS Pathog10:e1004205.)。从这一角度分析,PCD可能有助于多细胞群体的形成,以此来抵抗外界环境的压力。Hosoya et al.[Hosoya S,Lu Z,Ozaki Y,Takeuchi M,Sato T.2007.Cytological analysis of the mother cell death processduring sporulation in Bacillus subtilis.J Bacteriol189:2561–2565.]探究了细胞膜破裂和母细胞死亡细胞壁裂解之间的关系。通过细胞形态变化的观察,他们发现在细胞裂解前细胞膜破裂。据此,本发明人推测cwlC突变体细胞有可能更快的进入PCD过程,尽管该突变体培养到第15天都没发现其裂解迹象(图3中B)。因此,接下来研究CwlC的转录调控和分泌,以及探索它与PCD之间的关系都将会很有意义。
附图说明
图1 B.thuringiensis HD73cwlC基因转录单元分析。
(A)B.thuringiensis HD73RS15870-RS15880基因在基因组位置中的图谱。从基因组染色体上敲除的cwlC基因缺失区域被标示出来。曲线表示cwlC基因的启动子。注释有字母的虚线区域对应RT-PCR的扩增产物(见Fig.1C泳道)。实线表示各基因的ORFs。
(B)B.thuringiensis HD73CwlC和CwlB细胞壁水解酶的结构域组成。灰色框表示细胞壁结合结构域。黑色框表示MurNAc-LAA结构域。
(C)RT-PCR分析B.thuringiensis HD73cwlC基因转录单元。不加cDNA模板的PCR扩增作为阴性对照。以基因组DNA为模板的PCR扩增作为阳性对照。字母指代RT-PCR扩增产物在基因组位点对应的位置,见Fig.1A。总RNA从SSM培养基T15时期提取。
图2 cwlC启动子在HD73,HD(ΔgerE),and HD(ΔsigK)菌株中的转录活性分析。
(A)B.thuringiensis HD73cwlC基因序列分析。1,474-bp的序列被注释,省略部分用点表示。转录起始位点(+1),预测的-35和-10区域和GerE保守结合位点被注释。RS15870和cwlC基因的起始密码子和终止密码子分别用单划线和双划线表示。
(B)β-galactosidase活性测定实验用来比较cwlC基因启动子在不同菌株的转录活性,菌株均培养在SSM培养基30℃,220rpm条件中;Tn是T0后的n个小时。每个值表示三次独立重复的平均值。误差线表示标准偏差。
图3光学显微镜观察母细胞的裂解情况。
(A)光学显微镜观察B.thuringiensis HD73野生株,突变体HD(ΔcwlC)菌株和恢复突变株HD(ΔcwlC::cwlC)在T0、T16和T24时期的细胞形态,菌株均培养在SSM培养基30℃,220rpm条件中。标尺,10μm。
(B)光学显微镜观察B.thuringiensis突变体HD(ΔcwlC)菌株在培养至3天,5天和7天时的细胞形态,菌株均培养在SSM培养基30℃,220rpm条件中。标尺,10μm。
图4 B.thuringiensis HD73野生株和突变体HD(ΔcwlC)菌株芽胞形成率和晶体产量的比较。
(A)cwlC基因缺失未影响芽胞形成率。误差线表示标准偏差。
(B)cwlC基因缺失未影响晶体蛋白产量。误差线表示标准偏差。
图5 CwlC蛋白的生化特性分析
(A)E.coli表达的CwlC蛋白经镍亲和层析柱纯化后的SDS-PAGE分析。M代表蛋白Marker。
(B)Western blot分析确定细胞壁的结合能力。
(C)纯化的CwlC蛋白水解B.thuringiensis细胞壁。CwlC(37.5μg)蛋白和体外制备的B.thuringiensis细胞壁混合在5ml 0.05M TK buffer(pH 7.0)中,并温育在37℃。随后,在不同的时间间隔取500μl测量在OD540的混浊度(▲);不加CwlC蛋白的细胞壁单独温育在37℃用作阴性对照(■)。
图6 CwlC蛋白的定位
(A)cwlC基因与gfp基因融合载体的构建示意图。
(B)培养于SSM培养基中的HD(pHT-gfp-cwlC)菌株在T16和T20时期的CLSM观察图像。黄色、蓝色和白色箭头分别指示未裂解的细胞、已裂解的细胞和晶体细胞。GFP代表在细菌细胞中观察到的绿色荧光蛋白信号;FM4-64表示FM4-64染液的红色荧光信号;Overlay表示绿色荧光信号和红色荧光信号的重叠;PC表示相差显微图像(明场)。标尺,15μm。
图7 CwlC蛋白水解有活性的B.thuringiensis和B.cereus细胞的细胞壁。
(A)CwlC蛋白对有活性B.thuringiensis细胞的水解作用。B.thuringiensis细胞和CwlC蛋白(15μg)混合在0.2M PBS buffer中(pH 6.5)至OD600约为0.6,并温育在37℃0,10,20,30,or 40min。随后,在不同的时间间隔测量OD600值(▲);不加CwlC蛋白的B.thuringiensis细胞单独温育在37℃用作阴性对照(■)。
(B)CwlC蛋白对有活性B.cereus细胞的水解作用。B.cereus细胞和CwlC蛋白(15μg)混合在0.2M PBS buffer中(pH 6.5)至OD600约为0.6,并温育在37℃0,10,20,30,或40min。随后,在不同的时间间隔测量OD600值(▲);不加CwlC蛋白的B.cereus细胞单独温育在37℃用作阴性对照(■)。
图8 CwlC在芽胞杆菌中的保守性分布,图中为与CwlC相似性大于90%的蛋白。
具体实施方式
下面结合实施例对本发明做进一步的详细说明。
材料和方法:
细菌菌株,质粒和培养条件:本研究用到的菌株和质粒均列在表1中。大肠杆菌(Escherichia coli,简称E.coli)TG1和BL21分别用作分子克隆和蛋白表达的宿主菌株,E.coli ET12567用于为质粒DNA去甲基化(Hoffmann F,Schmidt M,Rinas U.2000.Simpletechnique for simultaneous on-line estimation of biomass and acetate frombase consumption and conductivity measurements in high-cell density culturesof Escherichia coli.Biotechnol Bioeng70:358–361.,Wang G,Zhang J,Song F,Wu J,Feng S,Huang D.2006.Engineered Bacillus thuringiensis GO33A with broadinsecticidal activity against lepidopteran and coleopteran pests.ApplMicrobiol Biotechnol72:924–930.)。E.coli所有的菌株在37℃条件下Luria–Bertani(LB)培养基(1%tryptone,0.5%yeast extract,1%NaCl)中培养,当实验条件需要时,会加入终浓度为5μg/ml的氯霉素或终浓度为100μg/ml氨苄青霉素。B.thuringiensis HD73用作检测启动子的转录活性和基因克隆的受体菌(Du C,Nickerson KW.1996.Bacillusthuringiensis HD-73spores have surface-localized Cry1Ac toxin:physiologicaland pathogenic consequences.Appl Environ Microbiol62:3722–3726.,Liu G,Song L,Shu C,Wang P,Deng C,Peng Q,Lereclus D,Wang X,Huang D,Zhang J,SongF.2013.Complete genome sequence of Bacillus thuringiensis subsp.kurstakistrain HD73.Genome Announc1:e00080-13.)。B.thuringiensis HD73及其衍生菌株通常培养在30℃条件下LB培养基中,当需要时,加入终浓度为5μg/ml红霉素或100μg/ml卡那霉素。Schaeffer’s sporulation medium(SSM;8g nutrient broth,0.12g MgSO4,1g KCl,0.5mM NaOH,1mM Ca(NO3)2,0.01μM MnCl2,1μM FeSO4per liter broth)用于芽胞形成实验(Schaeffer P,Millet J,Aubert JP.1965.Catabolic repression of bacterialsporulation.Proc Natl Acad Sci U S A54:704–711.)。下述菌株和质粒可以对公众发放。
表1.本研究应用到的菌株和质粒
[32]Wang G,Zhang J,Song F,Wu J,Feng S,Huang D.2006.EngineeredBacillus thuringiensis GO33A with broad insecticidal activity againstlepidopteran and coleopteran pests.Appl Microbiol Biotechnol72:924–930.WangG,Zhang J,Song F,Wu J,Feng S,Huang D.2006.Engineered Bacillus thuringiensisGO33A with broad insecticidal activity against lepidopteran and coleopteranpests.Appl Microbiol Biotechnol72:924–930.
[33]Du C,Nickerson KW.1996.Bacillus thuringiensis HD-73 spores havesurface-localized Cry1Ac toxin:physiological and pathogenic consequences.ApplEnviron Microbiol62:3722–3726.
[34]Liu G,Song L,Shu C,Wang P,Deng C,Peng Q,Lereclus D,Wang X,HuangD,Zhang J,Song F.2013.Complete genome sequence of Bacillus thuringiensissubsp.kurstaki strain HD73.Genome Announc1:e00080-13.
[39]Gennaro ML,Iordanescu S,Novick RP,Murray RW,Steck TR,KhanSA.1989.Functional organization of the plasmid pT181 replication origin.J MolBiol205:355–362.
[41]Arantes O,Lereclus D.1991.Construction of cloning vectors forBacillus thuringiensis.Gene 108:115–119.
[42]Agaisse H,Lereclus D.1994.Structural and functional analysis ofthe promoter region involved in full expression of the cryIIIA toxin gene ofBacillus thuringiensis.Mol Microbiol13:97–107.
[43]Du L,Wei J,Han L,Chen Z,Zhang J,Song F,Huang D.2011.[Characterization of Bacillus thuringiensis sigK disruption mutant and itsinfluence on activation of cry3A promoter].Wei Sheng Wu Xue Bao51:1177–1184.
[63]Thomas VC,Sadykov MR,Chaudhari SS,Jones J,Endres JL,Widhelm TJ,Ahn JS,Jawa RS,Zimmerman MC,Bayles KW.2014.A central role for carbon-overflowpathways in the modulation of bacterial cell death.PLoS Pathog10:e1004205.
DNA的操作:Taq DNA polymerase(BioMed,北京,中国)and PrimeSTAR HS DNAPolymerase(TaKaRa Biotechnology Corporation,北京,中国)用于PCR的扩增。AxyPrepPCR Cleanup Kit(Axygen Biotechnology Corporation,北京,中国)用于PCR扩增片段的纯化。用于PCR模板的B.thuringiensis基因组DNA从煮沸10分钟后的菌液上清中获得。限制性内切酶和T4DNA ligase(TaKaRa Biotechnology Corporation,北京,中国)按照制造商说明书使用。寡聚核苷酸引物(见表2)在Sangon Biotech(北京,中国)合成。AxygenPlasmid Miniprep Kit(Axygen Biotechnology Corporation,北京,中国)用于提取E.coli中的质粒DNA。所有构建的质粒均在华大(BGI,北京,中国)测序验证。热击法用于质粒转化E.coli(Sambrook J,Fritsch EF,Maniatis T,Molecular cloning:a laboratorymanual,1989,Cold Spring Harbor Laboratory Press:Cold Spring Harbor,NY.);电击法用于质粒转化B.thuringiensis(Lereclus D,Arantes O,Chaufaux J,LecadetM.1989.Transformation and expression of a cloned delta-endotoxin gene inBacillus thuringiensis.FEMS Microbiol Lett51:211–217.)。
表2.本研究用到的引物序列
总RNA的提取和反转录PCR(RT-PCR):生长在SSM培养基中T15(T15是对数生长末期[T0]后的第15个小时)时期的B.thuringiensis HD73菌用于总RNA的提取,RT-PCR按照文献(Du L,Qiu L,Peng Q,Lereclus D,Zhang J,Song F,Huang D.2012.Identification ofthe promoter in the intergenic region between orf1and cry8Ea1controlled bysigma H factor.Appl Environ Microbiol78:4164–4168.)方法进行。用于RT-PCR分析的引物均列在见表2中。
转录起始位点的确定:cDNA 5’末端快速扩增PCR(5′-rapid amplification ofcDNA ends,5’RACE)方法用于确定cwlC基因转录起始位点,实验方法详见生产商说明书(Clontech Laboratories,Inc.TaKaRa Biotechnology Corporation,Beijing,China)。5’RACE所用到的寡聚核苷酸引物见表2。
菌株构建:用同源重组的方法构建cwlC基因缺失突变株。具体方法如下:以B.thuringiensis HD73基因组DNA为模板和cwlC-a/cwlC-b为引物,通过PCR扩增出位于cwlC基因上游709bp大小的片段(cwlC片段A),该片段包括cwlC基因5’端27bp;以B.thuringiensis HD73基因组DNA为模板和cwlC-c/cwlC-d为引物,通过PCR扩增出位于cwlC基因下游548bp大小的片段(cwlC片段B),该片段包括cwlC基因3’端15bp。以pDG780质粒(Wang G,Zhang J,Song F,Wu J,Feng S,Huang D.2006.Engineered Bacillusthuringiensis GO33A with broad insecticidal activity against lepidopteran andcoleopteran pests.Appl Microbiol Biotechnol72:924–930.Wang G,Zhang J,Song F,Wu J,Feng S,Huang D.2006.Engineered Bacillus thuringiensis GO33A with broadinsecticidal activity against lepidopteran and coleopteran pests.ApplMicrobiol Biotechnol72:924–930.)为模板和CKm-a/CKm-b为引物,通过PCR扩增出大小为1,473bp的卡那霉素抗性基因(Kan片段)。随后,以cwlC-a/cwlC-d为引物,通过重叠PCR扩增将cwlC片段A,Kan片段和cwlC片段B三个DNA片段重叠成一个2,730bp大小的DNA片段。将上述扩增产生的DNA片段和pRN5101温敏质粒(Gennaro ML,Iordanescu S,Novick RP,MurrayRW,Steck TR,Khan SA.1989.Functional organization of the plasmidpT181replication origin.J Mol Biol205:355–362.)同时进行BamHI和SalI双酶切,分别产生带有粘性末端的DNA片段,这两个DNA片段通过T4连接酶连接,获得重组质粒pRN5101_cwlC。该重组质粒通过电击转化进B.thuringiensis HD73细胞中,在红霉素和卡那霉素双抗性板上进行转化子的初步筛选,以pRN5101-r/pRN5101-f为引物进行转化子的鉴定。通过同源重组的方法进行cwlC基因缺失突变体的筛选(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation and characteristics ofa novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillusthuringiensis mother cell lysis.J Bacteriol195:2887–2897.),以cwlC-a和cwlC-d为引物进行鉴定,最终筛选获得突变体菌株HD(ΔcwlC)。HD(ΔcwlC)菌株中cwlC基因开放阅读框(open reading fradme,ORF)中10-240的密码子处的DNA序列被1,473bp的含有卡那霉素抗性基因的DNA片段交换。
为构建HD(ΔcwlC)突变体的恢复株,以B.thuringiensis HD73基因组DNA为模板和HFcwlC-F/HFcwlC-R为引物,通过PCR扩增出包括cwlC启动子和ORF在内的大小为1,423bp的DNA片段。将上述扩增产生的DNA片段和pHT315穿梭质粒(Arantes O,LereclusD.1991.Construction of cloning vectors for Bacillus thuringiensis.Gene 108:115–119.)同时进行HindIII和SalI双酶切,通过T4连接酶连接,获得重组质粒pHTHFcwlC。该重组质粒通过电击转化进HD(ΔcwlC)突变体菌株中,在红霉素和卡那霉素双抗性板上进行转化子的初步筛选,以HFcwlC-F/HFcwlC-R为引物进行转化子的鉴定,最终鉴定获得恢复突变体菌株HD(ΔcwlC::cwlC)。
为构建cwlC基因报告载体,以B.thuringiensis HD73基因组DNA为模板和PcwlC-5/PcwlC-3为引物,通过PCR扩增出大小为717bp的cwlC启动子区DNA片段。将上述扩增产生的DNA片段和pHT304-18Z表达质粒(Agaisse H,Lereclus D.1994.Structural andfunctional analysis of the promoter region involved in full expression of thecryIIIA toxin gene of Bacillus thuringiensis.Mol Microbiol13:97–107.)同时进行PstI和BamHI双酶切,通过T4连接酶连接,获得重组质粒pHTPcwlC。将该质粒通过电击分别转化进B.thuringiensis HD73,sigK和gerE突变体,最终获得均含有重组质粒pHTPcwlC的HD(PcwlC-lacZ)、HD(ΔsigK)(PcwlC-lacZ)和HD(ΔgerE)(PcwlC-lacZ)菌株。
为确定CwlC蛋白在细胞中的亚细胞定位,构建了cwlC和gfp融合载体pHT-gfp-cwlC。具体方法如下:以B.thuringiensis HD73基因组DNA为模板,以gfp-cwlC-A/gfp-cwlC-B为引物,通过PCR扩增出大小为685bp的cwlC启动子区DNA片段;以gfp-cwlC-E/gfp-cwlC-F为引物,扩增出大小为732-bp的cwlC ORF区DNA片段。以Cry1Ac-GFP质粒为模板(Yang H,Wang P,Peng Q,Rong R,Liu C,Lereclus D,Zhang J,Song F,HuangD.2012.Weak transcription of the cry1Ac gene in nonsporulating Bacillusthuringiensis cells.Appl Environ Microbiol78:6466–6474.),以gfp-cwlC-C/gfp-cwlC-D为引物扩增出包括gfp基因和48-bp linker大小为762bp的DNA片段。以gfp-cwlC-A/gfp-cwlC-F为引物,通过重叠PCR扩增将cwlC promoter,gfp gene+linker,和cwlC ORF三个DNA片段按顺序重叠成一个2,179bp大小的DNA片段。将上述扩增产生的DNA片段和pHT304-18Z表达质粒(Agaisse H,Lereclus D.1994.Structural and functionalanalysis of the promoter region involved in full expression of the cryIIIAtoxin gene of Bacillus thuringiensis.Mol Microbiol13:97–107.)同时进行EcoRI和PstI双酶切,通过T4连接酶连接,获得重组质粒pHT-gfp-cwlC。该重组质粒通过电击转化进B.thuringiensis HD73细胞中,获得重组菌株HD(pHT-gfp-cwlC)。
为构建CwlC蛋白表达菌株,以B.thuringiensis HD73基因组DNA为模板,以cwlC-F/cwlC-R为引物,通过PCR方法扩增出大小为732bp的DNA片段。将上述扩增的DNA片段和pET21b表达质粒(Agaisse H,Lereclus D.1994.Structural and functional analysisof the promoter region involved in full expression of the cryIIIA toxin geneof Bacillus thuringiensis.Mol Microbiol13:97–107.)同时进行EcoRI和PstI双酶切,通过T4连接酶连接,获得重组质粒pETcwlC。该重组质粒通过热击转化进E.coli BL21细胞中进行CwlC蛋白表达。
β-galactosidase活性测定实验:在指定的时间范围内(T8-T20)每隔1小时收集培养在SSM中的B.thuringiensis细胞,用来测定不同时间点B.thuringiensis细胞中的β-galactosidase活性,详细方法参照文献(Millet JH,Experiments in moleculargenetics,1972,Cold Spring Harbor Press:Cold Spring Harbor,NY.)。所有数据均进行至少3次的独立重复实验。
CwlC-His蛋白的纯化:CwlC蛋白纯化方法参照文献(Yang J,Peng Q,Chen Z,DengC,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation andcharacteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involvedin Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.)进行。E.coli BL21(pETcwlC)菌株用作表达CwlC-His蛋白。具体方法如下:BL21(pETcwlC)菌株培养在300ml加氨苄青霉素(100μg/ml)LB培养基中,在37℃,220rpm条件下培养至OD600(600nm处光密度)为1.0时加入终浓度为0.5mM的IPTG,在18℃,150rpm条件下再培养12个小时。然后将菌液在4℃10000×g条件下离心10分钟,用蒸馏水将收集的细胞洗涤3次。用50mMTris-HCl(pH 8.3)(每300ml菌液收集的菌体用60ml的Tris-HCl悬起)将收集到的细胞悬起来,并放置在冰水混合物上,用70%功率超声破碎5min。细胞裂解液在4℃10000×g条件下离心10分钟用来去除细胞碎片。上清和沉淀中的蛋白通过SDS聚丙烯酰胺凝胶电泳(SDS-PAGE)进行分析(Laemmli UK.1970.Cleavage of structural proteins during theassembly of the head of bacteriophage T4.Nature 227:680–685.)。含有大量CwlC-His蛋白的上清经镍离子螯合柱,将CwlC-His蛋白通过螯合作用留在柱子上,而非特异性结合的的杂蛋白用50mM咪唑缓冲液(50mM imidazole,1M NaCl,20Mm Tris-HCl)洗脱除去。最终,CwlC-His蛋白50mM咪唑缓冲液(250mM imidazole,1M NaCl,20Mm Tris-HCl)洗脱并收集起来。
细胞壁的制备:B.thuringiensis HD73细胞于LB培养中培养至对数生长晚期,在4℃16,000×g条件下离心10分钟收集,而后用去离子水洗涤三次。收集的细胞用TK buffer(0.05M Tris-HCl,0.05M KCl)(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensismother cell lysis.J Bacteriol195:2887–2897.)悬起来,分装在2ml离心管中,加入适量的0.1-mm玻璃珠用震荡破碎仪(Biospec Products,Inc.,Bartlesville,OK,USA)震荡破碎1min 40s。破碎的细胞液在4℃1,000×g条件下低速离心10min,离心后的上清液在4℃27,000×g条件下高速离心5min,离心后的沉淀物即是粗制的细胞壁。粗制的细胞壁悬在5ml4%(W/V)的SDS中煮沸10min,用1M NaCl洗涤两次,和去离子水洗涤3次后,制备好的细胞壁保存在-80℃备用(Fein JE,Rogers HJ.1976.Autolytic enzyme-deficient mutants ofBacillus subtilis 168.J Bacteriol127:1427–1442.,Kuroda A,SekiguchiJ.1990.Cloning,sequencing and genetic mapping of a Bacillus subtilis cellwall hydrolase gene.J GenMicrobiol136:2209–2216.)。
CwlC蛋白的细胞壁结合能力:CwlC蛋白的细胞壁结合能力实验参考Nugroho etal(Nugroho FA,Yamamoto H,Kobayashi Y,Sekiguchi J.1999.Characterization of anew sigma-K-dependent peptidoglycan hydrolase gene that plays a role inBacillus subtilis mother cell lysis.J Bacteriol181:6230–6237.)实验方法进行。具体方法如下:纯化的CwlC蛋白加入悬在蒸馏水中的细胞壁中,并在冰上孵育30min,随后在4℃27,000×g条件下离心5min。离心后的沉淀物进行聚丙烯酰胺凝胶电泳,经western blot分析,以确定CwlC蛋白与细胞壁的结合情况。抗6×His标签的抗体用来验证CwlC蛋白。
CwlC蛋白水解细胞壁:CwlC蛋白水解B.thuringiensis细胞壁的具体实验方法如下:纯化的CwlC蛋白加入悬在TK buffer(0.05M Tris-HCl,0.05M KCl,pH 7.0)的B.thuringiensis细胞壁中,混合液的OD540为0.3左右。随后,混合液在37℃分别孵育0,10,20,40和60min后进行吸光度测定。细胞壁水解酶的活性单位被定义为每分钟使OD540减少0.001所用的酶量(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,SongF.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensismother cell lysis.J Bacteriol195:2887–2897.,Ayusawa D,Yoneda Y,Yamane K,MaruoB.1975.Pleiotropic phenomena in autolytic enzyme(s)content,flagellation,andsimultaneous hyperproduction of extracellular alpha-amylase and protease in aBacillus subtilis mutant.J Bacteriol124:459–469.)。
聚光共聚焦显微镜观察:为研究CwlC蛋白的亚细胞定位,将含有重组质粒的pHT-gfp-cwlC的B.thuringiensis HD73菌株培养在SSM培养基中,在指定的时间点取1ml的菌液收集菌体。收集的菌体细胞用去离子水洗涤3次后悬在50μl去离子水中。随后,1μl悬起的细胞加入适量的细胞膜染液FM4-64(100μM;Thermo Scientific,United States ofAmerica)在冰上染色1min。染色后的样品用聚光共聚焦显微镜(Leica TCS SL;LeicaMicrosystems,Wetzlar,Germany)进行观察。
Cry1Ac晶体蛋白定量:B.thuringiensis HD73野生株和HD(ΔcwlC)突变体菌株,在SSM培养基30℃条件下培养至T24。取出T24时期2ml的菌液进行12,000rpm离心1min,将收集的菌体悬在500μl的Tris-HCl(50Mm,pH 8.0)中,加入适量的0.1-mm玻璃珠用震荡破碎仪进行细胞破碎。取菌体破碎后的上清进行SDS-PAGE分析(Millet JH,Experiments inmolecular genetics,1972,Cold Spring Harbor Press:Cold Spring Harbor,NY.,YangJ,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptionalregulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidasegene involved in Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.)。
光学显微镜观察和芽胞形成率实验:野生菌株HD73和突变体菌株HD(ΔcwlC)在100ml SSM培养基中和30℃220rpm条件下培养。在指定的时间点(T0,T16,T24,day3,day7,和day15)分别取出1ml菌液进行离心,将收集的菌体悬在适量的去离子水中。每个样品取1μl用BX61光学显微镜(Olympus Corporation,Japan)进行观察。芽胞形成率的实验方法参考文献(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,SongF.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensismother cell lysis.J Bacteriol195:2887–2897.,Zhang Z,Yang M,Peng Q,Wang G,Zheng Q,Zhang J,Song F.2014.Transcription of the lysine-2,3-aminomutase genein the kam locus of Bacillus thuringiensis subsp.kurstaki HD73is controlledby bothσ54andσK factors.J Bacteriol196:2934–2943.)进行。
CwlC蛋白水解B.thuringiensis和B.cereus活细胞细胞壁实验:B.thuringiensis和B.cereus菌株在100ml LB培养基中和37℃220rpm条件下培养至对数生长期,经离心收集菌体,用PBS buffer(0.2M,pH 6.5)洗涤两次,然后悬在0.2M PBS buffer中使OD600为0.6左右。纯化的CwlC蛋白(15μg)加入悬起的菌体中,混合液在37℃分别孵育0,10,20,30,和40min,而后分别进行OD600吸光值测定(BioTek Instruments,Inc.United States ofAmerica)。
结果和分析:
cwlC基因序列和转录调控分析:首先我们对B.thuringiensis HD73基因组(Accession No.NC_020238.1)中RS15875基因的开放阅读框(图1中A)进行了分析。RS15875基因的大小为735bp,见SEQ ID NO:1,编码一种细胞壁水解酶。蛋白二级结构分析(http://www.ncbi.nlm.nih.gov)表明RS15875基因编码的蛋白由N-末端MurNAc-LAA结构域和C-末端amidase02-C结构域(图1中B)组成,该结构域组成与B.subtilis CwlC和CwlH蛋白高度相似(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,SongF.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensismother cell lysis.J Bacteriol195:2887–2897.)。RS15875编码的蛋白也和B.thuringiensis CwlB有相似的结构组成,B.thuringiensis CwlB包含一个N-末端MurNAc-LAA结构域和C-末端细胞壁结合结构域。因此,RS15875暂时被命名为cwlC(cellwall lysis C)。
为了验证B.thuringiensis CwlC蛋白在B.cereus、B.anthracis和其他B.thuringiensis菌株中的保守性分布,通过NCBI BlastP分析,发现与CwlC蛋白相似性在90%以上的蛋白多达100多种,他们广泛地分布在B.thuringiensis、B.cereus及其它蜡样芽胞杆菌族菌株中,但并没有出现在B.anthracis或B.pseudomycoides菌株中(图8)。
通过B.thuringiensis HD73基因组序列分析,发现RS15870、cwlC和RS15880基因转录方向一致。为确定cwlC与上下游基因的转录关系,我们提取了培养在SSM培养基中生长至T15时期的B.thuringiensis HD73细胞中的总RNA,用来进行RT-PCR分析。为此,我们也根据RS15870、cwlC和RS15880基因序列设计了3对引物,RTcwlC-5/RTcwlC-3、RTC55-5/RTC55-3和RTC57-5/RTC57-3,用来进行RT-PCR实验(图1中A和表2)。RT-PCR结果表明cwlC mRNA在T15时期是存在的,但RS15870和cwlC,cwlC和RS15880之间的mRNA并没有检测到(图1中C)。这些发现表明cwlC基因进行单独转录,并不和它的上下游基因形成共转录单元(图1中A)。
cwlC基因的转录调控:为确定cwlC基因的转录起始位点,我们进行了5’-RACE-PCR实验。5’-RACE-PCR扩增产生的DNA片段克隆进PMD-19T载体,并转化进E.coli TG1中。随机挑取12个转化子进行测序,测序结果表明,cwlC基因的转录起始位点是位于该基因起始密码子(ATG)上游的第21个碱基“G”处(图2中A)。
对cwlC基因启动子进行分析,发现位于转录起始位点上游-35和-10区域的σk保守结合序列AGCA和AATAAGATA(HDCA和CATANNNDD;H is A/C/T,D is A/G/T和N is A/C/G/T)(Eichenberger P,Fujita M,Jensen ST,Conlon EM,Rudner DZ,Wang ST,Ferguson C,Haga K,Sato T,Liu JS,Losick R.2004.The program of gene transcription for asingle differentiating cell type during sporulation in Bacillus subtilis.PLoSBiol2:e328.(图2中A)。上述分析结果表明cwlC基因转录可能受σk的控制。同时,在启动子上游-270bp至-266bp区域发现外壳蛋白转录激活因子GerE蛋白的保守序列TAGGT(TPuGGPy;Pu,purine;Py,pyrimidine)(Nugroho FA,Yamamoto H,Kobayashi Y,SekiguchiJ.1999.Characterization of a new sigma-K-dependent peptidoglycan hydrolasegene that plays a role in Bacillus subtilis mother cell lysis.J Bacteriol181:6230–6237.)(图2中A)。为验证cwlC基因是否受σk和GerE的转录调控,构建了cwlC启动子和lacZ的融合载体pHTPcwlC,分别转化进野生菌株HD73、突变体HD(ΔsigK)和突变体HD(ΔgerE)中(详见材料方法),获得菌株HD(PcwlC-lacZ)、HD(ΔsigK)(PcwlC-lacZ)和HD(ΔgerE)(PcwlC-lacZ)。对HD(PcwlC-lacZ)菌株的β-galactosidase活性测定,发现其从T8开始转录,T14转录活性值最高(图2中B)。该结果表明cwlC基因是在芽胞期进行表达。HD(ΔsigK)(PcwlC-lacZ)菌株的β-galactosidase活性测定结果显示β-galactosidase在该菌株中活性完全丧失(图2中B)。HD(ΔgerE)(PcwlC-lacZ)菌株的β-galactosidase活性测定结果显示,β-galactosidase从T8转录且活性值升高缓慢,其整体活性值低于HD(PcwlC-lacZ)菌株的(图2中B)。这些结果表明cwlC基因受σk的控制和GerE的正调控。
cwlC基因缺失可阻断母细胞的裂解:为研究cwlC基因的功能,我们通过同源重组的方法将卡那霉素抗性基因替换cwlC基因构建了cwlC基因缺失突变体HD(ΔcwlC)(图1中A)(详见材料与方法)。cwlC基因的缺失并没影响细胞的生长(数据未显示)。然后,我们通过光学显微镜观察了培养在SSM培养基中的野生菌株HD73和突变体HD(ΔcwlC)在不同时期的细胞形态。观察结果显示,突变体HD(ΔcwlC)菌株在T0和T16时期与野生菌株HD73形态并无明显区别,在T0和T16时期他们的母细胞均未裂解(图3中A)。有趣的是,在T24时期时,野生菌株HD73大多数母细胞裂解并释放出了晶体和芽胞,而突变体HD(ΔcwlC)菌株并没有出现裂解现象。紧接着构建了突变株HD(ΔcwlC)的恢复株HD(ΔcwlC::cwlC),恢复株的细胞在T16开始裂解,T24时期已裂解完全。
为进一步确定突变株HD(ΔcwlC)的表型,我们继T24时期后接着观察突变株HD(ΔcwlC)表型。令人惊奇地是,我们发现突变株HD(ΔcwlC)的母细胞知道培养到第15天也并未发生裂解,晶体和芽胞一直包裹在母细胞内(图3中B)。
实验结果表明,水解酶CwlC在母细胞裂解方面起着关键性的作用。
细胞壁水解酶基因cwlC的缺失并没有影响芽胞的形成和晶体蛋白的产量。已有研究表明水解酶的缺失并不影响芽胞的形成(Nugroho FA,Yamamoto H,Kobayashi Y,Sekiguchi J.1999.Characterization of a new sigma-K-dependent peptidoglycanhydrolase gene that plays a role in Bacillus subtilis mother cell lysis.JBacteriol181:6230–6237.)。另外,B.thuringiensis因产生杀虫晶体蛋白而作为生防菌被广泛地应用于农业生产上。因此,我们测定了突变体的芽胞形成率和晶体蛋白的产量(详见材料方法)。结果表明,野生菌株HD73、突变体HD(ΔcwlC)和恢复菌株HD(ΔcwlC::cwlC)的芽胞形成率并未有明显差异(图4中A)。通过总蛋白定量法确定野生菌株HD73和突变体HD(ΔcwlC)晶体蛋白产量,结果表明位于约130kDa处的Cry蛋白产量未有明显差异(图4中B)。因此,我们得出结论,cwlC基因的缺失并没有影响芽胞的形成和晶体蛋白的产量。这有助于以cwlC基因为分子基础构建的工程菌在生产上更好更广泛的应用。
CwlC蛋白的生化特征。如图1中B所示,CwlC包含有一个N-末端的MurNAc-LAA家族结构域,该结构域的功能可剪切位于MurNAc(N-乙酰胞壁酸)和L-丙氨酸氨基之间形成的酰胺键(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,SongF.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensismother cell lysis.J Bacteriol195:2887–2897.);因此,它被预测为一种MurNAc-LAA(Cibik R,Chapot-Chartier MP.2000.Autolysis of dairy leuconostocs anddetection of peptidoglycan hydrolases by renaturing SDS-PAGE.J ApplMicrobiol89:862–869.,Vollmer W,Joris B,Charlier P,Foster S.2008.Bacterialpeptidoglycan(murein)hydrolases.FEMS Microbiol Rev32:259–286.)。CwlC也包含一个C-末端结构域,因此,我们通过Western Blot方法来验证纯化的CwlC蛋白与B.thuringiensis细胞壁结合的特异性。CwlC-His蛋白在E.coli中表达并纯化(详见材料方法),纯化的CwlC-His蛋白进行SDS-PAGE。电泳结果显示纯化的蛋白条带单一,条带的位置与预测的27.9kDa大小相符(图5中A),对该蛋白条带进行质谱测序验证(Beijing ProteinInnovation Co.,Ltd,Beijing,China),结果表明其确为CwlC-His蛋白。
表达于E.coli中的B.thuringiensis CwlC蛋白,CwlC-His,和同样表达于E.coli中的B.thuringiensis蛋白,SigK-His,用来验证CwlC蛋白的细胞壁结合能力。SigK-His因缺少细胞壁结合结构域而作为本实验的阴性对照。CwlC-His也用作对照来避免因蛋白本身的沉淀给实验结果造成干扰。蛋白和细胞壁的混合物的OD540调至0.3左右,在0℃孵育30min,而后离心(详见材料方法)。Western blot结果显示CwlC-His与细胞壁孵育离心后的沉淀物中可检测到CwlC-His蛋白的存在,在用buffer代替细胞壁与CwlC-His孵育的沉淀物中未检测到CwlC-His的存在,在SigK-His与与细胞壁孵育离心后的沉淀物中未检测到SigK-His的存在(图5中B)。该结果表明CwlC-His可与体外制备的细胞壁结合。
为验证CwlC-His蛋白的水解B.thuringiensis细胞壁的能力,将含有CwlC蛋白和细菌细胞壁的混合物在37℃孵育0,10,20,40,或60min,分别在上述的时间点取500μl来测定OD540,混合物的密度在60min时降低了50%左右(图5中C),该结果表明CwlC-His水解酶可水解B.thuringiensis细胞壁。
CwlC的亚细胞定位。为研究CwlC蛋白在B.thuringiensis细胞中的定位并进一步阐明它的功能,我们将gfp基因融合到cwlC基因的5′端构建了重组载体pHT-gfp-cwlC(图6中A),紧接着电击转化进B.thuringiensis HD73细胞中,获得菌株HD(pHT-gfp-cwlC)。该菌株培养在SSM培养基中至芽胞期,分别取T16和T20时期的样品,用FM4-64对样品细胞膜染色,gfp基因产生的绿色荧光蛋白(GFP)用来指示CwlC蛋白在B.thuringiensis细胞中的位置。通过激光共聚焦显微镜(CLSM)观察发现,T16时期细胞出现小部分的裂解,GFP发光位置显示CwlC定位在未裂解细胞的细胞壁上(图6中B,黄色箭头)。在T20时期,大多数细胞裂解并释放出晶体和芽胞,在刚发生裂解的细胞中仅存微弱的绿色荧光信号(图6中B,蓝色箭头),并且在释放的晶体和芽胞中并没有发现绿色荧光信号(图6中B,白色箭头)。这些观察结果表明,CwlC定位在细胞壁上,并且只表达于母细胞中,在芽胞和晶体中不表达。
CwlC蛋白可水解有活性的B.thuringiensis和B.cereus菌株细胞的细胞壁。因CwlC可直接水解制备好的B.thuringiensis细胞壁(图5中C),于是我们提出疑问是否体外的CwlC水解酶以相同的机制水解B.thuringiensis和B.cereus菌株完整细胞的细胞壁。在加入CwlC蛋白40分钟内,B.thuringiensis(图7中A)和B.cereus ATCC 14579(图7中B)细胞的OD600值急剧下降,然而遗憾的是,我们并没观察到B.thuringiensis和B.cereus ATCC14579菌株细胞数量上的变化(数据未显示)。另外,CwlC蛋白对B.thuringiensis细胞壁的水解效率高于B.cereus的((图7)。
SEQUENCE LISTING
<110> 中国农业科学院植物保护研究所
<120> 水解酶CwlC在蜡状芽胞杆菌族母细胞裂解中的应用
<130> PP17007-ZWB
<160> 2
<170> PatentIn version 3.3
<210> 1
<211> 735
<212> DNA
<213> RS15875暂时被命名为cwlC(cell wall lysis C)基因序列
<400> 1
atggctagat atagtttgca cggaggacac aatagtattg ttcaaggtgc taatttcggg 60
aatcggaaag aacacgttct agataggcaa gttaaagatg ccgtggcggc taagttaaga 120
gccctaggac acacggttta tgacgatacg gacgaggtag gggcaactca atcacaaaat 180
ttaaataata tcattcggaa tagcaattcc catgctgtgg atttagttat ttcttttcat 240
cttaatgcaa gtgatggaaa tggacagggt gttgaggttt tatattatga tcagaaagat 300
ttggcggcta aaatctcagc tcaactagca aaagatattg gatggcgtga tcgaggtgcg 360
aaacaacgta cagatttagc agtattaaat ggaacgaagg caccggctat tcttattgaa 420
ttagggttta ttgataatga atccgacatg gcaaaatgga atgttgataa aatcgctaat 480
tctattgtat ttgctcttac aggacaaact ggaggaggtg cagcgaattt gctcaaagta 540
aaaactggtg gtgtagcatt tagtaattta caagatttgg ctcaagctat ggttgatgcg 600
ggtattgatg gacaaattgt cgttcaaaaa gatggcattg gttatgctat aacgaatggc 660
tatccgtccg ggaatatcga taaatttaca gcttggttag atgcacgtaa atggtactat 720
gagtacgtga gataa 735
<210> 2
<211> 244
<212> PRT
<213> RS15875暂时被命名为cwlC(cell wall lysis C)蛋白序列
<400> 2
Met Ala Arg Tyr Ser Leu His Gly Gly His Asn Ser Ile Val Gln Gly
1 5 10 15
Ala Asn Phe Gly Asn Arg Lys Glu His Val Leu Asp Arg Gln Val Lys
20 25 30
Asp Ala Val Ala Ala Lys Leu Arg Ala Leu Gly His Thr Val Tyr Asp
35 40 45
Asp Thr Asp Glu Val Gly Ala Thr Gln Ser Gln Asn Leu Asn Asn Ile
50 55 60
Ile Arg Asn Ser Asn Ser His Ala Val Asp Leu Val Ile Ser Phe His
65 70 75 80
Leu Asn Ala Ser Asp Gly Asn Gly Gln Gly Val Glu Val Leu Tyr Tyr
85 90 95
Asp Gln Lys Asp Leu Ala Ala Lys Ile Ser Ala Gln Leu Ala Lys Asp
100 105 110
Ile Gly Trp Arg Asp Arg Gly Ala Lys Gln Arg Thr Asp Leu Ala Val
115 120 125
Leu Asn Gly Thr Lys Ala Pro Ala Ile Leu Ile Glu Leu Gly Phe Ile
130 135 140
Asp Asn Glu Ser Asp Met Ala Lys Trp Asn Val Asp Lys Ile Ala Asn
145 150 155 160
Ser Ile Val Phe Ala Leu Thr Gly Gln Thr Gly Gly Gly Ala Ala Asn
165 170 175
Leu Leu Lys Val Lys Thr Gly Gly Val Ala Phe Ser Asn Leu Gln Asp
180 185 190
Leu Ala Gln Ala Met Val Asp Ala Gly Ile Asp Gly Gln Ile Val Val
195 200 205
Gln Lys Asp Gly Ile Gly Tyr Ala Ile Thr Asn Gly Tyr Pro Ser Gly
210 215 220
Asn Ile Asp Lys Phe Thr Ala Trp Leu Asp Ala Arg Lys Trp Tyr Tyr
225 230 235 240
Glu Tyr Val Arg

Claims (10)

1.水解酶CwlC在芽胞杆菌母细胞裂解中的应用。
2.根据权利要求1所述的应用,为使芽胞杆菌菌株中缺失cwlC基因。
3.根据权利要求1所述的应用,为使用CwlC蛋白水解芽胞杆菌活细胞的细胞壁。
4.根据权利要求1或2所述的应用,所述芽胞杆菌为苏云金芽胞杆菌(B.thuringiensis)或蜡样芽胞杆菌(Bacillus cereus)。
5.根据权利要求4所述的应用,所述水解酶CwlC的氨基酸序列如SEQ ID NO:2所示。
6.根据权利要求5所述的应用,所述水解酶CwlC的基因序列如SEQ ID NO:1所示。
7.根据权利要求2所述的应用构建得到的缺失cwlC基因的芽胞杆菌突变株。
8.根据权利要求7所述的突变株,所述芽胞杆菌为苏云金芽胞杆菌(B.thuringiensis)或蜡样芽胞杆菌(Bacillus cereus)。
9.根据权利要求8所述的突变株,所述芽胞杆菌为苏云金芽胞杆菌(B.thuringiensis),所述cwlC基因的序列如SEQ ID NO:1所示或与SEQ ID NO:1同源性在95%以上的同源基因。
10.根据权利要求9所述的突变株,命名为HD(ΔcwlC),其原始菌株为B.thuringiensisHD73。
CN201710102214.3A 2017-02-24 2017-02-24 水解酶CwlC在芽胞杆菌母细胞裂解中的应用 Active CN106811416B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710102214.3A CN106811416B (zh) 2017-02-24 2017-02-24 水解酶CwlC在芽胞杆菌母细胞裂解中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710102214.3A CN106811416B (zh) 2017-02-24 2017-02-24 水解酶CwlC在芽胞杆菌母细胞裂解中的应用

Publications (2)

Publication Number Publication Date
CN106811416A true CN106811416A (zh) 2017-06-09
CN106811416B CN106811416B (zh) 2020-06-12

Family

ID=59111871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710102214.3A Active CN106811416B (zh) 2017-02-24 2017-02-24 水解酶CwlC在芽胞杆菌母细胞裂解中的应用

Country Status (1)

Country Link
CN (1) CN106811416B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108048384A (zh) * 2017-12-29 2018-05-18 中国农业大学 一种glnA基因缺失的耐铵固氮微生物及其构建方法与应用
CN111944027A (zh) * 2020-08-20 2020-11-17 中国农业科学院植物保护研究所 mclX基因在苏云金芽胞杆菌母细胞裂解中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292031A (zh) * 1998-02-26 2001-04-18 诺沃诺尔迪斯克生物技术有限公司 在芽孢杆菌属细胞中生产多肽的方法
CN1930289A (zh) * 2004-03-05 2007-03-14 花王株式会社 变异芽孢杆菌属细菌
WO2009024142A2 (de) * 2007-08-22 2009-02-26 Biomerieux S.A. Proteasestabile zellwand lysierende enzyme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292031A (zh) * 1998-02-26 2001-04-18 诺沃诺尔迪斯克生物技术有限公司 在芽孢杆菌属细胞中生产多肽的方法
CN1930289A (zh) * 2004-03-05 2007-03-14 花王株式会社 变异芽孢杆菌属细菌
WO2009024142A2 (de) * 2007-08-22 2009-02-26 Biomerieux S.A. Proteasestabile zellwand lysierende enzyme

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIU,G.等: "Accession No. AGE 78734.1,hypothetical protein HD73_3156 [Bacillus thuringiensis serovar kurstaki str. HD73]", 《GENBANK》 *
THOMAS J. SMITH等: "Characterization of the Involvement of Two Compensatory Autolysins in Mother Cell Lysis during Sporulation of Bacillus subtilis 168", 《JOURNAL OF BACTERIOLOGY》 *
杨静妮: "苏云金芽胞杆菌芽胞期母细胞裂解机制的研究", 《中国博士学位论文全文数据库 基础科学辑》 *
魏娟等: "苏云金芽胞杆菌HD-73菌株sigE基因敲除突变株的构建与特点", 《微生物学通报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108048384A (zh) * 2017-12-29 2018-05-18 中国农业大学 一种glnA基因缺失的耐铵固氮微生物及其构建方法与应用
CN111944027A (zh) * 2020-08-20 2020-11-17 中国农业科学院植物保护研究所 mclX基因在苏云金芽胞杆菌母细胞裂解中的应用

Also Published As

Publication number Publication date
CN106811416B (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
KR102375732B1 (ko) 바실러스 리체니포르미스에서 단백질 생산을 증가시키기 위한 조성물 및 방법
Ullrich et al. A modified two-component regulatory system is involved in temperature-dependent biosynthesis of the Pseudomonas syringae phytotoxin coronatine
CN101671681B (zh) 新的苏云金芽孢杆菌晶体多肽、多核苷酸及其组合物
KR20200124702A (ko) 신규한 cas9 오르소로그
Yamaguchi et al. Characterization of a new Bacillus subtilis peptidoglycan hydrolase gene, yvcE (named cwlO), and the enzymatic properties of its encoded protein
CN107709562A (zh) 指导rna/cas内切核酸酶系统
Taguchi et al. Differential effects of flagellins from Pseudomonas syringae pv. tabaci, tomato and glycinea on plant defense response
CN107920536A (zh) 用于控制植物有害生物的组合物和方法
Francis et al. pFiD188, the linear virulence plasmid of Rhodococcus fascians D188
AU2018200012A1 (en) Integrated method for high-throughput identification of novel pesticidal composi­tions and uses therefor
Yang et al. Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis
McLaughlan et al. Molecular characterization of an autolytic amidase of Listeria monocytogenes EGD
Vandeputte et al. The tobacco Ntann12 gene, encoding an annexin, is induced upon Rhodoccocus fascians infection and during leafy gall development
CN106811416A (zh) 水解酶CwlC在芽胞杆菌母细胞裂解中的应用
US20140322788A1 (en) method for increasing protein thermal stability
CN113366113A (zh) 同源折叠酶共表达
Jeong et al. An HrpB‐dependent but type III‐independent extracellular aspartic protease is a virulence factor of Ralstonia solanacearum
CA2320801A1 (en) Insecticidal toxins from photorhabdus
CN106834252B (zh) 一种高稳定型MazF突变体及其应用
Xue et al. Identification of 17 HrpX-regulated proteins including two novel type III effectors, XOC_3956 and XOC_1550, in Xanthomonas oryzae pv. oryzicola
JP2017079639A (ja) 枯草菌変異株及びその利用
CN111148837A (zh) 用于控制植物有害生物的组合物和方法
CN111944027B (zh) mclX基因在苏云金芽胞杆菌母细胞裂解中的应用
US7270993B2 (en) Protease deficient Caulobacter host cells
CN110305825A (zh) 展示有机磷酸酸酐酶的枯草芽胞及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant