CN106810237A - 一种单相多铁陶瓷材料及其制备方法 - Google Patents

一种单相多铁陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN106810237A
CN106810237A CN201710075048.2A CN201710075048A CN106810237A CN 106810237 A CN106810237 A CN 106810237A CN 201710075048 A CN201710075048 A CN 201710075048A CN 106810237 A CN106810237 A CN 106810237A
Authority
CN
China
Prior art keywords
ceramic materials
many iron
phase many
powder
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710075048.2A
Other languages
English (en)
Other versions
CN106810237B (zh
Inventor
白晗
李均
周忠祥
吴忧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201710075048.2A priority Critical patent/CN106810237B/zh
Publication of CN106810237A publication Critical patent/CN106810237A/zh
Application granted granted Critical
Publication of CN106810237B publication Critical patent/CN106810237B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)

Abstract

一种单相多铁陶瓷材料及其制备方法,本发明涉及单相多铁陶瓷及其制备方法。本发明是要解决现有的单相多铁材料铁酸铋的铁磁性弱的技术问题。本发明的单相多铁陶瓷材料的化学表达式为(1‑x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)(Fe0.5Ta0.5)O3,其中x=0.2~0.4。制法:碳酸钡、碳酸钙、二氧化钛、三氧化二铁、五氧化二钽和二氧化锆粉末混合后湿法球磨,烘干后放在管式炉预烧,然后再湿法球磨,烘干后加入粘结剂压制成预制体,再将预制体于管式炉中烧结,得到单相多铁陶瓷材料。单相多铁陶瓷材料在室温下是四方相钙钛矿结构,同时具有铁磁性和铁电性,可用于电气、电子领域。

Description

一种单相多铁陶瓷材料及其制备方法
技术领域
本发明涉及单相多铁陶瓷及其制备方法。
背景技术
多铁材料是指同时具有两种或者两种以上铁性的材料,其中铁性主要包括铁电性、铁磁性、铁弹性和铁涡性,而研究最多的多铁材料是磁性与铁电性共存的磁电多铁材料。在磁电多铁材料中,磁性与铁电性之间存在一定的耦合效应,在信息存储、自旋电子器件、电容-电感一体化器件和微波吸收技术领域存在着广泛的应用前景。然而目前室温共存铁磁性和铁电性的单相多铁材料比较稀少,从而一定程度上就限制了对于多铁材料应用的研究步伐。目前研究最多的室温单相多铁材料是铁酸铋(BiFeO3),它在室温下同时具有铁电性和铁磁性,但其铁磁性较弱,还不能实际应用。
发明内容
本发明是要解决现有室温共存铁磁性和铁电性的单相多铁材料铁酸铋铁磁性弱的技术问题,而提供一种单相多铁陶瓷材料及其制备方法。
本发明的单相多铁陶瓷材料的化学表达式为:
(1-x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)(Fe0.5Ta0.5)O3,其中x=0.2~0.4,简写为BXT。
本发明的单相多铁陶瓷材料的制备方法,按以下步骤进行:
一、将碳酸钡(BaCO3)、碳酸钙(CaCO3)、二氧化钛(TiO2)、三氧化二铁(Fe2O3)、五氧化二钽(Ta2O5)和二氧化锆(ZrO2)粉末按照(1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)(Fe0.5Ta0.5)O3的化学计量比称量并混合均匀,得到混合粉末,其中x=0.2~0.4;
二、将步骤一得到的混合粉末加入酒精,在球磨机中以200~400rpm的转速球磨12-48h,得到悬浊液A;
三、将步骤二得到的悬浊液A烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1100~1250℃的条件下保持3~6h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入酒精,在球磨机中以200~400rpm的转速球磨12-48h,得到悬浊液B;
五、将步骤四得到的悬浊液B在80℃烘干,得到粉末B,然后按10g粉末B加入1~3ml质量分数为5%~10%的聚乙烯醇溶液的比例,向粉末B中加入聚乙烯醇溶液作粘结剂,混合均匀后,加入模具中,压制成预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至1250~1500℃烧结3~8h,得到单相多铁陶瓷材料。
本发明的单相多铁陶瓷材料(1-x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)(Fe0.5Ta0.5)O3在室温下是四方相钙钛矿结构,属于P4mm点群。在室温下同时具有铁磁性和铁电性,是一种无铅的磁性与铁电性共存的单相多铁陶瓷。本发明的制备方法简单,不使用专用设备,不需要特殊气氛烧结,可大规模制备。
本发明的单相多铁陶瓷材料可用于电气、电子领域。
附图说明
图1是实施例1~3制备的单相多铁陶瓷材料BXT-0.2、BXT-0.25和BXT-0.4的X射线衍射图谱图;
图2是图1中(112)和(211)晶面的放大图;
图3是实施例1制备的单相多铁陶瓷材料BXT-0.2的扫描电镜图;
图4是实施例2制备的单相多铁陶瓷材料BXT-0.25的扫描电镜图;
图5是实施例3制备的单相多铁陶瓷材料BXT-0.4的扫描电镜图;
图6是实施例1制备的单相多铁陶瓷材料BXT-0.2在不同测试频率下的介温谱和损耗谱;
图7是实施例2制备的单相多铁陶瓷材料BXT-0.25在不同测试频率下的介温谱和损耗谱;
图8是实施例3制备的单相多铁陶瓷材料BXT-0.4在不同测试频率下的介温谱和损耗谱;
图9是实施例3制备的单相多铁陶瓷材料BXT-0.4利用Arrhenius定律对频率色散拟合曲线;
图10是实施例3制备的单相多铁陶瓷材料BXT-0.4的X射线光电子能谱;
图11是实施例1制备的单相多铁陶瓷材料BXT-0.2在不同激励电场下所得到的电滞回线;
图12是实施例2制备的单相多铁陶瓷材料BXT-0.25在不同激励电场下所得到的电滞回线;
图13是实施例3制备的单相多铁陶瓷材料BXT-0.4在不同激励电场下所得到的电滞回线;
图14是实施例1~3制备的单相多铁陶瓷材料BXT-0.2、BXT-0.25和BXT-0.4的漏电流曲线;
图15是实施例1~3制备的单相多铁陶瓷材料BXT-0.2、BXT-0.25和BXT-0.4的磁滞回线。
具体实施方式
具体实施方式一:本实施方式的单相多铁陶瓷材料的化学表达式为(1-x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)(Fe0.5Ta0.5)O3,其中x=0.2~0.4,简写为BXT。
具体实施方式二:具体实施方式一所述的单相多铁陶瓷材料的制备方法,按以下步骤进行:
一、将碳酸钡(BaCO3)、碳酸钙(CaCO3)、二氧化钛(TiO2)、三氧化二铁(Fe2O3)、五氧化二钽(Ta2O5)和二氧化锆(ZrO2)粉末按照
(1-x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)(Fe0.5Ta0.5)O3的化学计量比称量并混合均匀,得到混合粉末,其中x=0.2~0.4;
二、将步骤一得到的混合粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液A;
三、将步骤二得到的悬浊液A烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1100~1250℃的条件下保持3~6h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液B;
五、将步骤四得到的悬浊液B烘干,得到粉末B,然后按10g粉末B加入1~3ml质量分数为5%~10%的聚乙烯醇溶液的比例,向粉末B中加入聚乙烯醇溶液作粘结剂,混合均匀后,加入模具中,压制成预制体;在200~500MPa的压强下保持1分钟,得到;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至1250~1500℃烧结3~8h,得到单相多铁陶瓷材料。
具体实施方式三:本实施方式与具体实施方式二不同的是步骤二中烘干温度为80℃~100℃;其它与具体实施方式二相同。
具体实施方式四:本实施方式与具体实施方式二或三不同的是步骤三中的预烧温度为1200℃,预烧时间为5h。其它与具体实施方式二或三相同。
具体实施方式五:本实施方式与具体实施方式二至四之一不同的是步骤五中的烘干温度为80℃~100℃。其它与具体实施方式二至四之一相同。
具体实施方式六:本实施方式与具体实施方式二至五之一不同的是步骤五中预制体是在200~500MPa的压强下保持1~5分钟后得到的。其它与具体实施方式二至五之一相同。
具体实施方式七:本实施方式与具体实施方式二至六之一不同的是步骤六的烧结温度为1300~1400℃,烧结时间为5~6h。其它与具体实施方式二至六之一相同。
用以下实施例验证本发明的有益效果:
实施例1:本实施例的单相多铁陶瓷材料的制备方法按以下步骤进行:
一、按单相多铁陶瓷材料0.8Ba(Zr0.2Ti0.8)O3–0.2(Ba0.7Ca0.3)(Fe0.5Ta0.5)O3的化学计量比称取0.0752mol的碳酸钡(BaCO3)、0.0048mol的碳酸钙(CaCO3)、0.0512mol的二氧化钛(TiO2)、0.004mol的三氧化二铁(Fe2O3)、0.004mol的五氧化二钽(Ta2O5)和0.0128mol的二氧化锆(ZrO2)粉末按并混合均匀,得到混合粉末;
二、将步骤一得到的混合粉末加入20mL酒精,在球磨机中以400rpm的转速球磨24h,得到悬浊液A;
三、将步骤二得到的悬浊液A在80℃烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1100℃的条件下保持5h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入20mL酒精,在球磨机中以400rpm的转速球磨24h,得到悬浊液B;
五、将步骤四得到的悬浊液B在80℃烘干,得到粉末B,然后向粉末B中加入2ml的质量分数5%的聚乙烯醇溶液作粘结剂,混合均匀后,加入直径为Φ13mm的模具中,在400MPa的压强下保持1分钟压制成厚度为1.5mm的片状预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至1300℃烧结5h,得到单相多铁陶瓷材料,记为BXT-0.2。
实施例2:本实施例的单相多铁陶瓷材料的制备方法按以下步骤进行:
一、按单相多铁陶瓷材料0.75Ba(Zr0.2Ti0.8)O3–0.25(Ba0.7Ca0.3)(Fe0.5Ta0.5)O3的化学计量比称取0.074mol的碳酸钡(BaCO3)、0.006mol的碳酸钙(CaCO3)、0.048mol的二氧化钛(TiO2)、0.005mol的三氧化二铁(Fe2O3)、0.005mol的五氧化二钽(Ta2O5)和0.012mol的二氧化锆(ZrO2)粉末按并混合均匀,得到混合粉末;
二、将步骤一得到的混合粉末加入20mL酒精,在球磨机中以400rpm的转速球磨48h,得到悬浊液A;
三、将步骤二得到的悬浊液A烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1200℃的条件下保持5h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入20mL酒精,在球磨机中以400rpm的转速球磨48h,得到悬浊液B;
五、将步骤四得到的悬浊液B在80℃烘干,得到粉末B,然后向粉末B中加入2ml的质量分数8%的聚乙烯醇溶液作粘结剂,混合均匀后,混合均匀后,加入直径为Φ13mm的模具中,在400MPa的压强下保持1分钟压制成厚度为1.5mm的片状预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至1300℃烧结8h,得到单相多铁陶瓷材料,记为BXT-0.25。
实施例3:本实施例的单相多铁陶瓷材料的制备方法按以下步骤进行:
一、按单相多铁陶瓷材料0.6Ba(Zr0.2Ti0.8)O3–0.4(Ba0.7Ca0.3)(Fe0.5Ta0.5)O3的化学计量比称取0.0704mol的碳酸钡(BaCO3)、0.0096mol的碳酸钙(CaCO3)、0.0384mol的二氧化钛(TiO2)、0.008mol的三氧化二铁(Fe2O3)、0.008mol的五氧化二钽(Ta2O5)和0.0096mol的二氧化锆(ZrO2)粉末按并混合均匀,得到混合粉末;
二、将步骤一得到的混合粉末加入20mL酒精,在球磨机中以400rpm的转速球磨48h,得到悬浊液A;
三、将步骤二得到的悬浊液A烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1250℃的条件下保持5h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入20mL酒精,在球磨机中以400rpm的转速球磨48h,得到悬浊液B;
五、将步骤四得到的悬浊液B在80℃烘干,得到粉末B,然后向粉末B中加入2ml的质量分数5%的聚乙烯醇溶液作粘结剂,混合均匀后,混合均匀后,加入直径为Φ13mm的模具中,在400MPa的压强下保持1分钟压制成厚度为1.5mm的片状预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至1350℃烧结8h,得到单相多铁陶瓷材料,记为BXT-0.4。
实施例1~3制备的单相多铁陶瓷材料BXT-0.2、BXT-0.25和BXT-0.4三个陶瓷样品的X射线衍射图谱如图1所示,通过对比标准卡片可以看出三个样品都具有四方相钙钛矿结构,而在BXT-0.2样品中有微量的TiO2杂相,在图谱中用倒三角标出。图中标记的晶面指数是对比BaTiO3(JCPDS No.05-0626)的标准图谱标出的。图2是对图1中的(112)和(211)晶面的放大图,可以看出随着参数x的增大峰值向高角度移动说明晶格常数在逐渐变小。
图3、4和5依次是BXT-0.2、BXT-0.25和BXT-0.4三个陶瓷样品的表面的扫描电镜(SEM)图。从图3~5中可以看出样品晶粒明显,BXT-0.2的平均晶粒尺寸是7μm、BXT-0.25的平均晶粒尺寸4μm,BXT-0.4的平均晶粒尺寸是3μm。
图6、7和8依次是BXT-0.2、BXT-0.25和BXT-0.4三个陶瓷样品在-100℃-200℃范围内的介温谱和损耗谱。从图6~8可以看出对于三个样品的介温谱都表现出了介电平台,并且介电平台随着测试频率的增大向高温区移动。而损耗谱出现了频率色散现象,即损耗谱出现峰值并且峰值也随着测试频率的增大向高温区移动。出现的这种介电平台和频率色散现象就是介电弛豫。
图9是利用Arrhenius定律对BXT-0.4样品的频率色散现象的拟合曲线,可以得出介电弛豫的激活能Ea=0.32eV。由此可以推测该样品的介电弛豫来源于样品中Fe2+和Fe3+混合结构中电子的跃迁。
图10是对于BXT-0.4样品所测试的X射线光电子能谱,表明样品中Fe2+和Fe3+混合共存,从而支持了介电弛豫来源的推论。
图11、12和13依次是BXT-0.2、BXT-0.25和BXT-0.4三个陶瓷样品在不同激励电场下所测得的电滞回线,可以看出样品具有铁电性。
图14是BXT-0.2、BXT-0.25和BXT-0.4三个样品的漏电流曲线,可以看出BXT-0.2和BXT-0.25样品的漏电流在10-6A/cm2量级,而BXT-0.4样品的漏电流大于10-3A/cm2
图15是BXT-0.2、BXT-0.25和BXT-0.4三个样品的磁滞回线,BXT-0.2表现出顺磁性,BXT-0.25和BXT-0.4为铁磁性。BXT-0.25和BXT-0.4的矫顽力(2Hc)分别为83Oe和240Oe,剩余磁化强度(2Mr)分别为0.069emu/g和0.094emu/g。
从实施例1~3可以看出,单相多铁陶瓷材料(1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)(Fe0.5Ta0.5)O3在室温下同时具有铁磁性和铁电性。

Claims (7)

1.一种单相多铁陶瓷材料,其特征在于该材料的化学表达式为(1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)(Fe0.5Ta0.5)O3,其中x=0.2~0.4。
2.制备权利要求1所述的一种单相多铁陶瓷材料的方法,其特征在于该方法按以下步骤进行:
一、将碳酸钡、碳酸钙、二氧化钛、三氧化二铁、五氧化二钽和二氧化锆粉末按照(1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)(Fe0.5Ta0.5)O3的化学计量比称量并混合均匀,得到混合粉末,其中x=0.2~0.4;
二、将步骤一得到的混合粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液A;
三、将步骤二得到的悬浊液A烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1100~1250℃的条件下保持3~6h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液B;
五、将步骤四得到的悬浊液B烘干,得到粉末B,然后按10g粉末B加入1~3ml质量分数为5%~10%的聚乙烯醇溶液的比例,向粉末B中加入聚乙烯醇溶液作粘结剂,混合均匀后,加入模具中,压制成预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至1250~1500℃烧结3~8h,得到单相多铁陶瓷材料。
3.根据权利要求2所述的一种单相多铁陶瓷材料的制备方法,其特征在于步骤二中烘干温度为80℃~100℃。
4.根据权利要求2或3所述的一种单相多铁陶瓷材料的制备方法,其特征在于步骤三中的预烧温度为1100~1250℃,预烧时间为5h。
5.根据权利要求2或3所述的一种单相多铁陶瓷材料的制备方法,其特征在于步骤五中的烘干温度为80℃~100℃。
6.根据权利要求2或3所述的一种单相多铁陶瓷材料的制备方法,其特征在于步骤五中预制体是在200~500MPa的压强下保持1~5分钟后得到的。
7.根据权利要求2或3所述的一种单相多铁陶瓷材料的制备方法,其特征在于步骤六的烧结温度为1300~1400℃,烧结时间为5~6h。
CN201710075048.2A 2017-02-13 2017-02-13 一种单相多铁陶瓷材料及其制备方法 Expired - Fee Related CN106810237B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710075048.2A CN106810237B (zh) 2017-02-13 2017-02-13 一种单相多铁陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710075048.2A CN106810237B (zh) 2017-02-13 2017-02-13 一种单相多铁陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106810237A true CN106810237A (zh) 2017-06-09
CN106810237B CN106810237B (zh) 2019-10-01

Family

ID=59111778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710075048.2A Expired - Fee Related CN106810237B (zh) 2017-02-13 2017-02-13 一种单相多铁陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106810237B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107473744A (zh) * 2017-09-19 2017-12-15 哈尔滨工业大学 一种钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法
CN107488035A (zh) * 2017-09-19 2017-12-19 哈尔滨工业大学 一种钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的调节方法
CN108766960A (zh) * 2018-05-28 2018-11-06 哈尔滨工业大学 一种多用途电感-电容一体化结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027264A (zh) * 2004-09-28 2007-08-29 株式会社村田制作所 电介质陶瓷、电介质陶瓷的制备方法以及叠层陶瓷电容器
CN101423979A (zh) * 2008-09-02 2009-05-06 昆明健为建筑装饰工程有限公司 钛酸钡和铁酸盐两相共存的纳米晶粒及其制备方法
CN102225865A (zh) * 2011-04-08 2011-10-26 北京理工大学 一种多铁性单相铁酸铋陶瓷的制备方法
WO2012094266A1 (en) * 2011-01-06 2012-07-12 Los Alamos National Security, Llc Multiferroics that are both ferroelectric and ferromagnetic at room temperature
TWI378908B (en) * 2008-09-19 2012-12-11 Univ Nat Cheng Kung Ceramic composite material with both dielectric and magnetic properties
CN103030386A (zh) * 2013-01-05 2013-04-10 哈尔滨工业大学 室温高铁磁-铁电及高磁介电效应的多铁性陶瓷及其制备方法
CN104387058A (zh) * 2014-11-07 2015-03-04 北方工业大学 一种铁酸铋基多铁陶瓷的制备方法
CN105272233A (zh) * 2015-10-30 2016-01-27 天津大学 一种陶瓷电容器用介质材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027264A (zh) * 2004-09-28 2007-08-29 株式会社村田制作所 电介质陶瓷、电介质陶瓷的制备方法以及叠层陶瓷电容器
CN101423979A (zh) * 2008-09-02 2009-05-06 昆明健为建筑装饰工程有限公司 钛酸钡和铁酸盐两相共存的纳米晶粒及其制备方法
TWI378908B (en) * 2008-09-19 2012-12-11 Univ Nat Cheng Kung Ceramic composite material with both dielectric and magnetic properties
WO2012094266A1 (en) * 2011-01-06 2012-07-12 Los Alamos National Security, Llc Multiferroics that are both ferroelectric and ferromagnetic at room temperature
CN102225865A (zh) * 2011-04-08 2011-10-26 北京理工大学 一种多铁性单相铁酸铋陶瓷的制备方法
CN103030386A (zh) * 2013-01-05 2013-04-10 哈尔滨工业大学 室温高铁磁-铁电及高磁介电效应的多铁性陶瓷及其制备方法
CN104387058A (zh) * 2014-11-07 2015-03-04 北方工业大学 一种铁酸铋基多铁陶瓷的制备方法
CN105272233A (zh) * 2015-10-30 2016-01-27 天津大学 一种陶瓷电容器用介质材料及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107473744A (zh) * 2017-09-19 2017-12-15 哈尔滨工业大学 一种钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法
CN107488035A (zh) * 2017-09-19 2017-12-19 哈尔滨工业大学 一种钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的调节方法
CN107488035B (zh) * 2017-09-19 2019-11-05 哈尔滨工业大学 一种钛酸钡基陶瓷材料中类圆形晶粒与高长径比棒状晶粒比例的调节方法
CN107473744B (zh) * 2017-09-19 2020-07-17 哈尔滨工业大学 一种钛酸钡基陶瓷材料中类圆形晶粒与高长径比棒状晶粒比例的气氛调节方法
CN108766960A (zh) * 2018-05-28 2018-11-06 哈尔滨工业大学 一种多用途电感-电容一体化结构
CN108766960B (zh) * 2018-05-28 2022-04-08 哈尔滨工业大学 一种多用途电感-电容一体化结构

Also Published As

Publication number Publication date
CN106810237B (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
Liu et al. An investigation of the dielectric energy storage performance of Bi (Mg2/3Nb1/3) O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability
Yan et al. Giant electro-strain and enhanced energy storage performance of (Y0. 5Ta0. 5) 4+ co-doped 0.94 (Bi0. 5Na0. 5) TiO3-0.06 BaTiO3 lead-free ceramics
Zhang et al. Improved Electrical Properties of Low-Temperature Sintered Cu Doped BaCaZrTiO Ceramics.
Liu et al. Enhanced electrical properties and energy storage performances of NBT-ST Pb-free ceramics through glass modification
Li et al. Structure, dielectric, piezoelectric, antiferroelectric and magnetic properties of CoFe2O4–PbZr0. 52Ti0. 48O3 composite ceramics
CN106810237B (zh) 一种单相多铁陶瓷材料及其制备方法
CN102531595B (zh) 一种铁酸钴与锆钛酸铅镧0-3复合多铁陶瓷的制备方法
Liu et al. Microstructure evolution, mechanism of electric breakdown strength, and dielectric energy storage performance of CuO modified Ba0. 65Sr0. 245Bi0. 07TiO3 Pb-free bulk ceramics
Niemiec et al. Ferroelectric–ferromagnetic ceramic composites based on PZT with added ferrite
Bochenek et al. Magnetoelectric and electric measurements of the (1− x) BiFeO3–(x) Pb (Fe1/2Nb1/2) O3 solid solutions
Zhang et al. Ca2+ doping effects on the structural and electrical properties of Na0. 5Bi4. 5Ti4O15 piezoceramics
Pal et al. Study of the structural and magnetic phase-transitions and multiferroic properties in BiFeO3-Ba0. 95Ca0. 05TiO3 solid solutions
US20220199298A1 (en) Room-temperature multiferroicity material, method for preparing same, and electronic device comprising same
Dzik et al. Synthesis, structure and dielectric properties of Bi1-xNdxFeO3
CN107010953A (zh) 一种单相多铁陶瓷材料及其制备方法
Chen et al. Effect of mass ratio on the dielectric and multiferroic properties of Co 0.5 Zn 0.5 FeCrO 4/Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 composite ceramics
Kulkarni et al. Magnetic and dielectric properties of Ni0. 8Co0. 1Cu0. 1Fe2O4+ PZT composites
CN115093215A (zh) 一种Sr+Sb共掺杂TiO2基巨介电陶瓷、制备方法及其应用
Pan et al. Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics
Xu et al. Evolution of structure and antiferroelectricity with barium content in Pb0. 99− xBaxNb0. 02 [(Zr0. 57Sn0. 43) 0.96 Ti0. 04] 0.98 O3 ceramics
Liu et al. The structure and properties of Co substituted Bi 7 Ti 4 NbO 21 with intergrowth phases
Zhang et al. Improved electrical properties of low-temperature sintered Cu doped Ba 0.99 Ca 0.01 Zr 0.02 Ti 0.98 O 3 ceramics
CN108516827A (zh) 一种无铅高介电储能密度和高储能效率的陶瓷材料及其制备方法
Liu et al. Magnetoelectric and dielectric relaxation properties of the high Curie temperature composite Sr1. 9Ca0. 1NaNb5O15–CoFe2O4
Li et al. Enhanced magnetoelectrical coupling in cobalt ferrite/lead lanthanum zirconate titanate 0-3 composites through phase boundary modification

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191001

Termination date: 20220213

CF01 Termination of patent right due to non-payment of annual fee