CN107473744A - 一种钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法 - Google Patents
一种钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法 Download PDFInfo
- Publication number
- CN107473744A CN107473744A CN201710846011.5A CN201710846011A CN107473744A CN 107473744 A CN107473744 A CN 107473744A CN 201710846011 A CN201710846011 A CN 201710846011A CN 107473744 A CN107473744 A CN 107473744A
- Authority
- CN
- China
- Prior art keywords
- ratio
- ceramic material
- grains
- atmosphere
- bar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
- C04B2235/6585—Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/768—Perovskite structure ABO3
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/788—Aspect ratio of the grains
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
一种钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法,它涉及钛酸钡基陶瓷材料的制备方法。它是要解决陶瓷材料中棒状晶粒长径比低并且棒状晶粒比例难以调节的技术问题。本制法:将碳酸钡、碳酸钙、二氧化钛、三氧化二铁、五氧化二钽和二氧化锆按照0.2Ba(Zr0.2Ti0.8)O3–0.8Ba0.7Ca0.3FeTaO5的化学计量比混匀,粉末混合后湿法球磨,烘干后预烧,然后再湿法球磨,烘干后加入粘结剂压制成预制体,再将预制体在不同的气氛下烧结,得到钛酸钡基陶瓷材料。通过调节陶瓷烧结气氛可以实现陶瓷产品表面高长径比棒状晶粒所占比例从0到100%的调节,可用于电气、电子领域。
Description
技术领域
本发明涉及钛酸钡基陶瓷材料的制备方法。
背景技术
材料微观结构对于材料的宏观性质有很大影响,目前对于材料微观结构调节的研究也是与日俱增,但是大多数的微观结构调节都局限在纳米粉末材料和薄膜材料中,在纳米粉末材料和薄膜材料中很容易生长出长径比超过20高长径比棒状材料,但是在陶瓷材料中很少有长径比高的棒状晶粒,一般的棒状晶粒的陶瓷中,棒的长径比都比较小,为2~4左右。如果采用长径比高的棒状的纳米粉末通过压制成型然后烧结得到陶瓷材料,则陶瓷中的棒状晶粒的长径比也会由于在高温下的生长而变小;同时陶瓷材料中晶粒的形状一般相同,目前尚无调节陶瓷材料中高长径比棒状晶粒与普通类圆形晶粒比例的方法。
发明内容
本发明是要解决现有的陶瓷材料中棒状晶粒长径比低及高长径比棒状晶粒比例难以调节的技术问题,而提供一种钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法。
本发明的钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法,按以下步骤进行:
一、将碳酸钡(BaCO3)、碳酸钙(CaCO3)、二氧化钛(TiO2)、三氧化二铁(Fe2O3)、五氧化二钽(Ta2O5)和二氧化锆(ZrO2)粉末按照0.2Ba(Zr0.2Ti0.8)O3–0.8Ba0.7Ca0.3FeTaO5的化学计量比称量并混合均匀,得到混合粉末;
二、将步骤一得到的混合粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液A;
三、将步骤二得到的悬浊液A烘干,得到粉末A,然后再将该粉末A放入管式炉中,在空气气氛下在温度为1100~1250℃的条件下保持3~6h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液B;
五、将步骤四得到的悬浊液B烘干,得到粉末B,然后按20g粉末B加入1~3ml质量百分浓度为5%~10%的聚乙烯醇溶液的比例,向粉末B中加入聚乙烯醇溶液,混合均匀后,加入模具中,压制成预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至500~700℃保温2~5h,进行排胶处理;
七、将步骤六中得到的排胶之后的预制体置于管式炉中,在不同的气氛下升温至1250~1400℃烧结3~8h,可得到陶瓷材料产品;根据最终陶瓷材料产品中圆形晶粒与长径比高于20的棒状晶粒比例取氮气、氮气与氧气的混合气体或氧气做为气氛,气氛中氮气的比例随长径比高于20的棒状晶粒所占比例增大而增加;最终陶瓷材料产品完全由类圆形晶粒构成,则气氛选取氧气;最终陶瓷材料产品完全由长径比高于20的棒状晶粒构成,则气氛选取氮气;最终陶瓷材料产品由类圆形晶粒和长径比高于20的棒状晶粒混合构成,则气氛选取氮气与氧气的混合气体。
本发明的钛酸钡基陶瓷材料0.2Ba(Zr0.2Ti0.8)O3–0.8Ba0.7Ca0.3FeTaO5,可以通过调节陶瓷烧结气氛,来控制陶瓷材料产品表面的晶粒形状。当陶瓷烧结气氛为氮气时,陶瓷表面完全由钨青铜结构的高长径比的棒状晶粒构成;当陶瓷烧结气氛为氮气与氧气的混合气体(如空气)时,陶瓷表面由钨青铜结构的高长径比的棒状晶粒和钙钛矿结构的普通类圆形晶粒混合构成;当陶瓷烧结气氛为氧气时,陶瓷表面完全由钙钛矿结构的普通类圆形晶粒构成。本发明的制备方法简单,对陶瓷材料的微观晶粒结构调节有效,不使用专用设备,可大规模制备。
附图说明
图1是实施例1中得到的BXT–0.8–Air陶瓷样品的表面形貌图。
图2是实施例1中得到的BXT–0.8–Air陶瓷样品的断面形貌图。
图3是实施例2中得到的BXT–0.8–N2陶瓷样品的表面形貌图。
图4是实施例3中得到的BXT–0.8–O2陶瓷样品的表面形貌图。
具体实施方式
具体实施方式一:本实施方式的钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法,按以下步骤进行:
一、将碳酸钡(BaCO3)、碳酸钙(CaCO3)、二氧化钛(TiO2)、三氧化二铁(Fe2O3)、五氧化二钽(Ta2O5)和二氧化锆(ZrO2)粉末按照0.2Ba(Zr0.2Ti0.8)O3–0.8Ba0.7Ca0.3FeTaO5的化学计量比称量并混合均匀,得到混合粉末;
二、将步骤一得到的混合粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液A;
三、将步骤二得到的悬浊液A烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1100~1250℃的条件下保持3~6h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液B;
五、将步骤四得到的悬浊液B烘干,得到粉末B,然后按20g粉末B加入1~3ml质量百分浓度为5%~10%的聚乙烯醇溶液的比例,向粉末B中加入聚乙烯醇溶液,混合均匀后,加入模具中,压制成预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至500~700℃保温2~5h,进行排胶处理;
七、将步骤六中得到的排胶之后的预制体置于管式炉中,在不同的气氛下(氮气、空气和氧气)升温至1250~1400℃烧结3~8h,可得到陶瓷材料产品;其中根据最终陶瓷材料产品中圆形晶粒与长径比高于20的棒状晶粒比例取氮气、氮气与氧气的混合气体或氧气做为气氛,气氛中氮气的比例随长径比高于20的棒状晶粒所占比例增大而增加;最终陶瓷材料产品完全由类圆形晶粒构成,则气氛选取氧气;最终陶瓷材料产品完全由长径比高于20的棒状晶粒构成,则气氛选取氮气;最终陶瓷材料产品由类圆形晶粒和长径比高于20的棒状晶粒混合构成,则气氛选取氮气与氧气的混合气体。
具体实施方式二:本实施方式与具体实施方式一不同的是步骤三中烘干温度为80℃~100℃;其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是步骤三中的预烧温度为1150℃,预烧时间为4h。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤五中的烘干温度为80℃~100℃。其它与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是步骤五中预制体是在200~500MPa的压强下保持1~5分钟后得到的。其它与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是步骤六中排胶过程是在600℃保温4h条件下进行的。其它与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是步骤七的烧结温度为1300~1400℃,烧结时间为5~6h。其它与具体实施方式一至六之一相同。
用以下实施例验证本发明的有益效果:
实施例1:本实施例的钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法,按以下步骤进行:
一、按0.08mol的0.2Ba(Zr0.2Ti0.8)O3–0.8Ba0.7Ca0.3FeTaO5的化学计量比称取碳酸钡(BaCO3)、碳酸钙(CaCO3)、二氧化钛(TiO2)、三氧化二铁(Fe2O3)、五氧化二钽(Ta2O5)和二氧化锆(ZrO2)粉末并混合均匀,得到混合粉末;
二、将步骤一得到的混合粉末加入60mL酒精,在球磨机中以250rpm的转速球磨24h,得到悬浊液A;
三、将步骤二得到的悬浊液A在80℃烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1150℃的条件下保持4h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入60mL酒精,在球磨机中以250rpm的转速球磨24h,得到悬浊液B;
五、将步骤四得到的悬浊液B在80℃烘干,得到粉末B,然后向粉末B中加入2ml的质量百分浓度为5%的聚乙烯醇溶液,混合均匀后,加入直径为Φ13mm的模具中,在400MPa的压强下保持1分钟压制成厚度约为1.5mm的片状预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至600℃保温4h进行排胶处理,使得在步骤五中加入的聚乙烯醇完全去除;
七、将步骤六中得到的排胶之后的预制体置于管式炉中,在空气气氛下升温至1300℃烧结4h,得到钛酸钡基陶瓷材料,记为BXT–0.8–Air。
本实施例中,陶瓷烧结气氛选为空气气氛,陶瓷材料产品的表面形貌由高长径比的棒状晶粒和普通的类圆形晶粒混合构成。
图1和图2是实施例1得到的BXT–0.8–Air的陶瓷样品的表面形貌图和断面形貌图,可以看出BXT–0.8–Air样品表面和断面由高长径比的棒状晶粒和普通的类圆形晶粒混合构成。
实施例2:本实施例的钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法,按以下步骤进行:
一、按0.08mol的0.2Ba(Zr0.2Ti0.8)O3–0.8Ba0.7Ca0.3FeTaO5的化学计量比称取碳酸钡(BaCO3)、碳酸钙(CaCO3)、二氧化钛(TiO2)、三氧化二铁(Fe2O3)、五氧化二钽(Ta2O5)和二氧化锆(ZrO2)粉末并混合均匀,得到混合粉末;
二、将步骤一得到的混合粉末加入60mL酒精,在球磨机中以250rpm的转速球磨24h,得到悬浊液A;
三、将步骤二得到的悬浊液A在80℃烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1100℃的条件下保持4h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入60mL酒精,在球磨机中以250rpm的转速球磨24h,得到悬浊液B;
五、将步骤四得到的悬浊液B在80℃烘干,得到粉末B,然后向粉末B中加入2ml的质量百分浓度为8%的聚乙烯醇溶液,混合均匀后,加入直径为Φ13mm的模具中,在400MPa的压强下保持1分钟压制成厚度约为1.5mm的片状预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至600℃保温4h进行排胶处理,使得在步骤五中加入的聚乙烯醇完全去除;
七、将步骤六中得到的排胶之后的预制体置于管式炉中,在氮气气氛下升温至1350℃烧结4h,得到钛酸钡基陶瓷材料,记为BXT–0.8–N2。
本实施例中,陶瓷产品的烧结气氛为氮气气氛,陶瓷产品表面完全由高长径比的棒状晶粒构成。
图3是实施例2得到的BXT–0.8–N2的陶瓷样品的表面形貌图,可以看出BXT–0.8–N2样品表面完全由高长径比的棒状晶粒构成。
实施例3:本实施例的钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法,按以下步骤进行:
一、按0.08mol的0.2Ba(Zr0.2Ti0.8)O3–0.8Ba0.7Ca0.3FeTaO5的化学计量比称取碳酸钡(BaCO3)、碳酸钙(CaCO3)、二氧化钛(TiO2)、三氧化二铁(Fe2O3)、五氧化二钽(Ta2O5)和二氧化锆(ZrO2)粉末并混合均匀,得到混合粉末;
二、将步骤一得到的混合粉末加入60mL酒精,在球磨机中以250rpm的转速球磨24h,得到悬浊液A;
三、将步骤二得到的悬浊液A在80℃烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1150℃的条件下保持4h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入60mL酒精,在球磨机中以200rpm的转速球磨24h,得到悬浊液B;
五、将步骤四得到的悬浊液B在80℃烘干,得到粉末B,然后向粉末B中加入1.5ml的质量百分浓度为5%的聚乙烯醇溶液,混合均匀后,加入直径为Φ13mm的模具中,在400MPa的压强下保持1分钟压制成厚度约为1.5mm的片状预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至600℃保温4h进行排胶处理,使得在步骤五中加入的聚乙烯醇完全去除;
七、将步骤六中得到的排胶之后的预制体置于管式炉中,在氧气气氛下升温至1400℃烧结4h,得到陶瓷材料,记为BXT–0.8–O2。
本实施例中,陶瓷产品烧结气氛为氧气气氛,陶瓷产品表面完全由普通类圆形晶粒构成,表面致密,无气孔。
图4是实施例3得到的BXT–0.8–O2的陶瓷样品的表面形貌图,可以看出BXT–0.8–O2样品的表面完全由普通类圆形晶粒构成,表面致密,无气孔。
实施例4:本实施例的钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法,按以下步骤进行:
一、按0.08mol的0.2Ba(Zr0.2Ti0.8)O3–0.8Ba0.7Ca0.3FeTaO5的化学计量比称取碳酸钡(BaCO3)、碳酸钙(CaCO3)、二氧化钛(TiO2)、三氧化二铁(Fe2O3)、五氧化二钽(Ta2O5)和二氧化锆(ZrO2)粉末并混合均匀,得到混合粉末;
二、将步骤一得到的混合粉末加入60mL酒精,在球磨机中以250rpm的转速球磨24h,得到悬浊液A;
三、将步骤二得到的悬浊液A在80℃烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1150℃的条件下保持4h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入60mL酒精,在球磨机中以200rpm的转速球磨24h,得到悬浊液B;
五、将步骤四得到的悬浊液B在80℃烘干,得到粉末B,然后向粉末B中加入1.5ml的质量百分浓度为5%的聚乙烯醇溶液,混合均匀后,加入直径为Φ13mm的模具中,在400MPa的压强下保持1分钟压制成厚度约为1.5mm的片状预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至600℃保温4h进行排胶处理,使得在步骤五中加入的聚乙烯醇完全去除;
七、将步骤六中得到的排胶之后的预制体置于管式炉中,在氧气与氮气的体积比为7:3的混合气氛下升温至1400℃烧结4h,得到陶瓷材料,记为BXT–0.8–混合气。
本实施例4得到的陶瓷材料是在氧气与氮气的体积比为7:3的混合气氛下制备的,陶瓷材料产品由高长径比的棒状晶粒和普通的类圆形晶粒混合构成。与实施例1在空气气氛下制备的产品相比,类圆形晶粒的比例相对大一些。
本发明成功的在0.2Ba(Zr0.2Ti0.8)O3–0.8Ba0.7Ca0.3FeTaO5陶瓷材料中生长了长径比高的棒状晶粒,并且通过调节烧结气氛可以实现陶瓷产品表面高长径比的棒状晶粒所占比例从0到1的大幅度调节。
Claims (7)
1.一种钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法,其特征在于该方法按以下步骤进行:
一、将碳酸钡、碳酸钙、二氧化钛、三氧化二铁、五氧化二钽和二氧化锆粉末按照0.2Ba(Zr0.2Ti0.8)O3–0.8Ba0.7Ca0.3FeTaO5的化学计量比称量并混合均匀,得到混合粉末;
二、将步骤一得到的混合粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液A;
三、将步骤二得到的悬浊液A烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1100~1250℃的条件下保持3~6h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液B;
五、将步骤四得到的悬浊液B烘干,得到粉末B,然后按20g粉末B加入1~3ml质量百分浓度为5%~10%的聚乙烯醇溶液的比例,向粉末B中加入聚乙烯醇溶液,混合均匀后,加入模具中,压制成预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至500~700℃保温2~5h,进行排胶处理;
七、将步骤六中得到的排胶之后的预制体置于管式炉中,在不同的气氛下升温至1250~1400℃烧结3~8h,可得到陶瓷材料产品;根据最终陶瓷材料产品中圆形晶粒与长径比高于20的棒状晶粒比例取氮气、氮气与氧气的混合气体或氧气做为气氛,气氛中氮气的比例随长径比高于20的棒状晶粒所占比例增大而增加;最终陶瓷材料产品完全由类圆形晶粒构成,则气氛选取氧气;最终陶瓷材料产品完全由长径比高于20的棒状晶粒构成,则气氛选取氮气;最终陶瓷材料产品由类圆形晶粒和长径比高于20的棒状晶粒混合构成,则气氛选取氮气与氧气的混合气体。
2.根据权利要求1所述的一种钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法,其特征在于步骤三中烘干温度为80℃~100℃。
3.根据权利要求1或2所述的一种钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法,其特征在于步骤三中的预烧温度为1150℃,预烧时间为4h。
4.根据权利要求1或2所述的一种钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法,其特征在于步骤五中的烘干温度为80℃~100℃。
5.根据权利要求1或2所述的一种钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法,其特征在于步骤五中预制体是在200~500MPa的压强下保持1~5分钟后得到的。
6.根据权利要求1或2所述的一种钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法,其特征在于步骤六中排胶过程是在600℃保温4h条件下进行的。
7.根据权利要求1或2所述的一种钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法,其特征在于步骤七的烧结温度为1300~1400℃,烧结时间为5~6h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710846011.5A CN107473744B (zh) | 2017-09-19 | 2017-09-19 | 一种钛酸钡基陶瓷材料中类圆形晶粒与高长径比棒状晶粒比例的气氛调节方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710846011.5A CN107473744B (zh) | 2017-09-19 | 2017-09-19 | 一种钛酸钡基陶瓷材料中类圆形晶粒与高长径比棒状晶粒比例的气氛调节方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107473744A true CN107473744A (zh) | 2017-12-15 |
CN107473744B CN107473744B (zh) | 2020-07-17 |
Family
ID=60585545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710846011.5A Active CN107473744B (zh) | 2017-09-19 | 2017-09-19 | 一种钛酸钡基陶瓷材料中类圆形晶粒与高长径比棒状晶粒比例的气氛调节方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107473744B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113443910A (zh) * | 2021-07-21 | 2021-09-28 | 广东工业大学 | 一种在与贱金属内电极适配的钛酸锶钡陶瓷材料及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002060270A (ja) * | 2000-08-21 | 2002-02-26 | Sumitomo Special Metals Co Ltd | 電子デバイス用誘電体磁器組成物 |
CN101186496A (zh) * | 2007-11-27 | 2008-05-28 | 西安交通大学 | 一种低温烧结的Ti基微波介质陶瓷材料及其制备 |
CN106810237A (zh) * | 2017-02-13 | 2017-06-09 | 哈尔滨工业大学 | 一种单相多铁陶瓷材料及其制备方法 |
-
2017
- 2017-09-19 CN CN201710846011.5A patent/CN107473744B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002060270A (ja) * | 2000-08-21 | 2002-02-26 | Sumitomo Special Metals Co Ltd | 電子デバイス用誘電体磁器組成物 |
CN101186496A (zh) * | 2007-11-27 | 2008-05-28 | 西安交通大学 | 一种低温烧结的Ti基微波介质陶瓷材料及其制备 |
CN106810237A (zh) * | 2017-02-13 | 2017-06-09 | 哈尔滨工业大学 | 一种单相多铁陶瓷材料及其制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113443910A (zh) * | 2021-07-21 | 2021-09-28 | 广东工业大学 | 一种在与贱金属内电极适配的钛酸锶钡陶瓷材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107473744B (zh) | 2020-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111763087B (zh) | 一系列立方萤石型高熵铈氧化物纳米粉体及其制备方法 | |
JP7412019B2 (ja) | 低融点酸化物による腐食を防止する希土類タンタル酸塩セラミックス及びその製造方法 | |
CN110467227A (zh) | B位五元高熵的新型钙钛矿型高熵氧化物材料及制备方法 | |
Del Toro et al. | Synthesis of La0. 8Sr0. 2FeO3 perovskites nanocrystals by Pechini sol–gel method | |
CN102616852B (zh) | 一种针状铌酸锶钾微晶粉体的制备方法 | |
JP6161467B2 (ja) | 固体酸化物型燃料電池用複合酸化物粉末及びその製造方法 | |
Chaimongkon et al. | The effects of firing temperatures and barium content on phase formation, microstructure and dielectric properties of lead barium titanate ceramics prepared via the combustion technique | |
CN113968732A (zh) | 一种高稳定低损耗的微波介质陶瓷材料的制备方法及应用其制得的微波介质陶瓷材料 | |
Pongthippitak et al. | Dielectric properties of SrTiO3 ceramics synthesis by hybrid method | |
CN107473744A (zh) | 一种钛酸钡基陶瓷材料中圆形晶粒与高长径比棒状晶粒比例的气氛调节方法 | |
US11572317B2 (en) | Dense lead metaniobate piezoelectric ceramic material and preparation method thereof | |
Pikalova et al. | Effect of the synthesis technique on the physicochemical properties of Ce 0.8 (Sm 0.75 Sr 0.2 Ba 0.05) 0.2 O 2− δ | |
CN107488035B (zh) | 一种钛酸钡基陶瓷材料中类圆形晶粒与高长径比棒状晶粒比例的调节方法 | |
Mahmud et al. | Effect of high-energy milling process on microstructure and piezoelectric/dielectric properties of 0.99 Pb (Zr 0.53 Ti 0.47) O 3-0.01 BiYO 3 ceramic for piezoelectric energy harvesting devices | |
JP5873641B2 (ja) | BaTi2O5系複合酸化物の製造方法 | |
CN106521627B (zh) | 一种铌酸钾钠基压电单晶及其制备方法 | |
CN1686939A (zh) | 一种纯铌酸锶钾微晶粉体的制备方法 | |
JP3509491B2 (ja) | 形状異方性セラミックス粉末及びその製造方法 | |
Johar et al. | Characterization of 3 mol% Fe from Different Source Doped 8YSZ Ceramics | |
Bezzi et al. | PZT prepared by spray drying: From powder synthesis to electromechanical properties | |
JPH04342421A (ja) | セリア固溶正方晶ジルコニア微粉末の製造方法 | |
CN110395983A (zh) | 球形、立方相纳米结构氧化钙稳定氧化锆粉体的制备方法 | |
CN105906340B (zh) | 采用固相氮气烧结法制备二氧化钛基巨介电陶瓷材料的方法 | |
US20100272997A1 (en) | Densification of metal oxides | |
CN106115799B (zh) | 一种钴酸钡粉体的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |