CN106802298B - 一种铀酰离子的比色识别方法 - Google Patents

一种铀酰离子的比色识别方法 Download PDF

Info

Publication number
CN106802298B
CN106802298B CN201710009571.5A CN201710009571A CN106802298B CN 106802298 B CN106802298 B CN 106802298B CN 201710009571 A CN201710009571 A CN 201710009571A CN 106802298 B CN106802298 B CN 106802298B
Authority
CN
China
Prior art keywords
pyridine
phenyl
diethylamide
phenol
diazonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710009571.5A
Other languages
English (en)
Other versions
CN106802298A (zh
Inventor
文君
汪小琳
胡胜
杨亮
程冲
姜涛
田杰
陈柏桦
王宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics
Original Assignee
Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics filed Critical Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics
Priority to CN201710009571.5A priority Critical patent/CN106802298B/zh
Publication of CN106802298A publication Critical patent/CN106802298A/zh
Application granted granted Critical
Publication of CN106802298B publication Critical patent/CN106802298B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/76Nitrogen atoms to which a second hetero atom is attached

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Pyridine Compounds (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Materials For Photolithography (AREA)
  • Coloring (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)

Abstract

本发明提供了一种铀酰离子的比色识别方法,所述识别方法采用5‑(二乙基胺)‑2‑((5‑(4‑(1,2,3‑三苯基乙烯)苯基)‑2‑吡啶)重氮)苯酚作为化学传感器用于分析识别铀酰离子。5‑(二乙基胺)‑2‑((5‑(4‑(1,2,3‑三苯基乙烯)苯基)‑2‑吡啶)重氮)苯酚在二甲基亚砜与水的混合溶液中,可以在多种金属之间有效实现对铀酰离子的比色识别。5‑(二乙基胺)‑2‑((5‑(4‑(1,2,3‑三苯基乙烯)苯基)‑2‑吡啶)重氮)苯酚对于铀酰离子的识别具有很好的选择性,灵敏度和抗干扰能力。

Description

一种铀酰离子的比色识别方法
技术领域
本发明属于分析技术领域,具体涉及一种铀酰离子的比色识别方法。
背景技术
铀是一种典型的放射性元素,广泛存在于大自然环境中(Gongalsky, K.B.,Impact of pollution caused by uranium production on soil macrofauna, Environ.Monit. Assess.[J] 2003, 89, 197–219.)。其在工业领域具有重要的科学性和商业价值,同时也是一种重要的核燃料(Li, J. ; Zhang, Y. ; Remediation technology for theuranium contaminated environment: a review, Proc. Environ. Sci.,[J] 2012, 13, 1609–1615)。但是在铀矿的开采过程中会产生大量的废物残渣,如果没有妥善的处置会对环境造成很大的污染。研究表明长期接触铀会引发肺癌、胰腺癌、骨癌等重病(Domingo,L., Reproductive and developmental toxicity of natural and depleted uranium:a review, Reprod. Toxicol.[J] 2001, 15, 603–609)。鉴于铀重要的应用价值以及其固有的毒性,发展高效简便的铀分析技术具有重要的意义。
有很多的分析技术被开发用于铀的测量,包括核技术、电感耦合等离子体质谱、电化学技术、离子色谱、光谱分析技术和X射线荧光技术等。尽管这些方法具有很好的灵敏度,但是这些方法需要昂贵的仪器、复杂的样品制备以及严格的实验条件。相比这些分析方法,比色识别法操作简单,成本低,因此获得了较多的应用。但是利用比色法分析识别铀酰离子的传感器非常少,而且会受到其他金属离子的干扰。因此发展新型的铀酰离子比色识别对于检测铀酰离子的污染具有非常重要的意义。
基于以上观点,本发明设计合成一种具有四苯乙烯结构的聚集诱导发光型化学传感器5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚,用于对铀酰离子的选择性比色识别分析,为铀酰离子的分析提供一种新型而简便的分析方法。
发明内容
本发明所要解决的技术问题是提供一种铀酰离子的比色识别方法。
本发明的铀酰离子的识别方法,其特点是,所述的方法包含以下步骤:
a. 5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚溶于二甲基亚砜,配制5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液;
b. 在步骤a配制的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液中加入二甲基亚砜和水,配制二甲基亚砜与水的混合溶液,继续加入待测的金属离子水溶液,获得待测的混合溶液;
c. 将待测的混合溶液放置在自然光下进行比色识别测试,显示待测的混合溶液的颜色,如果颜色为蓝色,则待测的混合溶液中有铀酰离子。
步骤a中的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液浓度为10-3 mol/L;步骤b中的待测的金属离子水溶液的浓度为4×10-4 mol/L;步骤b中的待测的混合溶液的体积比例为5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚:二甲基亚砜:水:待测的金属离子水溶液=2:118:75:5。
步骤b中的金属离子为: Fe3+、Ni2+、Cu2+、Zn2+、Ru2+、Pd2+、Hg2+、Th4+或UO2 2+ 中的一种。
本发明中的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚为一种分子型比色传感器,其化学式结构如下:
(1)
本发明的铀酰离子的比色识别方法的具体工作过程如下:
配制5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液,浓度为10-3 mol/L。
取5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液20μL,二甲基亚砜1180μL,水750μL,待测的金属离子溶液50μL混合,获得总体积为2000μL的含有待测的金属离子的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚溶液,并将该溶液放置在自然光下观察待测的混合溶液的颜色,如果颜色为蓝色,则待测的混合溶液中有铀酰离子。
本发明的铀酰离子的识别方法利用了5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚作为比色传感器能够实现对于铀酰离子的高效选择性比色识别,识别具有很好的灵敏度和抗干扰能力。而且5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚分子对于铀酰离子的响应可以在含水溶液中进行,使得5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚可以对水溶液中的铀酰离子进行检测分析。
本发明的铀酰离子的比色识别方法对可以实现对铀酰离子高选择性,高灵敏度的识别分析,同时具有很好的抗干扰能力,该方法具有广阔的市场前景。
具体实施方式
下面结合实施例对本发明进行详细说明。
实施例1
5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚对铀酰离子的比色识别
配置浓度为10-3 mol/L的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液,每次取20μL的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液于比色皿中,加入1180μL的二甲基亚砜,750μL的纯净水,加入50μL浓度为4×10-4M的铀酰离子溶液,获得总体积为2000μL的混合溶液,放置10分钟,将溶液置于自然光下,观察溶液颜色,发现加入铀酰离子的溶液呈现蓝色,有效区别于其他金属溶液呈现的颜色。结果说明5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚作为化学传感器,能够非常简便直观的对铀酰离子进行选择性比色识别。
实施例2
5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚对铁离子的比色识别
配置浓度为10-3 mol/L的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液,每次取20μL的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液于比色皿中,加入1180μL的二甲基亚砜,750μL的纯净水,加入50μL浓度为4×10-4M的铁离子溶液,获得总体积为2000μL的混合溶液,放置10分钟,将溶液置于自然光下,观察溶液颜色,发现加入铁离子的溶液呈现紫色,有效区别于铀酰离子所呈现的蓝色。
实施例3
5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚对镍离子的比色识别
配置浓度为10-3 mol/L的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液,每次取20μL的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液于比色皿中,加入1180μL的二甲基亚砜,750μL的纯净水,加入50μL浓度为4×10-4M的镍离子溶液,获得总体积为2000μL的混合溶液,放置10分钟,将溶液置于自然光下,观察溶液颜色,发现加入镍离子的溶液呈现紫红色,有效区别于铀酰离子所呈现的蓝色。
实施例4
5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚对铜离子的比色识别
配置浓度为10-3 mol/L的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液,每次取20μL的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液于比色皿中,加入1180μL的二甲基亚砜,750μL的纯净水,加入50μL浓度为4×10-4M的铜离子溶液,获得总体积为2000μL的混合溶液,放置10分钟,将溶液置于自然光下,观察溶液颜色,发现加入铜离子的溶液呈现紫色,有效区别于铀酰离子所呈现的蓝色。
实施例5
5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚对锌离子的比色识别
配置浓度为10-3 mol/L的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液,每次取20μL的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液于比色皿中,加入1180μL的二甲基亚砜,750μL的纯净水,加入50μL浓度为4×10-4M的锌离子溶液,获得总体积为2000μL的混合溶液,放置10分钟,将溶液置于自然光下,观察溶液颜色,发现加入锌离子的溶液呈现淡黄色,有效区别于铀酰离子所呈现的蓝色。
实施例6
5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚对钌离子的比色识别
配置浓度为10-3 mol/L的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液,每次取20μL的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液于比色皿中,加入1180μL的二甲基亚砜,750μL的纯净水,加入50μL浓度为4×10-4M的钌离子溶液,获得总体积为2000μL的混合溶液,放置10分钟,将溶液置于自然光下,观察溶液颜色,发现加入钌离子的溶液呈现淡黄色,有效区别于铀酰离子所呈现的蓝色。
实施例7
5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚对钯离子的比色识别
配置浓度为10-3 mol/L的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液,每次取20μL的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液于比色皿中,加入1180μL的二甲基亚砜,750μL的纯净水,加入50μL浓度为4×10-4M的钯离子溶液,获得总体积为2000μL的混合溶液,放置10分钟,将溶液置于自然光下,观察溶液颜色,发现加入钯离子的溶液呈现淡黄色,有效区别于铀酰离子所呈现的蓝色。
实施例8
5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚对汞离子的比色识别
配置浓度为10-3 mol/L的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液,每次取20μL的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液于比色皿中,加入1180μL的二甲基亚砜,750μL的纯净水,加入50μL浓度为4×10-4M的汞离子溶液,获得总体积为2000μL的混合溶液,放置10分钟,将溶液置于自然光下,观察溶液颜色,发现加入汞离子的溶液呈现淡黄色,有效区别于铀酰离子所呈现的蓝色。
实施例9
5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚对钍离子的比色识别
配置浓度为10-3 mol/L的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液,每次取20μL的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液于比色皿中,加入1180μL的二甲基亚砜,750μL的纯净水,加入50μL浓度为4×10-4M的钍离子溶液,获得总体积为2000μL的混合溶液,放置10分钟,将溶液置于自然光下,观察溶液颜色,发现加入钍离子的溶液呈现紫色,有效区别于铀酰离子所呈现的蓝色。
实施例10
5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚对铀酰离子的比色识别检测限
5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚作为化学传感器对铀酰离子进行比色分析检测限测试。配置浓度为10-3M的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液,每次取5μL的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚二甲基亚砜溶液于5毫升玻璃瓶中,加入1195μL的二甲基亚砜,逐次增加5μL浓度为1×10-4M的铀酰离子溶液(分别为:0, 5μL, 10μL, 15μL, 20μL, 25μL, 30μL, 35μL, 40μL, 45μL, 50μL. 与5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的当量比分别为:0, 0.1,0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0),补加一定量的纯净水获得总体积为2000μL的混合溶液,放置10分钟,将溶液置于自然光下,观察溶液颜色。结果发现在加入20μL的铀酰离子溶液以后就可以观察到明显的蓝色,计算获得5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚作为化学传感器对铀酰离子进行比色分析检测限为238ppb。
实施例11
5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚对铀酰离子的比色识别抗干扰性质
5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚作为化学传感器对铀酰离子进行比色分析抗干扰能力测试。配置浓度为10-3M的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液,每次取20μL的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液于5毫升玻璃瓶中,加入1180μL的二甲基亚砜,70μL的纯净水,50μL浓度为4×10-4M的铀酰离子溶液,并分别加入50μL浓度为4×10-4M的其他金属离子溶液(Fe3+、Ni2+、Zn2+、Ru2+、Pd2+、Hg2+或Th4+),获得总体积为2000μL的混合溶液,放置10分钟,将溶液置于自然光下,观察溶液颜色。结果发现加入相同当量的其他金属并不会对5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚对铀酰离子的比色识别造成明显的影响,蓝色溶液仍然清晰可见,说明5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚对铀酰离子的比色识别具有很好的抗干扰能力。

Claims (3)

1.一种铀酰离子的比色识别方法,其特征在于,所述的方法包含以下步骤:
a. 5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚溶于二甲基亚砜,配制5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液;
b. 在步骤a配制的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液中加入二甲基亚砜和水,配制二甲基亚砜与水的混合溶液,继续加入待测的金属离子水溶液,获得待测的混合溶液;
c. 将待测的混合溶液放置在自然光下进行比色识别测试,显示待测的混合溶液的颜色,如果颜色为蓝色,则待测的混合溶液中有铀酰离子。
2.根据权利要求1所述的铀酰离子的识别方法,其特征在于,步骤a中的5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚的二甲基亚砜溶液浓度为10-3 mol/L;步骤b中的待测的金属离子水溶液的浓度为4×10-4 mol/L;步骤b中的待测的混合溶液的体积比例为5-(二乙基胺)-2-((5-(4-(1,2,3-三苯基乙烯)苯基)-2-吡啶)重氮)苯酚:二甲基亚砜:水:待测的金属离子水溶液=2:118:75:5。
3.根据权利要求1所述的铀酰离子的识别方法,其特征在于,步骤b中的金属离子为:Fe3 +、Ni2+、Cu2+、Zn2+、Ru2+、Pd2+、Hg2+、Th4+或UO2 2+中的一种。
CN201710009571.5A 2017-01-06 2017-01-06 一种铀酰离子的比色识别方法 Active CN106802298B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710009571.5A CN106802298B (zh) 2017-01-06 2017-01-06 一种铀酰离子的比色识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710009571.5A CN106802298B (zh) 2017-01-06 2017-01-06 一种铀酰离子的比色识别方法

Publications (2)

Publication Number Publication Date
CN106802298A CN106802298A (zh) 2017-06-06
CN106802298B true CN106802298B (zh) 2019-08-09

Family

ID=58984375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710009571.5A Active CN106802298B (zh) 2017-01-06 2017-01-06 一种铀酰离子的比色识别方法

Country Status (1)

Country Link
CN (1) CN106802298B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109456260B (zh) * 2018-11-27 2021-07-06 南华大学 2-(5-溴-2-吡啶偶氮)-5-二乙氨基酚衍生物、其制备方法及应用
CN111303193B (zh) * 2020-03-31 2022-12-27 南华大学 一种padap衍生物、其制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Aggregation-induced emission active tetraphenylethene-based sensor for uranyl ion detection;Jun Wen et.al;《 Journal of Hazardous Materials》;20160705(第318期);第363-370页 *
Fluorogenic thorium sensors based on 2,6-pyridinedicarboxylic acid-substituted tetraphenylethenes with aggregation-induced emission characteristics;Wen Jun et.al;《Chem. Asian J》;20161231;第11卷;第49-53页 *
Trace analysis of uranyl ion (UO22+) in aqueous solution by fluorescence turn-on detection via aggregation induced emission enhancement effect;Xiaotong Chen et.al;《Analytica Chimica Acta》;20141017;第847卷;第55-60页 *

Also Published As

Publication number Publication date
CN106802298A (zh) 2017-06-06

Similar Documents

Publication Publication Date Title
Ojeda et al. Separation and preconcentration by a cloud point extraction procedure for determination of metals: an overview
Tabrizi Development of a dispersive liquid–liquid microextraction method for iron speciation and determination in different water samples
Luo et al. Accurate and precise determination of silver isotope fractionation in environmental samples by multicollector-ICPMS
CN103412034A (zh) 微波消解/icp-ms法快速检测烟草中重金属含量的测定方法
Beals Determination of technetium-99 in aqueous samples by isotope dilution inductively coupled plasma-mass spectrometry
CN104483338A (zh) 一种滤纸片法制样-x荧光光谱法测定卤水中溴的方法
Cerdà et al. Monitoring of environmental parameters by sequential injection analysis
CN105891199B (zh) 一种利用单一指示剂区分多种金属离子的方法
CN106802298B (zh) 一种铀酰离子的比色识别方法
Zolfonoun et al. Preconcentration procedure using vortex-assisted liquid–liquid microextraction for the fast determination of trace levels of thorium in water samples
CN106404769B (zh) 重金属砷的快速检测装置
Turetta et al. Trace element determination in seawater by ICP-SFMS coupled with a microflow nebulization/desolvation system
Azmi et al. Optimized and validated spectrophotometric method for the determination of palladium (II) in synthetic mixture and automobile workshop area samples
Zembrzuska et al. Identification of complexes involving thallium (I) and thallium (III) with EDTA and DTPA ligands by electrospray ionization mass spectrometry
Bing et al. Simultaneous determination of iodine, bromine, selenium and arsenic in geological samples by inductively coupled plasma mass spectrometry
CN105466904A (zh) 一种地下水中砷检测方法
Hadar et al. Detection of heavy metals in water using dye nano-complexants and a polymeric film
Angyus et al. In-situ Diffusive Gradients in thin-films passive sampling coupled with ex-situ small-sized electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry as green and white method for the simultaneous determination of labile species of toxic elements in surface water
Shen et al. Trends in the analysis and exploration of per-and polyfluoroalkyl substances (PFAS) in environmental matrices: A review
Xi et al. Comparison of masking agents for antimony speciation analysis using hydride generation atomic fluorescence spectrometry
CN109211808A (zh) 一种快速检测金属铜离子方法
Profumo et al. Sequential extraction procedure for speciation of inorganic selenium in emissions and working areas
Meléndez et al. Direct chromatographic separation and quantification of calcium and magnesium in seawater and sediment porewaters
Suvardhan et al. RETRACTED: The determination of nickel (II) after on-line sorbent preconcentration by inductively coupled plasma atomic emission spectrometry using Borassus Flabellifer inflorescence loaded with coniine dithiocarbamate
Abdulla et al. Spectrophotometric Determination of Cerium in Some Ore in Kurdistan Region–Iraq

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant