CN106800756A - 全生物基可降解材料及其制备方法和车辆内饰及车辆 - Google Patents

全生物基可降解材料及其制备方法和车辆内饰及车辆 Download PDF

Info

Publication number
CN106800756A
CN106800756A CN201710021008.XA CN201710021008A CN106800756A CN 106800756 A CN106800756 A CN 106800756A CN 201710021008 A CN201710021008 A CN 201710021008A CN 106800756 A CN106800756 A CN 106800756A
Authority
CN
China
Prior art keywords
weight portions
base
content
pla
bamboo fibre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710021008.XA
Other languages
English (en)
Other versions
CN106800756B (zh
Inventor
刘永杰
马治国
栗娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAIC Motor Co Ltd
Beijing Automotive Research Institute Co Ltd
Original Assignee
BAIC Motor Co Ltd
Beijing Automotive Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAIC Motor Co Ltd, Beijing Automotive Research Institute Co Ltd filed Critical BAIC Motor Co Ltd
Priority to CN201710021008.XA priority Critical patent/CN106800756B/zh
Publication of CN106800756A publication Critical patent/CN106800756A/zh
Application granted granted Critical
Publication of CN106800756B publication Critical patent/CN106800756B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/02Internal Trim mouldings ; Internal Ledges; Wall liners for passenger compartments; Roof liners
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Abstract

本公开涉及一种全生物基可降解材料及其制备方法和车辆内饰及车辆,该材料包括基料、淀粉基塑料和竹纤维,所述基料包括聚乳酸和己二酸丁二醇酯‑对苯二甲酸丁二醇酯共聚物,以100重量份的所述聚乳酸为基准,所述己二酸丁二醇酯‑对苯二甲酸丁二醇酯共聚物的含量为10‑150重量份,所述淀粉基塑料的含量为10‑100重量份,所述竹纤维的含量为10‑100重量份。本公开提供的全生物基可降解材料具有较高的强度,较好的耐冲击性能和耐热性,可广泛应用于汽车内饰领域以及家居、玩具等。

Description

全生物基可降解材料及其制备方法和车辆内饰及车辆
技术领域
本公开涉及高分子材料领域,具体地,涉及一种全生物基可降解材料及其制备方法和车辆内饰及车辆。
背景技术
当前全球社会经济发展面临着化石资源短缺和环境污染两大问题。一方面,化石资源形成时间极其漫长,而现在工业发展开采过度,致使能源危机逐渐迫近。另一方面,化石资源的大量使用引发严重的环境污染问题。形势和政策对汽车节能减排的要求日益严格,在达到使用工况要求的前提下,减少汽车全生命周期碳排放以及使用后回收处理难度加大。新世纪以来,生物基材料受到各国的广泛重视,呈现快速发展的势头,逐步成为石油基材料的升级替代产品,正朝着以绿色资源化利用为特征的高效、高附加值、定向转化、功能化、综合利用、环境友好化、标准化等方向发展。
目前生物基材料的应用主要有三类:第一类是利用天然纤维改性传统热塑性塑料,可以提高产品性能,减少化石资源的使用,同时减少相应产品全生命周期的碳排放;第二类应用来源于生物可降解材料,如聚乳酸(PLA),在特定的条件下(如堆肥)处理可被微生物等完全分解为二氧化碳和水,既减少化石资源的使用,同时解决固体废弃物的污染问题;第三类是利用无机填料如短切玻纤、滑石粉等改性生物可降解材料如聚乳酸等,以改善部分性能。
但是,上述几类生物基材料各存在一定的问题:第一类和第三类在一定程度上减少化石资源使用,产品使用结束后无法完全降解,环境污染问题依然存在,不能有效减少汽车全生命周期碳排放,回收处理依然很难;第二类的PLA等生物可降解材料脆性高、耐热性能低、抗冲击性能差,并且使用成本非常高等,其性能与成本均很难满足大量生产的汽车内饰使用要求。
发明内容
本公开的目的是提供一种全生物基可降解材料及其制备方法和车辆内饰及车辆,以解决传统纯生物可降解材料脆性高、耐热性能低及抗冲击性能差、成本高的问题。
为了实现上述目的,本公开第一方面:提供一种全生物基可降解材料,该材料包括基料、淀粉基塑料和竹纤维,所述基料包括聚乳酸和己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物,以100重量份的所述聚乳酸为基准,所述己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物的含量为10-150重量份,所述淀粉基塑料的含量为10-100重量份,所述竹纤维的含量为10-100重量份。
优选地,以100重量份的所述聚乳酸为基准,所述己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物的含量为30-80重量份,所述淀粉基塑料与竹纤维的含量加和为30-60重量份。
优选地,所述材料还包括助剂,以100重量份的所述基料为基准,所述助剂的含量为0.5-9重量份。
优选地,所述助剂包括增容剂、偶联剂和润滑剂中的至少一种,所述增容剂为选自聚乙二醇、马来酸酐和丁二酸酐中的至少一种,所述偶联剂为选自硅烷偶联剂、钛酸酯偶联剂和铝酸酯偶联剂中的至少一种,所述润滑剂为选自硬脂酸、硬脂酸锌和硬脂酸钙中的至少一种。
优选地,所述助剂包括增容剂、偶联剂和润滑剂,以100重量份的所述聚乳酸为基准,所述增容剂的含量为0.3-3重量份,所述偶联剂的含量为0.3-3重量份,所述润滑剂的含量为0.3-3重量份。
优选地,所述聚乳酸的重均分子量为150000-300000,所述聚乳酸为选自聚D-乳酸、聚L-乳酸和聚D,L-乳酸中的至少一种。
优选地,所述己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物的重均分子量为40000-150000。
优选地,所述淀粉基塑料的淀粉含量为85-100重量%。
优选地,所述竹纤维的细度为90-110目。
本公开第二方面:提供一种制备全生物基可降解材料的方法,该方法包括:将基料、淀粉基塑料和竹纤维混合均匀后挤出造粒,得到全生物基可降解材料,所述基料包括聚乳酸和己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物,其中,以100重量份的所述聚乳酸为基准,所述己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物的用量为10-150重量份,所述淀粉基塑料的用量为10-100重量份,所述竹纤维的用量为10-100重量份。
优选地,该方法还包括,将所述基料、淀粉基塑料、竹纤维与助剂混合均匀后挤出造粒,得到全生物基可降解材料,以100重量份的所述基料为基准,所述助剂的用量为0.5-9重量份。
优选地,所述助剂包括增容剂、偶联剂和润滑剂,以100重量份的所述聚乳酸为基准,所述增容剂的用量为0.3-3重量份,所述偶联剂的用量为0.3-3重量份,所述润滑剂的用量为0.3-3重量份。
优选地,该方法还包括,将所述基料、淀粉基塑料、竹纤维与助剂混合前,先对所述基料、淀粉基塑料和竹纤维进行干燥预处理,所述干燥预处理的条件为:温度为50-70℃,时间为2-4h。
优选地,所述挤出造粒的条件为:挤出的温度为180-210℃,螺杆转速为120-200r/min,喂料转速为20-40r/min,切粒长度为2-5mm。
本公开第三方面:提供一种由本公开第二方面所述的方法制备的全生物基可降解材料。
本公开第四方面:提供一种车辆内饰,该车辆内饰由本公开第一方面或第三方面所述的全生物基可降解材料制成。
本公开第五方面:提供一种车辆,该车辆包括本公开第四方面所述的车辆内饰。
通过上述技术方案,本公开采用聚乳酸和己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物为基料,将特定比例的竹纤维和淀粉基塑料与上述基料混合联用,可以显著提高复合材料的强度,改善其脆性,提高其刚度及耐冲击性能、热变形温度等,并降低体整体生产成本。同时,本公开提供的全生物基可降解材料所采用的各原材料均是生物可降解材料,不含不可降解化石类材料,在产品生命周期结束后可以完全生物降解,既降低了使用产品全生命周期的碳排放,又解决了废弃物所造成的环境问题;而且竹纤维无毒无害、可再生,其本身具有优良的抑菌性能,增加了材料的应用场景。本公开提供的全生物基可降解材料可广泛应用于汽车内饰领域以及家居、玩具等。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
具体实施方式
以下对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
本公开第一方面:提供一种全生物基可降解材料,该材料包括基料、淀粉基塑料和竹纤维,所述基料包括聚乳酸和己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物,以100重量份的所述聚乳酸为基准,所述己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物的含量为10-150重量份,所述淀粉基塑料的含量为10-100重量份,所述竹纤维的含量为10-100重量份。本公开采用聚乳酸(PLA)和己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物(PBAT)为基料,将特定比例的竹纤维和淀粉基塑料与上述基料混合联用,可以显著提高复合材料的强度,改善其脆性,提高其刚度及耐冲击性能、热变形温度等,并降低体整体生产成本。
根据本公开,所述聚乳酸的重均分子量可以在很大范围内变化,例如,所述聚乳酸的重均分子量可以为150000-300000。本公开对形成所述聚乳酸的乳酸单体的旋光性没有限制,例如,所述聚乳酸可以为选自聚D-乳酸、聚L-乳酸和聚D,L-乳酸中的至少一种。所述己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物是由1,4-丁二醇、己二酸和对苯二甲酸或对苯二甲酸二甲酯为原料,通过直接酯化或酯交换的方法合成的共聚酯,所述己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物的重均分子量可以在很大范围内变化,例如,所述己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物的重均分子量可以为40000-150000。本公开所述的聚乳酸和己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物均可以通过商购得到。
为了进一步提高所述材料的强度和耐冲击性能,优选地,以100重量份的所述聚乳酸为基准,所述己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物的含量可以为30-80重量份,所述淀粉基塑料与竹纤维的含量加和可以为30-60重量份。其中,所述淀粉基塑料是对淀粉进行改性后得到的物质。为了得到可以完全生物降解的材料,所述淀粉基塑料优选为全淀粉型淀粉基塑料,所述淀粉基塑料的淀粉含量可以为85-100重量%,水分含量不高于1.5重量%。所述竹纤维的细度可以为90-110目。
为了进一步提高所述材料的性能,所述材料还可以包括助剂,以100重量份的所述基料为基准,所述助剂的含量可以为0.5-9重量份。所述助剂可以包括增容剂、偶联剂和润滑剂中的至少一种。所述增容剂可以为各种促使聚合物结合并提高共混物稳定性的物质,例如,所述增容剂可以为选自聚乙二醇、马来酸酐和丁二酸酐中的至少一种。所述偶联剂可以为各种改善材料间界面作用并提高复合材料性能的物质,例如,所述偶联剂可以为选自硅烷偶联剂、钛酸酯偶联剂和铝酸酯偶联剂中的至少一种。所述润滑剂可以为各种降低材料间摩擦损伤的物质,例如,所述润滑剂可以为选自硬脂酸、硬脂酸锌和硬脂酸钙中的至少一种。
根据本公开第一方面的一种具体实施方式,所述助剂可以包括增容剂、偶联剂和润滑剂,以100重量份的所述基料为基准,所述增容剂的含量可以为0.3-3重量份,所述偶联剂的含量可以为0.3-3重量份,所述润滑剂的含量可以为0.3-3重量份。通过加入该比例下的助剂可以进一步改善复合材料的性能。进一步地,以100重量份的所述聚乳酸为基准,所述增容剂的含量可以为0.8-2重量份,所述偶联剂的含量可以为0.8-2重量份,所述润滑剂的含量可以为0.8-2重量份。
本公开提供的全生物基可降解材料相比传统塑料性能优异,具有较好的强度和韧性,且加工性能良好,所采用的各原材料均是生物可降解材料,不含不可降解化石类材料,在产品生命周期结束后可以完全生物降解,既降低了使用产品全生命周期的碳排放,又解决了废弃物所造成的环境问题;而且竹纤维无毒无害、可再生,其本身具有优良的抑菌性能,增加了材料的应用场景。本公开提供的全生物基可降解材料可广泛应用于汽车内饰领域以及家居、玩具等。
本公开第二方面:提供一种制备全生物基可降解材料的方法,该方法包括:将基料、淀粉基塑料和竹纤维混合均匀后挤出造粒,得到全生物基可降解材料,所述基料包括聚乳酸和己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物,其中,以100重量份的所述聚乳酸为基准,所述己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物的用量为10-150重量份,所述淀粉基塑料的用量为10-100重量份,所述竹纤维的用量为10-100重量份。优选地,以100重量份的所述聚乳酸为基准,所述己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物的用量为30-80重量份,所述淀粉基塑料与竹纤维的用量加和为30-60重量份。本公开提供的制备所述材料的方法,与传统方法相比,无需变更加工工艺或设备,其中混合的步骤可采用通用的共混设备,如双螺杆挤出机等。
根据本公开的第二方面,该方法还可以包括,将所述基料、淀粉基塑料、竹纤维与助剂混合均匀后挤出造粒,得到全生物基可降解材料,以100重量份的所述基料为基准,所述助剂的用量可以为0.5-9重量份。所述助剂可以包括增容剂、偶联剂和润滑剂中的至少一种。所述增容剂可以为各种促使聚合物结合并提高共混物稳定性的物质,例如,所述增容剂可以为选自聚乙二醇、马来酸酐和丁二酸酐中的至少一种。所述偶联剂可以为各种改善材料间界面作用并提高复合材料性能的物质,例如,所述偶联剂可以为选自硅烷偶联剂、钛酸酯偶联剂和铝酸酯偶联剂中的至少一种。所述润滑剂可以为各种降低材料间摩擦损伤的物质,例如,所述润滑剂可以为选自硬脂酸、硬脂酸锌和硬脂酸钙中的至少一种。根据本公开第二方面的一种具体实施方式,所述助剂可以包括增容剂、偶联剂和润滑剂,以100重量份的所述基料为基准,所述增容剂的用量可以为0.3-3重量份,所述偶联剂的用量可以为0.3-3重量份,所述润滑剂的用量可以为0.3-3重量份。进一步地,以100重量份的所述聚乳酸为基准,所述增容剂的用量可以为0.8-2重量份,所述偶联剂的用量可以为0.8-2重量份,所述润滑剂的用量可以为0.8-2重量份。
根据本公开的第二方面,该方法还可以包括,将所述基料、淀粉基塑料、竹纤维与助剂混合前,先对所述基料、淀粉基塑料和竹纤维进行干燥预处理,所述干燥预处理的条件为:温度为50-70℃,时间为2-4h。所述干燥预处理可以为本领域的常规干燥方法,例如可以为真空干燥。
根据本公开的第二方面,所述挤出造粒的条件可以为:挤出的温度为180-210℃,螺杆转速为120-200r/min,喂料转速为20-40r/min,切粒长度为2-5mm。
本公开第三方面:提供一种由本公开第二方面提供的方法制备的全生物基可降解材料。
本公开第四方面:提供一种车辆内饰,该车辆内饰由本公开第一方面或第三方面提供的全生物基可降解材料制成。
本公开第五方面:提供一种车辆,该车辆包括本公开第四方面提供的车辆内饰。
以下通过实施例进一步详细说明本公开,并不用于限制本公开。
实施例中,聚乳酸购自Natureworks公司,牌号为4032D,重均分子量为约17万;己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物购自巴斯夫,牌号为Ecoflex;淀粉基塑料购自华丽环保科技有限公司,牌号为HL-303,淀粉含量为90%;竹纤维购自奇竹科技发展有限公司,细度为100目;聚乙二醇购自陶氏,牌号为PEG6000,;马来酸酐购自润洋化工有限公司;丁二酸酐购自武汉远成共创科技有限公司;硅烷偶联剂购自日本信越公司,牌号为KBM-403;钛酸酯偶联剂购自重庆市嘉世泰化工有限公司,牌号为L-4;铝酸酯偶联剂购自重庆市嘉世泰化工有限公司,牌号为F-2;硬脂酸、硬脂酸锌、硬脂酸钙购自杭州油脂化工有限公司。
实施例1
将聚乳酸、己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物、淀粉基塑料和竹纤维在60℃下进行真空干燥预处理3h后,取65重量份的聚乳酸、32重量份的己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物、15重量份的淀粉基塑料、15重量份的竹纤维、1重量份的马来酸酐、1重量份的钛酸酯偶联剂和1重量份的硬脂酸锌加入到双螺杆挤出机中熔融共混后挤出造粒,双螺杆挤出机的条件为:挤出温度为200℃,主螺杆转速为150r/min,喂料转速为30r/min,切粒长度为5mm,得到本实施例制备的全生物基可降解材料。
实施例2
将聚乳酸、己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物、淀粉基塑料和竹纤维在60℃下进行真空干燥预处理3h后,取65重量份的聚乳酸、32重量份的己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物、10重量份的淀粉基塑料、20重量份的竹纤维、1重量份的聚乙二醇、1重量份的硅烷偶联剂和1重量份的硬脂酸加入到双螺杆挤出机中熔融共混后挤出造粒,双螺杆挤出机的条件为:挤出温度为200℃,主螺杆转速为150r/min,喂料转速为30r/min,切粒长度为5mm,得到本实施例制备的全生物基可降解材料。
实施例3
将聚乳酸、己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物、淀粉基塑料和竹纤维在60℃下进行真空干燥预处理3h后,取65重量份的聚乳酸、32重量份的己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物、20重量份的淀粉基塑料、10重量份的竹纤维、1重量份的丁二酸酐、1重量份的铝酸酯偶联剂和1重量份的硬脂酸钙加入到双螺杆挤出机中熔融共混后挤出造粒,双螺杆挤出机的条件为:挤出温度为200℃,主螺杆转速为150r/min,喂料转速为30r/min,切粒长度为5mm,得到本实施例制备的全生物基可降解材料。
实施例4
将聚乳酸、己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物、淀粉基塑料和竹纤维在60℃下进行真空干燥预处理3h后,取54重量份的聚乳酸、42重量份的己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物、16重量份的淀粉基塑料、16重量份的竹纤维、1.5重量份的丁二酸酐、1.5重量份的铝酸酯偶联剂和1重量份的硬脂酸钙加入到双螺杆挤出机中熔融共混后挤出造粒,双螺杆挤出机的条件为:挤出温度为200℃,主螺杆转速为150r/min,喂料转速为30r/min,切粒长度为5mm,得到本实施例制备的全生物基可降解材料。
实施例5
将聚乳酸、己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物、淀粉基塑料和竹纤维在60℃下进行真空干燥预处理3h后,取74重量份的聚乳酸、23重量份的己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物、12重量份的淀粉基塑料、12重量份的竹纤维、0.8重量份的丁二酸酐、0.8重量份的铝酸酯偶联剂和1.4重量份的硬脂酸钙加入到双螺杆挤出机中熔融共混后挤出造粒,双螺杆挤出机的条件为:挤出温度为200℃,主螺杆转速为150r/min,喂料转速为30r/min,切粒长度为5mm,得到本实施例制备的全生物基可降解材料。
实施例6
将聚乳酸、己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物、淀粉基塑料和竹纤维在60℃下进行真空干燥预处理3h后,取42重量份的聚乳酸、51重量份的己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物、30重量份的淀粉基塑料、30重量份的竹纤维、2重量份的丁二酸酐、2.5重量份的铝酸酯偶联剂和2.5重量份的硬脂酸钙加入到双螺杆挤出机中熔融共混后挤出造粒,双螺杆挤出机的条件为:挤出温度为200℃,主螺杆转速为150r/min,喂料转速为30r/min,切粒长度为5mm,得到本实施例制备的全生物基可降解材料。
实施例7
将聚乳酸、己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物、淀粉基塑料和竹纤维在60℃下进行真空干燥预处理3h后,取80重量份的聚乳酸、18.5重量份的己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物、10重量份的淀粉基塑料、10重量份的竹纤维、0.5重量份的丁二酸酐、0.5重量份的铝酸酯偶联剂和0.5重量份的硬脂酸钙加入到双螺杆挤出机中熔融共混后挤出造粒,双螺杆挤出机的条件为:挤出温度为200℃,主螺杆转速为150r/min,喂料转速为30r/min,切粒长度为5mm,得到本实施例制备的全生物基可降解材料。
对比例1
本对比例与实施例1的区别在于,本对比例不加入淀粉基塑料和竹纤维。
对比例2
本对比例与实施例1的区别在于,本对比例不加入竹纤维,且淀粉基塑料的用量为30重量份。
对比例3
本对比例与实施例1的区别在于,本对比例不加入淀粉基塑料,且竹纤维的用量为30重量份。
测试实施例
本测试实施例用于测试实施例1-7和对比例1-3所制备的全生物基可降解材料的拉伸强度、冲击性能和热变形温度。结果见表1。
拉伸强度的测试方法为:GBT 1040-2006。
冲击性能的测试方法为:GB/T 1043-2008。
热变形温度的测试方法为:ISO 75-2013。
表1
由表1可见,本公开将特定比例的竹纤维和淀粉基塑料与聚乳酸和己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物混合联用,所制备的全生物基可降解材料具有较高的拉伸强度以及较好的抗冲击性能和耐热性,与不含竹纤维和淀粉基塑料、或仅含有竹纤维和淀粉基塑料其中一种所制备的材料相比各性能均有显著提升。
以上详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (17)

1.一种全生物基可降解材料,其特征在于,该材料包括基料、淀粉基塑料和竹纤维,所述基料包括聚乳酸和己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物,以100重量份的所述聚乳酸为基准,所述己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物的含量为10-150重量份,所述淀粉基塑料的含量为10-100重量份,所述竹纤维的含量为10-100重量份。
2.根据权利要求1所述的材料,其中,以100重量份的所述聚乳酸为基准,所述己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物的含量为30-80重量份,所述淀粉基塑料与竹纤维的含量加和为30-60重量份。
3.根据权利要求1或2所述的材料,其中,所述材料还包括助剂,以100重量份的所述基料为基准,所述助剂的含量为0.5-9重量份。
4.根据权利要求3所述的材料,其中,所述助剂包括增容剂、偶联剂和润滑剂中的至少一种,所述增容剂为选自聚乙二醇、马来酸酐和丁二酸酐中的至少一种,所述偶联剂为选自硅烷偶联剂、钛酸酯偶联剂和铝酸酯偶联剂中的至少一种,所述润滑剂为选自硬脂酸、硬脂酸锌和硬脂酸钙中的至少一种。
5.根据权利要求4所述的材料,其中,所述助剂包括增容剂、偶联剂和润滑剂,以100重量份的所述基料为基准,所述增容剂的含量为0.3-3重量份,所述偶联剂的含量为0.3-3重量份,所述润滑剂的含量为0.3-3重量份。
6.根据权利要求1或2所述的材料,其中,所述聚乳酸的重均分子量为150000-300000,所述聚乳酸为选自聚D-乳酸、聚L-乳酸和聚D,L-乳酸中的至少一种。
7.根据权利要求1或2所述的材料,其中,所述己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物的重均分子量为40000-150000。
8.根据权利要求1或2所述的材料,其中,所述淀粉基塑料的淀粉含量为85-100重量%。
9.根据权利要求1或2所述的材料,其中,所述竹纤维的细度为90-110目。
10.一种制备全生物基可降解材料的方法,其特征在于,该方法包括:将基料、淀粉基塑料和竹纤维混合均匀后挤出造粒,得到全生物基可降解材料,所述基料包括聚乳酸和己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物,其中,以100重量份的所述聚乳酸为基准,所述己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物的用量为10-150重量份,所述淀粉基塑料的用量为10-100重量份,所述竹纤维的用量为10-100重量份。
11.根据权利要求10所述的方法,其中,该方法还包括,将所述基料、淀粉基塑料、竹纤维与助剂混合均匀后挤出造粒,得到全生物基可降解材料,以100重量份的所述基料为基准,所述助剂的用量为0.5-9重量份。
12.根据权利要求11所述的方法,其中,所述助剂包括增容剂、偶联剂和润滑剂,以100重量份的所述基料为基准,所述增容剂的用量为0.3-3重量份,所述偶联剂的用量为0.3-3重量份,所述润滑剂的用量为0.3-3重量份。
13.根据权利要求11所述的方法,其中,该方法还包括,将所述基料、淀粉基塑料、竹纤维与助剂混合前,先对所述基料、淀粉基塑料和竹纤维进行干燥预处理,所述干燥预处理的条件为:温度为50-70℃,时间为2-4h。
14.根据权利要求10或11所述的方法,其中,所述挤出造粒的条件为:挤出的温度为180-210℃,螺杆转速为120-200r/min,喂料转速为20-40r/min,切粒长度为2-5mm。
15.一种由权利要求10-14中任意一项所述的方法制备的全生物基可降解材料。
16.一种车辆内饰,其特征在于,该车辆内饰由权利要求1-9和15中任意一项所述的全生物基可降解材料制成。
17.一种车辆,其特征在于,该车辆包括权利要求16所述的车辆内饰。
CN201710021008.XA 2017-01-11 2017-01-11 全生物基可降解材料及其制备方法和车辆内饰及车辆 Active CN106800756B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710021008.XA CN106800756B (zh) 2017-01-11 2017-01-11 全生物基可降解材料及其制备方法和车辆内饰及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710021008.XA CN106800756B (zh) 2017-01-11 2017-01-11 全生物基可降解材料及其制备方法和车辆内饰及车辆

Publications (2)

Publication Number Publication Date
CN106800756A true CN106800756A (zh) 2017-06-06
CN106800756B CN106800756B (zh) 2019-09-13

Family

ID=58985541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710021008.XA Active CN106800756B (zh) 2017-01-11 2017-01-11 全生物基可降解材料及其制备方法和车辆内饰及车辆

Country Status (1)

Country Link
CN (1) CN106800756B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109135227A (zh) * 2018-08-29 2019-01-04 佛山市禅城区诺高环保科技有限公司 一种环保型超市用托盘复合材料及其制备方法
CN110016217A (zh) * 2019-04-30 2019-07-16 封金财 一种可降解农用复合塑料地膜的制备方法
CN110193922A (zh) * 2019-02-20 2019-09-03 江苏鸿基水源科技股份有限公司 一种可降解生态袋及其生产设备
WO2021238297A1 (zh) * 2020-05-27 2021-12-02 李小文 一种植物纤维塑化材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143438A (ja) * 2002-10-03 2004-05-20 Daicel Chem Ind Ltd 複合生分解性成形品
WO2010138081A1 (en) * 2009-05-26 2010-12-02 Hyflux Ltd A biodegradable starch film
CN102002223A (zh) * 2010-11-02 2011-04-06 奇瑞汽车股份有限公司 一种全生物降解的聚乳酸复合材料及其制备方法
CN102321249A (zh) * 2011-06-30 2012-01-18 无锡碧杰生物材料科技有限公司 一种热塑性淀粉和生物降解聚酯/淀粉复合材料及其制备
CN102408688A (zh) * 2010-09-26 2012-04-11 比亚迪股份有限公司 一种聚乳酸复合材料及其制备方法
CN103627153A (zh) * 2012-08-20 2014-03-12 上海杰事杰新材料(集团)股份有限公司 一种全生物降解pla/pbat复合材料及其制备方法
CN104788920A (zh) * 2015-05-04 2015-07-22 苏州汉丰新材料股份有限公司 一种高强度、高模量完全生物降解复合材料及其配方和制备方法
CN105237977A (zh) * 2015-11-06 2016-01-13 福州市福塑科学技术研究所有限公司 一种竹纤维增强的可降解pla材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143438A (ja) * 2002-10-03 2004-05-20 Daicel Chem Ind Ltd 複合生分解性成形品
WO2010138081A1 (en) * 2009-05-26 2010-12-02 Hyflux Ltd A biodegradable starch film
CN102408688A (zh) * 2010-09-26 2012-04-11 比亚迪股份有限公司 一种聚乳酸复合材料及其制备方法
CN102002223A (zh) * 2010-11-02 2011-04-06 奇瑞汽车股份有限公司 一种全生物降解的聚乳酸复合材料及其制备方法
CN102321249A (zh) * 2011-06-30 2012-01-18 无锡碧杰生物材料科技有限公司 一种热塑性淀粉和生物降解聚酯/淀粉复合材料及其制备
CN103627153A (zh) * 2012-08-20 2014-03-12 上海杰事杰新材料(集团)股份有限公司 一种全生物降解pla/pbat复合材料及其制备方法
CN104788920A (zh) * 2015-05-04 2015-07-22 苏州汉丰新材料股份有限公司 一种高强度、高模量完全生物降解复合材料及其配方和制备方法
CN105237977A (zh) * 2015-11-06 2016-01-13 福州市福塑科学技术研究所有限公司 一种竹纤维增强的可降解pla材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109135227A (zh) * 2018-08-29 2019-01-04 佛山市禅城区诺高环保科技有限公司 一种环保型超市用托盘复合材料及其制备方法
CN110193922A (zh) * 2019-02-20 2019-09-03 江苏鸿基水源科技股份有限公司 一种可降解生态袋及其生产设备
CN110016217A (zh) * 2019-04-30 2019-07-16 封金财 一种可降解农用复合塑料地膜的制备方法
WO2021238297A1 (zh) * 2020-05-27 2021-12-02 李小文 一种植物纤维塑化材料及其制备方法

Also Published As

Publication number Publication date
CN106800756B (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
CN101020780B (zh) 聚乳酸基热可塑性木塑复合材料的制备方法
CN106800756B (zh) 全生物基可降解材料及其制备方法和车辆内饰及车辆
CN103992517B (zh) 一种可连续化生产全降解淀粉基塑料合金及其制备方法
CN104119647B (zh) 一种高淀粉含量全生物降解组合物及其制备方法
CN103172988B (zh) 生物降解聚酯共混薄膜的增容方法
WO2017121242A1 (zh) 一种增塑可生物降解聚酯薄膜及其制备方法
CN103146160B (zh) 全生物降解组合物及其制备方法
KR101525658B1 (ko) 식품부산물인 소맥피 또는 대두피를 활용한 바이오 매스 필름용 조성물 및 이를 이용한 바이오매스 필름
CN111154243B (zh) 一种生物基可堆肥降解耐热型薄膜复合材料及其制备方法
CN104312121B (zh) 高韧性透明聚乳酸薄膜及其制备方法
CN108559234A (zh) 一种可生物降解发泡片材及其制备方法
CN110760169B (zh) 一种阻隔材料及其制备方法
JP2020125470A (ja) バイオマスプラスチック複合材及びその製造方法
CN107151427A (zh) 一种生物可降解增韧耐热型聚乳酸改性树脂及其制备方法
CN109111710A (zh) 一种耐热型pla基可降解塑料瓶及其制备方法
CN107841102A (zh) 一种生物可降解增韧耐热型聚乳酸改性树脂及其制备方法
CN110317406A (zh) 一种生物可降解聚丙烯组合物及其制备方法
CN110819085A (zh) 一种高韧性全生物降解塑料袋及其制备方法
CN113429754A (zh) 一种复合填充的全降解材料组合物、薄膜及其制备方法
CN113234304A (zh) 一种生物可降解薄膜材料及薄膜的制备方法
CN103709688A (zh) Pbs全降解材料及其制备方法和应用
CN110358273B (zh) 一种具有高抗穿刺性能的生物质抗菌膜
CN106397842A (zh) 一种具有可降解性能的包装膜材料
CN104945870A (zh) 一种可完全生物降解的改性聚乳酸吹膜级树脂及其制备方法
CN106009565A (zh) 一种尼龙增强聚乳酸复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant